• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Breeding Effects and Genetic Compositions of a Backbone Parent (Fengbazhan) of Modern indica Rice in China

    2022-08-08 09:54:34ZhaoLeiZhouShaochuanWangChongrongLiHongHuangDaoqiangWangZhidongZhouDeguiChenYiboGongRongPanYangyang
    Rice Science 2022年5期

    Zhao Lei, Zhou Shaochuan, Wang Chongrong, Li Hong, Huang Daoqiang, Wang Zhidong, Zhou Degui, Chen Yibo, Gong Rong, Pan Yangyang

    Letter

    Breeding Effects and Genetic Compositions of a Backbone Parent (Fengbazhan) of ModernRice in China

    Zhao Lei, Zhou Shaochuan, Wang Chongrong, Li Hong, Huang Daoqiang, Wang Zhidong, Zhou Degui, Chen Yibo, Gong Rong, Pan Yangyang

    ()

    Fengbazhan (FBZ) andits derived varieties have been widely cultivated in China, accounting for 22% of China’s paddyfields.Therefore, evaluating the breeding. Effectsof FBZ and elucidating its genetic compositions are effective strategies for interpreting the history of modern rice breeding.Using integrative bioinformatics analysis and population validation,we found that the expression of favorable genes on chromosome 6 was important for the breeding of FBZ-derived varieties and these favorable genes were gradually optimized during thebreeding process, which was consistent with the conjecture of the ‘Rice Core Germplasm Breeding Theory’.

    Forseveral decades, tremendous efforts have been made by Chinese scientists in rice breedingto improvegrain yield, nutritional quality and environmental performance, thereby achieving substantial progress in globalfood security.Several rice breeding technologies have been developed, includingsemi-dwarf breeding, utilization of heterosis, launching the ‘Super Rice Project’, development of green super rice and molecular design breeding(Qian et al, 2016;Bai et al, 2018; Tang and Cheng, 2018; Yu et al, 2022).In southern China, rice can be divided into the early, middle and late rice, andthe cultivationarea in southern China accounts for approximately80% of China’s rice cultivation area.Currently, severaldistinct rice varieties are widely cultivated in southern China. According to NATESC (2019), the conventionalrice variety is mainly planted in the early season,with therepresentative varieties being Zhongjiazao17, Xiangzaoxian45 and Zhongzao39. In the middle and late seasons, both conventionaland hybrid rice varieties are widely cultivated. Among them, Huanghuazhan has become the conventionalrice variety with the largest annual planting area in China, whereasJingliangyou534 (restorer: Wushansimiao) and Jingliangyou- huazhan (restorer: Huazhan) are the two-hybrid rice varieties with the largest annual promotion area.In addition, Huanghuazhan and Huazhan are actively replacing the rice varieties currently usedin China(Zhou et al, 2016; Zeng, 2018; E et al, 2019; Fang et al, 2020; Yu et al, 2022; Zhang et al, 2022).Moreover, these varieties are derived from FBZand can therefore be referred toasFBZ-derived varieties.

    FBZ was developed by crossing two key parents, Feng’aizhan1 and 28zhan (Fig. 1-A).Feng’aizhan1 is a semi-dwarf rice variety with multiple tillers, high yield and slender grains, but it exhibits poor blast resistance and has high amylose content.In contrast, 28zhan exhibits excellent blast resistance and has low amylose content, although its appearance quality and grain yield are not ideal.FBZ inherits the advantages of both parents (Zhou et al, 2007), and thus, itis a remarkable rice variety exhibiting excellent milling, appearance and cooking qualities,blast resistance, and high yield in Guangdong Province in China.Our team used FBZ as the core germplasm to breed the first certified rice variety Fenghuazhan (Fig. 1-A). The appearance and taste quality of Fenghuazhan were significantly improved compared to those of FBZ. Subsequently, our team bred another elite rice variety Huanghuazhan, by crossing Huangxinzhan and Fenghuazhan, which was released in 2005 (Fig. 1-A).Huanghuazhan is the most common inbred rice cultivar that has been cultivated in central and south China and has been widely grown across nine provinceswith semi-dwarf,super high yield,good eating qualityand wide adaptability(Zhou et al, 2016; Deng et al, 2019). Nevertheless, Huanghuazhan exhibits a significantly reducedblastresistance compared to FBZ, which may limit its application in areas with a high risk of rice blast. To overcome these limitations, we developed two intermediary varieties, Wufengzhan2 and Fengsizhan, which were directly derived from FBZ. Based on these two varieties, Wushansimiao, Huanglizhan,and Huangyuesimiao were bred by our institute and Huazhan was cooperatively bred by our institute and China National Rice Research Institute (Fig. 1-A), and thesefour varieties have proven to be elite restorer lineswith good quality, high blast resistance and excellent combining ability. The breeding and popularization of hybrid rice were mainly completed by our partners, namely the China National Rice Research Institute, Longping High-TechAgriculture Co., Ltd.,and Quanyin High-TechSeed Co., Ltd.

    Fig. 1. Breeding effects of Fengbazhan (FBZ) in China.

    A, FBZ-derived varieties bred by our team. Huazhan was cooperatively bred by our team and China National Rice Research Institute. Seven elite varieties are shown in boxes.B, Planting areas of FBZ-derivedvarieties in China. C, Main locations whereFBZ-derivedvarieties are cultivated in China.D,Percentage of the planting area of FBZ-derived hybrids with respect tothe total planting area of hybrid rice in China. The unit is × 104hm2. E, Percentage ofplanting area of FBZ-derived varieties (including hybrid rice and conventional rice) with respect tothe total rice areain China (NATESC, 2019). The unit is × 104hm2.F, Released FBZ-derived conventional rice varieties in Guangdong Province of China from2000 to 2020.

    The promotion of FBZ-derived varieties began in 2002, and theirplantingarea has increased dramatically since2009.The maximum planting area ofconventional rice derived from FBZwas recordedin 2015, whereasthe area of FBZ-derived hybrid rice has been rapidly increasing in recent years (Fig. 1-B).Geographically, therice variety is mainly distributed in the south of the Huai River-Qinling Mountain line. Fig. 1-C shows thatthe FBZ-derived varieties have been widely cultivated in all therice-growing areas of China. In 2019, 79 hybrid rice varieties derived from the FBZ-series restorer lineswere promoted for production in 3 806 000 hm2,accounting for 35% ofthe total hybrid rice planting area in China (Fig. 1-D). In addition to hybrid rice, 10 conventional FBZ-derived varieties havebeen sowed. In general, the planting area for FBZ-derivedvarietiesaccounts for 22% of the total rice planting area in China (Fig. 1-E). Shanyou63, a milestone in China’s hybrid ricedevelopment, had a large planting area from 1985 to2001, with an average area of 3.6 million hectaresand 28.3% of the national hybrid rice-growing areas annually(Xie and Zhang, 2018).The annual planting area of FBZ-derived hybridsexceeded that of Shanyou63.Additionally, more than 90% of the conventional rice varieties released in Guangdong Province in recent years are descendants of FBZ(Fig. 1-F), indicating that FBZ has become the backbone parent of conventional rice varieties and the development of FBZ can be regarded as a milestone in modernrice breeding in China.

    We collected the genomic data of 138 varieties to reveal the genetic basis of the FBZ-derived varieties (Table S1). Population structure analysis showed that the genetic distances of the iconic restorer lines were generally close, whereas the FBZ-derived varieties showed separate clustersand were closest to the elite conventional ricevarieties (Fig. 2-A). In China, the maleparents of hybrid rice varieties are either imported directly from the International Rice Research Institute (IRRI) or developedusing IRRI varieties as donor parents (Xie and Zhang, 2018), which means most of the restorer lines share more than 40% ancestry from IRRI varieties. In contrast, only 25% ancestry of FBZ is derived from IRRI varieties and is even less in FBZ-derived varieties (Fig. 1-A). We speculated that the close genetic distance between elite conventional rice and the FBZ-derived varieties is an important reason for their wide adaptability and high yield, while the ancestry from IRRI variety allows FBZ to acquire fertility restoration and rice blast resistance, which can explain why FBZ-derived varieties can be used as conventional rice and as restorer lines.

    Fig. 2. Geneticfeatures of varieties derived from Fengbazhan (FBZ).

    A, Neighbor-joining tree of138 varieties. B, Inheritance pattern of chromosome 6 in thebreeding of the latest FBZ-derived varieties. Genotypes were drawn based on penta-primer amplification refractory mutation markers. Genes contributing tomodernrice varieties are marked on the top. White (FBZ) and red (others)bars denote the parental origin of the segments. Haplotypes of,andloci were marked with arrows.C, Allelic effects oflocus on the entire growth duration. D, Effects ofallelic diversity on AC. G1,wxvarieties (= 14); G2,wxvarieties (= 26); G3,varieties (= 67). E–G, Effects oflocus on Zhong B (E), Zhong C (F), and total (G)groups of the blast fungus. G-I, +++varieties (= 67); G-II, +--varieties (= 7); G-III, ---varieties (= 19). AC, Amylose content; RF, Resistance frequencyto total rice blast fungus in GuangdongProvince, China. Different lowercase letters denote significant differences (< 0.05).

    By comparing the variant information of 222 genes that are responsible for quantitative traits (QTGs)(Wei et al, 2021), we identified 48 QTGs exhibiting allelic differences among rice varieties (Fig. S1).Among them, 10 QTGswere differentially used betweenGroup I (landraces) and Group II (landmark semi-dwarf varieties), and 33 QTGsunderwentartificial selection between Group II and Group III (iconic restorer lines / conventional rice),and 4 QTGs (,,and) wereexclusively used in Group IV (FBZ-derived varieties) (Fig. S1). These findingsindicated that 91.6%of the QTGs wereselected before FBZ was bred,whereas only a few QTGsdirectly contributed to the breeding of FBZ-derived varieties.

    Remarkably, the four QTGs (,,and) weretandemly distributed on chromosome 6.Moreover, 8 of the 48 QTGs werelocated on chromosome 6, and together they accounted for 25% of the 48 QTGs(Fig. S1).Among them, several genes play an important role in rice breeding. For example,andare major genes responsible foreating and cooking quality(Tianet al, 2009), whileaffects both lodging resistance and productivity(Ookawa et al, 2010). We noticed thathas no functional variation in Group IV as compared to the other groups, while causative variantscorresponding toalso existed in the other groups. Sequence alignment analysis revealed that the FBZ-typeallele was different compared to the other widely promoted varieties, such as Minghui63 and 9311. Compared withNipponbare, Huazhan has two single nucleotide polymorphisms(SNPs) and one base deletionin the coding region (Fig. S2-A), and the FBZ haplotype was the closest to theWxallele (Fig. S2-B). By comparing the gene sequences ofthe four tandem genes, we found that thesequences ofandof Huazhan were identical to those of C101A51 (-carrying line) and Gumei2 (-carrying line)(Fig. S3-A and -B). We observed only one SNP in thegenebetween Huazhan and Digu (-carrying line) (Fig. S3-C), but this variant does not exist in both Ricevarmapand Rice RC databases (Zhao et al, 2015; Qin et al, 2021), indicating that the SNP in Digu (GenBank: FJ915121.1) is caused by sequencing errors. Hence, Huazhan also carried the resistance allele of.For, both Huanghuazhan andMinghui 63 harbored a 4-bp frameshift deletionat the 1 904bp position, while Huazhan harbored a 2-bpframeshift deletionat the 1 686 bp position(Fig. S4).Given that hundreds of conventional rice varieties have been derived from FBZ,we speculated how these 12 QTGswere inherited in the latest FBZ-derived varieties. We collected DNA samples from176rice varieties (Table S2). According toPARMS (penta-primer amplification refractory mutation) genotyping (Lu et al, 2020), the 83 FBZ-derived varieties can be divided into 13 groups. Surprisingly, 64 of the 83 varietiesshared the same genotype at locusChr6: 1.6–23.3 Mb, except for the variation in thelocus (Fig. 2-B).This finding strongly indicated that most of the beneficial QTGs on chromosome 6 were inheritedduring the breeding of FBZ-derived varieties.

    Considering the influence of,,,andon agronomic traits, we extracted data on the amylose content, whole growth period, and rice blast resistance from varietiescertification announcements. Compared to(Huanghuazhan- type), the whole growth period of(Huazhan-type, which exists in most FBZ-series varieties) showed no significant difference in the early or late seasons (Fig. 2-C), which indicated that the variation inhaplotype did not influence its gene effect in FBZ-series varieties.For, 75.9% of the FBZ-series varieties contained theallele, while varieties carrying theWxallele accounted for 22.9%.There was no significant difference inamylose content betweentheand Wxvarieties, however, their amylose content was significantly lower than that oftheWxvarieties(Fig. 2-D).This patternindicated thatwas also a favorable allele for rice quality improvement. We identifiedsix genotype combinations of,andin 176 varieties.The varieties carrying theresistance allele can significantly improvethe frequency of resistance toZhong B, Zhong C,and total group of rice blast fungus, as well as the comprehensive resistance to rice blast.Nevertheless,andhad little effect on blast resistance in this study (Fig. 2-E to -G). Taken together, the utilization of the favorable genes on chromosome 6 removed the problem of ‘highquality butlow blast resistance’, enabling the FBZ-derived varieties to achieve a high and stable yield, good quality and wide adaptability in production.

    To identify the favorable genes involved inthe breeding process of the FBZ-derived varieties, we compared the allelic differences of 222QTGs between the FBZ-derived varieties and their ancestors. A total of 16 QTGs, with beneficial functions inFBZ-series varieties, were identified as key candidate genes according to functional variation information. These 16 QTGs were included in the 48 QTGs that showed haplotype differences among different varieties, except for. The 16 QTGs arewell-known important functional genes,which allowed us to understand their genetic effects.These QTGs had distinctivecharacteristics of gradual replacement, and they were mainly selected at fourstages (Fig. S5). Firstly, five QTGs were selected during the semi-dwarf breeding period, inducingthe variety Teqing to exhibit semi-dwarf (), delayed heading (), partial fertility recovery (),and compact plant type (and) properties. Secondly, six QTGs were integrated to breedQingliuai1, including genes related to fertility restoration (and), grain protein content (), blast resistance (), and bacterial blight resistance (and). Thirdly, Feng’aizhan1 utilized three QTGs (/,and), thereby exhibiting a slender and chalk-free appearance.Lastly, two QTGs were used to breed FBZ, making it possible to breed varieties withlow amylose content () and highresistance to rice blast ().Favorable genes were gradually optimized during thebreeding of FBZ-series varieties, which was consistent with the conjecture of the ‘Rice Core Germplasm Breeding Theory’(Zhou and Ke, 1998; Zhou et al, 2021).

    Our team also bred another iconic aromatic rice variety Meixiangzhan2, which is the onlyrice variety and has won three gold medals awarded by thenational committee for evaluation ofthe eating quality of high-quality rice varieties, and its taste quality has surpassed Thai Hom Mali Rice KDML105.Meixiangzhan2 was released in 2006 and has been widely planted in China, with an annual promotion area of approximately 133000 hm2(NATESC, 2019).It has also been introduced to Myanmar, Vietnam, Laos, Thailand, Mozambique, and other countries for cultivation(Li et al, 2021). In the future, we will work on breeding a variety that has highyield, disease resistance properties, and combining the ability ofthe FBZ-derived varieties with the eating quality of Meixiangzhan2.To achieve this goal, some favorable genes,such as,,,and, could be manipulatedusing molecular marker-assisted selection technology to improve breeding efficiency.In addition, it is necessary to introduce more germplasm resources, especially for theorrice variety, todiscover more favorable alleles or combinations of favorable genes, thereby creating a new balance between yield, quality and resistance.

    In conclusion, we systematically analyzed the breeding effects and genetic characteristics of FBZ.We determinedthat the genetic composition of the FBZ-derived varieties is distinctfrom that of the other restorer lines.Our research demonstrated that the improvement in rice varieties was essentially a trajectory of gradual optimization from the original system to the ideal gene system. Notably,breakthrough varieties are often bred using only a few genes or chromosomal segments.We believe that our findings will provide important references for rice breeding.

    Acknowledgements

    This study was supported by the Laboratory of Lingnan Modern Agriculture Project (Grant No. NT2021001), Applied Science and Technology of Guangdong Province, China (Grant No. 2015B020231001), Guangdong Academy of Agricultural Sciences Agricultural Advantage Industry Discipline Team Building Project (Grant No. 202111TD): Quality Rice Core Germplasm Breeding Team (2021–2025), Special Fund for Science and Technology Innovation Strategy of Guangdong Academy of Agricultural Sciences: Dean’s Fund Key Project (Grant No. 202001), Collection and Evaluation of High-Quality Germplasm Resources of ‘Guangdong Simiao Rice’ (Grant No. 2021KJ382-02) and Operating Fees for Key Laboratory of Guangdong Province (Grant No. 2020B1212060047). We thank Mr. Gu Minghong from Yangzhou University for his valuable comments and suggestions and Professor Liang Wanqi from Shanghai Jiaotong University for providing seeds of several ancestral varieties of Fengbazhan.

    Supplemental data

    The following materials are available in the online version of this article at http://www.sciencedirect.com/journal/rice-science; http://www.ricescience.org.

    File S1. Methods.

    Fig. S1. Allele types of causatice variants involved in Chinese modernrice breeding.

    Fig. S2. Sequence features of FBZ-type allele in coding regions ofgene.

    Fig. S3. Sequence analysis of,andin Huazhan.

    Fig. S4. Sequence features ofin Huazhan and Huanghuazhan.

    Fig. S5. Genes flow of key candidate genes involved in breeding of FBZ-derived varieties.

    Table S1. List of rice accessions used for variant information extraction in this study.

    Table S2. Genotyping of 10 loci in 176 rice varieties using penta-primer amplification refractory mutation markers.

    Bai S W, Yu H, Wang B, Li J Y. 2018. Retrospective and perspective of rice breeding in China., 45(11): 603–612.

    Deng N Y, Grassini P, Yang H S, Huang J L, Cassman K G, Peng S B. 2019. Closing yield gaps for rice self-sufficiency in China., 10(1): 1725.

    E Z G, Cheng B Y, Sun H W, Wang Y J, Zhu L F, Lin H, Wang L, Tong H H, Chen H Q. 2019. Analysis on Chinese improved rice varieties in recent four decades., 33(6): 523–531. (in Chinese with English abstract)

    Fang Y W, Zhang W, Chen Y Y, Hou F, Xu L F, Tang C H, Li R D. 2020. State quo of utilization of high-quality hybrid rice varieties in China during 2001–2017., 32(1): 1–14. (in Chinese with English abstract)

    Li H, Zhou S C, Huang D Q, Wang Z D, Wang C R, Zhou D G, Chen Y B, Gong R, Zhao L, Pan Y Y. 2021. The breeding and enlightenment of Meixiangzhan 2, a aromatic rice variety with good eating quality., 39(2): 1–6. (in Chinese with English abstract)

    Lu J, Hou J, Ouyang Y D, Luo H, Zhao J H, Mao C, Han M, Wang L, Xiao J H, Yang Y Y, Li X. 2020. A direct PCR-based SNP marker-assisted selection system (D-MAS) for different crops., 40(1): 1–10.

    National Agricultural Technology Extension Service Center (NATESC). 2019. Statistics on the Promotion of the Main Varieties of Crops in 2019. Beijing. (in Chinese)

    Ookawa T, Hobo T, Yano M, Murata K, Ando T, Miura H, Asano K, Ochiai Y, Ikeda M, Nishitani R, Ebitani T, Ozaki H, Angeles E R, Hirasawa T, Matsuoka M. 2010. New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield., 1: 132.

    Qian Q, Guo L B, Smith S M, Li J Y. 2016. Breeding high-yield superior quality hybrid super rice by rational design., 3(3): 283–294.

    Qin P, Lu H W, Du H L, Wang H, Chen W L, Chen Z, He Q, Ou S J, Zhang H Y, Li X Z, Li X X, Li Y, Liao Y, Gao Q, Tu B, Yuan H, Ma B T, Wang Y P, Qian Y W, Fan S J, Li W T, Wang J, He M, Yin J J, Li T, Jiang N, Chen X W, Liang C Z, Li S G. 2021. Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations., 184(13): 3542–3558.

    Tang D, Cheng Z K. 2018. From basic research to molecular breeding: Chinese scientists play a central role in boosting world rice production., 16(6): 389–392.

    Tian Z X, Qian Q, Liu Q Q, Yan M X, Liu X F, Yan C J, Liu G F, Gao Z Y, Tang S Z, Zeng D L, Wang Y H, Yu J M, Gu M H, Li J Y. 2009. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities., 106(51): 21760–21765.

    Wei X, Qiu J, Yong K C, Fan J J, Zhang Q, Hua H, Liu J, Wang Q, Olsen K M, Han B, Huang X H. 2021. A quantitative genomics map of rice provides genetic insights and guides breeding., 53(2): 243–253.

    Xie F M, Zhang J F. 2018. Shanyou 63: An elite mega rice hybrid in China., 11(1): 17.

    Yu S B, Ali J, Zhou S C, Ren G J, Xie H A, Xu J L, Yu X Q, Zhou F S, Peng S B, Ma L Y, Yuan D Y, Li Z F, Chen D Z, Zheng R F, Zhao Z G, Chu C C, You A Q, Wei Y, Zhu S S, Gu Q Y, He G C, Li S G, Liu G F, Liu C H, Zhang C P, Xiao J H, Luo L J, Li Z K, Zhang Q F. 2022. From green super rice to green agriculture: Reaping the promise of functional genomics research., 15(1): 9–26.

    Zeng B. 2018. Renovation of main cultivated rice varieties in China in the past 30 years., 34: 1–7.

    Zhang H, Wang Y X, Deng C, Zhao S, Zhang P, Feng J, Huang W, Kang S J, Qian Q, Xiong G S, Chang Y X. 2022. High-quality genome assembly of Huazhan and Tianfeng, the parents of an elite rice hybrid Tian-you-hua-zhan., 65(2): 398–411.

    Zhao H, Yao W, Ouyang Y D, Yang W N, Wang G W, Lian X M, Xing Y Z, Chen L L, Xie W B. 2015. RiceVarMap: A comprehensive database of rice genomic variations., 43: D1018–D1022.

    Zhou D G, Chen W, Lin Z C, Chen H D, Wang C R, Li H, Yu R B, Zhang F Y, Zhen G, Yi J L, Li K H, Liu Y G, Terzaghi W, Tang X Y, He H, Zhou S C, Deng X W. 2016. Pedigree-based analysis of derivation of genome segments of an elite rice reveals key regions during its breeding., 14(2): 638–648.

    Zhou S C, Ke W. 1998. Talking about the excellent germplasm and its derivative system in breeding., (Suppl): 1–5. (in Chinese)

    Zhou S C, Li H, Zhu X Y, Miao R W, Lu D C, Zeng L X, Huang D Q, Lai S C, Li K H. 2007. Breeding of Fengbazhan and its derivative varieties and comprehensive analyses of the breeding achievement: The case of rice core germplasm breeding., (5): 5–11. (in Chinese with English abstract)

    Zhou S C, Ke W, Miao R W, Li H, Huang D Q, Wang C R. 2021. Creation and application of the breeding theory based on rice core germplasm., 35(6): 529–534. (in Chinese with English abstract)

    Copyright ? 2022, China National Rice Research Institute. Hosting by Elsevier B V

    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Peer review under responsibility of China National Rice Research Institute

    http://dx.doi.org/

    Zhou Shaochuan (xxs123@163.com)

    11 March 2022;

    22 May 2022

    欧美乱码精品一区二区三区| 亚洲第一青青草原| 久久人妻熟女aⅴ| 80岁老熟妇乱子伦牲交| 免费观看人在逋| 一区二区三区精品91| 国产成人影院久久av| 黄色片一级片一级黄色片| 人人澡人人妻人| 一本大道久久a久久精品| 999精品在线视频| 国产91精品成人一区二区三区 | 老熟妇乱子伦视频在线观看| 国产主播在线观看一区二区| 亚洲国产欧美一区二区综合| 亚洲第一欧美日韩一区二区三区 | 人人妻人人爽人人添夜夜欢视频| 欧美日韩视频精品一区| 啦啦啦中文免费视频观看日本| 日韩中文字幕欧美一区二区| 1024香蕉在线观看| 欧美乱妇无乱码| 成人影院久久| 亚洲三区欧美一区| 亚洲成人国产一区在线观看| 制服诱惑二区| 国精品久久久久久国模美| 在线观看www视频免费| 国产精品国产av在线观看| 亚洲黑人精品在线| 中文字幕色久视频| 啦啦啦中文免费视频观看日本| 热99国产精品久久久久久7| 亚洲三区欧美一区| 国产不卡一卡二| 黑丝袜美女国产一区| 一区二区三区精品91| 欧美另类亚洲清纯唯美| av电影中文网址| 999久久久国产精品视频| 热99久久久久精品小说推荐| 男女下面插进去视频免费观看| 极品人妻少妇av视频| 国产精品欧美亚洲77777| 女人爽到高潮嗷嗷叫在线视频| 亚洲成人免费电影在线观看| 亚洲伊人色综图| 老司机靠b影院| 热re99久久精品国产66热6| 午夜精品国产一区二区电影| 美女高潮喷水抽搐中文字幕| 欧美精品一区二区大全| 最新在线观看一区二区三区| 国产成人av激情在线播放| 激情在线观看视频在线高清 | 美女午夜性视频免费| 久久久久精品人妻al黑| 少妇裸体淫交视频免费看高清 | 黄色片一级片一级黄色片| 2018国产大陆天天弄谢| 最新美女视频免费是黄的| 午夜91福利影院| 精品少妇一区二区三区视频日本电影| 91字幕亚洲| 美女午夜性视频免费| 啦啦啦 在线观看视频| 亚洲黑人精品在线| 国产精品美女特级片免费视频播放器 | 欧美日韩亚洲高清精品| 老熟妇仑乱视频hdxx| 人人妻,人人澡人人爽秒播| 亚洲精品在线观看二区| 久久亚洲精品不卡| 亚洲精品国产精品久久久不卡| 最近最新中文字幕大全免费视频| 久久午夜亚洲精品久久| e午夜精品久久久久久久| 国产片内射在线| 精品国产国语对白av| 亚洲五月色婷婷综合| 午夜免费成人在线视频| 久久av网站| 欧美精品一区二区大全| 一本色道久久久久久精品综合| 夜夜骑夜夜射夜夜干| 波多野结衣av一区二区av| 少妇裸体淫交视频免费看高清 | 一夜夜www| 777米奇影视久久| 女性被躁到高潮视频| 久久精品熟女亚洲av麻豆精品| 欧美精品一区二区大全| 久久99热这里只频精品6学生| 在线亚洲精品国产二区图片欧美| 国内毛片毛片毛片毛片毛片| 国产精品亚洲av一区麻豆| 淫妇啪啪啪对白视频| 91九色精品人成在线观看| 黄网站色视频无遮挡免费观看| 国产深夜福利视频在线观看| 欧美黑人欧美精品刺激| 久久久欧美国产精品| 亚洲午夜精品一区,二区,三区| 一本综合久久免费| 色婷婷久久久亚洲欧美| 精品国产超薄肉色丝袜足j| 搡老岳熟女国产| 岛国毛片在线播放| 欧美性长视频在线观看| 成人av一区二区三区在线看| 国产日韩欧美在线精品| 日韩三级视频一区二区三区| 欧美精品人与动牲交sv欧美| 国产区一区二久久| 一级毛片精品| 中文字幕精品免费在线观看视频| 亚洲中文字幕日韩| 国产老妇伦熟女老妇高清| 一区在线观看完整版| 国产成人免费观看mmmm| 淫妇啪啪啪对白视频| 操美女的视频在线观看| netflix在线观看网站| 黑人巨大精品欧美一区二区蜜桃| 亚洲第一青青草原| 日韩欧美一区视频在线观看| 国产在线视频一区二区| 黄片大片在线免费观看| 亚洲人成伊人成综合网2020| 真人做人爱边吃奶动态| 一二三四在线观看免费中文在| 亚洲美女黄片视频| av有码第一页| 精品福利永久在线观看| 后天国语完整版免费观看| 亚洲一区二区三区欧美精品| 日韩有码中文字幕| 国产高清国产精品国产三级| 欧美精品啪啪一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 日本精品一区二区三区蜜桃| 一级片免费观看大全| 亚洲成a人片在线一区二区| 国精品久久久久久国模美| 日韩中文字幕欧美一区二区| 男女无遮挡免费网站观看| 99精国产麻豆久久婷婷| 成年人黄色毛片网站| 精品第一国产精品| 9热在线视频观看99| 乱人伦中国视频| 国产一卡二卡三卡精品| 亚洲五月婷婷丁香| 50天的宝宝边吃奶边哭怎么回事| 国产日韩欧美视频二区| 国产一区二区三区在线臀色熟女 | 亚洲七黄色美女视频| 男女高潮啪啪啪动态图| av天堂在线播放| 人成视频在线观看免费观看| 免费一级毛片在线播放高清视频 | 在线播放国产精品三级| 日本五十路高清| 久久精品国产亚洲av高清一级| 多毛熟女@视频| 12—13女人毛片做爰片一| 99国产综合亚洲精品| 国产精品久久电影中文字幕 | 97在线人人人人妻| 丝袜人妻中文字幕| 一本综合久久免费| 国产在线视频一区二区| 欧美中文综合在线视频| 午夜免费成人在线视频| 一区二区三区精品91| 少妇猛男粗大的猛烈进出视频| 国产成人系列免费观看| 99riav亚洲国产免费| 亚洲精品av麻豆狂野| 国产精品麻豆人妻色哟哟久久| 久久精品国产亚洲av高清一级| 久久久久国产一级毛片高清牌| 日日摸夜夜添夜夜添小说| 国产一区二区三区视频了| 欧美激情极品国产一区二区三区| 99热国产这里只有精品6| xxxhd国产人妻xxx| 777久久人妻少妇嫩草av网站| 亚洲精品久久成人aⅴ小说| av有码第一页| 一进一出抽搐动态| 亚洲精品粉嫩美女一区| 狠狠狠狠99中文字幕| 午夜福利在线观看吧| 少妇的丰满在线观看| 免费在线观看日本一区| 动漫黄色视频在线观看| 99精品欧美一区二区三区四区| 两性午夜刺激爽爽歪歪视频在线观看 | 老司机午夜十八禁免费视频| 淫妇啪啪啪对白视频| 美女视频免费永久观看网站| 国产精品.久久久| 亚洲人成伊人成综合网2020| 王馨瑶露胸无遮挡在线观看| 女人被躁到高潮嗷嗷叫费观| 亚洲成人国产一区在线观看| 国产有黄有色有爽视频| 国产一区二区在线观看av| 一级毛片精品| 三上悠亚av全集在线观看| 在线天堂中文资源库| 欧美日韩一级在线毛片| 免费一级毛片在线播放高清视频 | 欧美黑人欧美精品刺激| 欧美成狂野欧美在线观看| 两个人看的免费小视频| 亚洲精品在线美女| 十八禁网站网址无遮挡| 久久久国产成人免费| 一级毛片女人18水好多| 天天躁夜夜躁狠狠躁躁| 国产成人精品在线电影| 国产国语露脸激情在线看| 久久久久精品国产欧美久久久| 侵犯人妻中文字幕一二三四区| 男女无遮挡免费网站观看| 国产免费福利视频在线观看| 国产成人一区二区三区免费视频网站| 久久青草综合色| 亚洲精品成人av观看孕妇| 精品国产一区二区三区四区第35| 久久中文字幕一级| 人妻久久中文字幕网| 黄色视频在线播放观看不卡| 国产不卡av网站在线观看| 久久九九热精品免费| 国精品久久久久久国模美| 91字幕亚洲| 久久久国产精品麻豆| 一本—道久久a久久精品蜜桃钙片| 一本综合久久免费| 免费看a级黄色片| 老汉色av国产亚洲站长工具| 99精品久久久久人妻精品| 欧美大码av| 午夜两性在线视频| 欧美激情 高清一区二区三区| 超色免费av| 青青草视频在线视频观看| 少妇粗大呻吟视频| 亚洲av日韩精品久久久久久密| 亚洲人成伊人成综合网2020| 午夜福利影视在线免费观看| 国产真人三级小视频在线观看| 99国产精品一区二区蜜桃av | 成人影院久久| 成人av一区二区三区在线看| 人人妻人人澡人人爽人人夜夜| 桃花免费在线播放| www日本在线高清视频| 久久久精品免费免费高清| a在线观看视频网站| 亚洲精品av麻豆狂野| 久久久国产欧美日韩av| 国产伦人伦偷精品视频| 18禁裸乳无遮挡动漫免费视频| 一本大道久久a久久精品| 国产一区有黄有色的免费视频| 高清黄色对白视频在线免费看| 国产97色在线日韩免费| 欧美日韩精品网址| 国产欧美亚洲国产| 丝袜人妻中文字幕| 国产日韩一区二区三区精品不卡| 999精品在线视频| 91成年电影在线观看| 久久久精品国产亚洲av高清涩受| 亚洲欧美一区二区三区久久| 国产在线观看jvid| 啪啪无遮挡十八禁网站| 精品第一国产精品| 91字幕亚洲| 一夜夜www| www.熟女人妻精品国产| 一边摸一边做爽爽视频免费| 亚洲精品美女久久久久99蜜臀| 精品国产一区二区久久| 在线 av 中文字幕| 男女床上黄色一级片免费看| 精品一区二区三区四区五区乱码| 精品久久久精品久久久| 人成视频在线观看免费观看| 精品久久蜜臀av无| 久久精品亚洲精品国产色婷小说| 国产野战对白在线观看| 91av网站免费观看| 欧美日韩亚洲国产一区二区在线观看 | 国产欧美日韩一区二区三| 国产成人精品久久二区二区91| 亚洲国产中文字幕在线视频| 国产日韩欧美视频二区| 性高湖久久久久久久久免费观看| 在线av久久热| 日韩中文字幕欧美一区二区| 黑丝袜美女国产一区| 啦啦啦中文免费视频观看日本| 欧美老熟妇乱子伦牲交| 国产高清videossex| 日本欧美视频一区| 大码成人一级视频| 在线观看人妻少妇| 十分钟在线观看高清视频www| 欧美+亚洲+日韩+国产| 香蕉国产在线看| 一二三四在线观看免费中文在| 在线看a的网站| 午夜福利影视在线免费观看| 久久中文字幕人妻熟女| 99九九在线精品视频| 19禁男女啪啪无遮挡网站| 久久午夜综合久久蜜桃| 久久中文看片网| 成人三级做爰电影| 精品国产一区二区三区四区第35| 国产亚洲欧美精品永久| 99re在线观看精品视频| 美女扒开内裤让男人捅视频| 久久精品aⅴ一区二区三区四区| 91麻豆av在线| 精品视频人人做人人爽| 国产精品久久电影中文字幕 | 久久久久久久国产电影| 国产午夜精品久久久久久| 国产麻豆69| 精品国内亚洲2022精品成人 | 欧美人与性动交α欧美软件| 久久久水蜜桃国产精品网| 久久久久国产一级毛片高清牌| 麻豆乱淫一区二区| 日韩欧美一区二区三区在线观看 | 亚洲精品一二三| 久9热在线精品视频| 老熟妇乱子伦视频在线观看| 黄色视频不卡| 日韩中文字幕视频在线看片| 丰满少妇做爰视频| 久久久国产欧美日韩av| 色精品久久人妻99蜜桃| 青青草视频在线视频观看| 国产成人系列免费观看| a在线观看视频网站| 精品少妇内射三级| 啦啦啦免费观看视频1| 少妇裸体淫交视频免费看高清 | 黄色a级毛片大全视频| 99精品欧美一区二区三区四区| 成人18禁在线播放| 欧美变态另类bdsm刘玥| 亚洲欧洲精品一区二区精品久久久| 久久精品国产亚洲av香蕉五月 | 午夜激情av网站| 交换朋友夫妻互换小说| 水蜜桃什么品种好| 18在线观看网站| 亚洲五月色婷婷综合| 中国美女看黄片| 国产精品一区二区精品视频观看| 亚洲一区二区三区欧美精品| 动漫黄色视频在线观看| 99精品久久久久人妻精品| 成人av一区二区三区在线看| 热99re8久久精品国产| 久久久久久久国产电影| 日韩一卡2卡3卡4卡2021年| 99国产极品粉嫩在线观看| 精品熟女少妇八av免费久了| 黄色 视频免费看| 久久久国产成人免费| 每晚都被弄得嗷嗷叫到高潮| 免费在线观看黄色视频的| 亚洲全国av大片| 国产成人av教育| 丝瓜视频免费看黄片| 黄色片一级片一级黄色片| www.自偷自拍.com| av片东京热男人的天堂| 国产又爽黄色视频| 2018国产大陆天天弄谢| 亚洲视频免费观看视频| 我的亚洲天堂| 国产精品.久久久| 午夜日韩欧美国产| 国产亚洲精品久久久久5区| 99九九在线精品视频| 久久人妻福利社区极品人妻图片| 老司机深夜福利视频在线观看| 叶爱在线成人免费视频播放| 无限看片的www在线观看| 国产三级黄色录像| 亚洲av成人一区二区三| 男女之事视频高清在线观看| 欧美日韩精品网址| 国产精品偷伦视频观看了| 动漫黄色视频在线观看| 18禁黄网站禁片午夜丰满| 伊人久久大香线蕉亚洲五| 久久这里只有精品19| 丁香六月天网| 国产亚洲欧美精品永久| 蜜桃在线观看..| 91老司机精品| 老汉色av国产亚洲站长工具| 王馨瑶露胸无遮挡在线观看| 高清黄色对白视频在线免费看| 97人妻天天添夜夜摸| 视频在线观看一区二区三区| 另类精品久久| 午夜老司机福利片| 天天影视国产精品| 免费av中文字幕在线| 国产91精品成人一区二区三区 | 99国产综合亚洲精品| 不卡av一区二区三区| 久久国产精品大桥未久av| 久久 成人 亚洲| 亚洲精品粉嫩美女一区| 亚洲五月婷婷丁香| 国产av又大| a级毛片黄视频| 天堂动漫精品| 免费不卡黄色视频| 国产视频一区二区在线看| 无遮挡黄片免费观看| 日韩有码中文字幕| 欧美成人午夜精品| 欧美精品一区二区大全| 美国免费a级毛片| 亚洲精品粉嫩美女一区| 两个人看的免费小视频| 久久久精品免费免费高清| 狂野欧美激情性xxxx| 新久久久久国产一级毛片| 热99re8久久精品国产| 午夜福利视频在线观看免费| 亚洲国产中文字幕在线视频| www.999成人在线观看| 久久 成人 亚洲| 中文字幕另类日韩欧美亚洲嫩草| 欧美精品亚洲一区二区| 亚洲熟女精品中文字幕| 国产日韩欧美亚洲二区| 色尼玛亚洲综合影院| 国产精品国产av在线观看| 制服人妻中文乱码| 99re在线观看精品视频| 国产97色在线日韩免费| 亚洲国产成人一精品久久久| 国产av又大| 久久久久久免费高清国产稀缺| 久久天躁狠狠躁夜夜2o2o| 亚洲va日本ⅴa欧美va伊人久久| 人人妻人人澡人人爽人人夜夜| 亚洲精品久久午夜乱码| 欧美变态另类bdsm刘玥| 老司机福利观看| 国产成人系列免费观看| e午夜精品久久久久久久| 亚洲 国产 在线| 美女主播在线视频| 建设人人有责人人尽责人人享有的| 亚洲五月婷婷丁香| 国产精品久久久久久精品古装| 亚洲五月婷婷丁香| 一区二区三区激情视频| 国产一区二区在线观看av| 国产淫语在线视频| 免费在线观看日本一区| 国产伦人伦偷精品视频| 亚洲欧美日韩另类电影网站| cao死你这个sao货| 国产日韩一区二区三区精品不卡| 9热在线视频观看99| 成在线人永久免费视频| 一区二区三区国产精品乱码| 十八禁网站网址无遮挡| 一级毛片女人18水好多| 久久久久精品人妻al黑| xxxhd国产人妻xxx| 国产精品.久久久| 国产精品九九99| 成人精品一区二区免费| 国产精品.久久久| 中文字幕av电影在线播放| 国产欧美日韩精品亚洲av| 高清在线国产一区| 精品视频人人做人人爽| 高清av免费在线| 国产精品麻豆人妻色哟哟久久| 成人国产av品久久久| 亚洲全国av大片| 成年人黄色毛片网站| 97人妻天天添夜夜摸| 亚洲九九香蕉| 成人精品一区二区免费| 在线天堂中文资源库| 精品国内亚洲2022精品成人 | 精品一区二区三卡| 大片电影免费在线观看免费| 精品亚洲成a人片在线观看| 一进一出抽搐动态| 欧美日韩亚洲高清精品| 香蕉国产在线看| 亚洲精品国产区一区二| 91国产中文字幕| 999精品在线视频| av福利片在线| 伊人久久大香线蕉亚洲五| 亚洲国产av影院在线观看| 自线自在国产av| 亚洲精品乱久久久久久| 人人妻人人爽人人添夜夜欢视频| 又黄又粗又硬又大视频| 黄片大片在线免费观看| 亚洲成人免费av在线播放| 中文字幕最新亚洲高清| 叶爱在线成人免费视频播放| 天堂俺去俺来也www色官网| 99久久精品国产亚洲精品| 欧美日韩一级在线毛片| 巨乳人妻的诱惑在线观看| 久久ye,这里只有精品| 免费高清在线观看日韩| 午夜两性在线视频| 成人国语在线视频| 男女床上黄色一级片免费看| 欧美国产精品va在线观看不卡| 国产精品成人在线| 国产精品麻豆人妻色哟哟久久| 天堂8中文在线网| 天堂中文最新版在线下载| 亚洲精品国产区一区二| 亚洲综合色网址| 欧美日本中文国产一区发布| 老司机亚洲免费影院| 久久午夜亚洲精品久久| 国产真人三级小视频在线观看| 啦啦啦中文免费视频观看日本| 国产成人精品无人区| 国产欧美日韩一区二区三区在线| 亚洲欧洲日产国产| 午夜福利免费观看在线| 国产精品亚洲一级av第二区| 精品一区二区三区四区五区乱码| 国产不卡av网站在线观看| 国产亚洲精品一区二区www | 日本av手机在线免费观看| 天堂中文最新版在线下载| 悠悠久久av| 国产成人啪精品午夜网站| 女人久久www免费人成看片| 国产精品一区二区精品视频观看| 国产成人av教育| 一进一出好大好爽视频| 久久精品亚洲精品国产色婷小说| tocl精华| 在线观看免费视频网站a站| 精品少妇内射三级| 黄片大片在线免费观看| 在线观看一区二区三区激情| 国产精品电影一区二区三区 | 亚洲国产中文字幕在线视频| 露出奶头的视频| 国产精品亚洲一级av第二区| 国产成人欧美在线观看 | 别揉我奶头~嗯~啊~动态视频| 国产又爽黄色视频| 国产精品电影一区二区三区 | 国产人伦9x9x在线观看| 国产精品av久久久久免费| 激情视频va一区二区三区| 欧美黄色淫秽网站| 美女高潮喷水抽搐中文字幕| 亚洲一区中文字幕在线| 三级毛片av免费| 久久久欧美国产精品| 一本大道久久a久久精品| 欧美人与性动交α欧美精品济南到| 精品视频人人做人人爽| 王馨瑶露胸无遮挡在线观看| 国产色视频综合| avwww免费| 亚洲午夜理论影院| tocl精华| 人妻 亚洲 视频| 亚洲欧美一区二区三区久久| tocl精华| 午夜福利一区二区在线看| 一本久久精品| 久久久国产成人免费| 国产免费av片在线观看野外av| 夜夜骑夜夜射夜夜干| 在线观看免费午夜福利视频| 一进一出好大好爽视频| 热99国产精品久久久久久7| 一区二区av电影网| 午夜福利,免费看| 老熟妇乱子伦视频在线观看| av片东京热男人的天堂| 日本黄色日本黄色录像| 久久国产精品影院| 亚洲精品乱久久久久久| 日韩熟女老妇一区二区性免费视频| 成人特级黄色片久久久久久久 | 国产野战对白在线观看|