• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Statistical Properties of X-Ray Flares from the Supergiant Fast X-Ray Transients

    2022-08-02 08:18:04WenLongZhangShuangXiYiYuPengYangandYingQin

    Wen-Long Zhang, Shuang-Xi Yi, Yu-Peng Yang, and Ying Qin

    1 School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China; yisx2015@qfnu.edu.cn

    2 Department of Physics, Anhui Normal University, Wuhu 241000, China

    Received 2022 February 25; revised 2022 April 17; accepted 2022 April 25; published 2022 May 20

    Abstract Supergiant fast X-ray transients are a sub-class of high mass X-ray binaries, in which the compact object is a neutron star and it is accreting materials from its non-degenerate companion star. The sample of supergiant fast X-ray transients from XMM-Newton public observations have been intensively studied, and hence the corresponding parameters for identifying X-ray flares have been obtained by Sidoli et al.,such as the rise time,the decay time,the duration time,the waiting time,the peak luminosity,the isotropic energy and the mean luminosity.In order to investigate the origin of the X-ray flares from the supergiant fast X-ray transients, we apply the cumulative distribution method with the power-law indexdN ( x )dx∝ (x +x0)-αx to the target sample.We then find that the relevant parameters can be well described by the cumulative distribution with indices 1.0–1.9 for IGR J16418-4532, IGR J16328-4726 and IGR J18450-0435, respectively. This finding indicates that the X-ray flares are likely to be produced by the self-organizing critical process,one possible scenario may be due to reconnection in magnetized stellar wind blobs approaching into the magnetosphere of magnetized neutron star. Therefore, we suggest that the high mass X-ray binaries with similar X-ray flares likely belong to the self-organized criticality systems.

    Key words: X-rays: binaries – accretion – accretion disks – stars: neutron

    1. Introduction

    Supergiant fast X-ray transients are a sub-class of high mass X-ray binaries,in which a neutron star is accreting a fraction of the stellar winds from an early-type supergiant star(see Walter et al. 2015; Martínez-Nú?ez et al. 2017). A series of transient X-ray flares could be produced by the accretion process in X-ray binary systems. Observational features from the X-ray flares of supergiant fast X-ray transients can be obtained in the XMM-Newton public archive and INTEGRAL data, which covers a large range of soft X-ray luminosities. The relevant parameters of X-ray flares, e.g., rise times, decay times,duration times, energies and luminosities, have been obtained in Sidoli et al. (2019).

    X-ray flares are also common astrophysical phenomena in the universe (Zhang 2007). They have been observed in stars,X-ray binaries, especially in the Sun (Aschwanden 2011;Shibata & Magara 2011), gamma-ray bursts (GRBs; Burrows et al. 2005; Falcone et al. 2006; Nousek et al. 2006; Zhang et al.2006;Yi et al.2016,2017;Mu et al.2016;Yi et al.2021),the tidal disruption event (TDE) Swift J1644+57 (Burrows et al. 2011; Bloom et al. 2011; Zheng et al. 2020) and some active galactic nuclei (AGNs; Rees 1984; Yan et al. 2018).From the observational point of view,X-ray flares show a sharp rise and decay, and their luminosities from different systems cover a large range of energy band.

    Therefore,it is necessarily required to systematically analyze the properties of X-ray flares from different systems and further investigate their physical origin. Interestingly, Wang & Dai(2013)found that both GRB X-ray flares and solar flares show similar power-law distributions for the waiting times, energies and duration times, respectively. It is well known that solar X-ray flares can be produced by the process of magnetic reconnection and predicted in a self-organized criticality system (Bak et al. 1987; Bak & Tang 1989; Lu &Hamilton 1991; Aschwanden 2011; Shibata & Magara 2011).It is believed that the X-ray flares found in GRBs may also have the same physical mechanism as that in the Sun. In addition to that, similar power-law distributions of flares have been found in other systems,e.g.,soft gamma repeaters(Cheng et al. 2020), repeating fast radio bursts (Wang et al. 2017;Zhang et al. 2020), some black hole binary systems (Wang et al.2015;Yan et al.2018)and type I X-ray bursts from lowmass X-ray binary systems (Wang et al. 2017). Type I X-ray bursts are common flashes in low-mass X-ray binary systems and they are considered to be generated by the unstable nuclear burning of accreted materials (Woosley & Taam 1976;Joss 1977). Wang et al. (2017) analyzed some type I X-ray bursts and found the power-law-like distributions for fluence,peak count, rise time, duration and waiting time. For some supergiant fast X-ray transients, which have been analyzed systematically for several years of publicly available INTEGRAL observations in the hard X-rays, the cumulative luminosity distributions have been extracted by Paizis&Sidoli(2014) and Sidoli & Paizis (2018). The power-law like distributions for the temporal behavior of the X-ray flares from supergiant fast X-ray transients are also found by Sidoli et al. (2016). They suggested that the power-law features for the selected supergiant fast X-ray transients are an indication of self-organized criticality. Therefore, it is critical to systematically investigate the properties of X-ray flares produced by the high mass X-ray binaries.

    In general,obtaining power-law distributions plays a critical role in understanding its physical origin in self-organized criticality systems. Here we analyze the supergiant fast X-ray transient data provided by Sidoli et al. (2019) and apply the cumulative distribution method to obtain corresponding physics-motivated parameters. We then investigate the obtained parameters of the rise times, decay times, duration times, waiting times, energies, as well as the luminosities distributions of X-ray flares from high mass X-ray binaries.We then compare the cumulative distributions with those of other systems. In Section 2, we present the selected X-ray flare samples and the methods for further analysis. Finally, the distributions of X-ray flare parameters are shown in Section 3 and our conclusions are given in Section 4.

    2. Data and Methods

    Sidoli et al. 2019 obtained some essential features of the X-ray flares extracted from the “Exploring the X-ray Transient and variable Sky” (EXTraS) database. The project of EXTraS is aimed at extracting the temporal information of the observed sources from the public archive observed by the XMM-Newton in the energy range of 0.2–12 keV (Sidoli et al. 2019). They supposed that an “X-ray flare” should have a significant peak comparing with the surrounding adjacent emission. By means of a Bayesian blocks analysis of the light curves with X-ray flare from some supergiant fast X-ray transients (Sidoli et al.2019), a total of 144 X-ray flares (nine sources) have been obtained. In particular, these identified flares can be used to identify the parameters of X-ray flares, e.g., the rise time, the decay time, the duration time, the waiting time, the peak luminosity,the isotropic energy and the mean luminosity.More details about the parameters of X-ray flares can be found in Table A1 of Sidoli et al. (2019). Yi et al. (2016) also further analyzed all the significant X-ray flares from the GRBs observed by Swift/XRT between 2005 and 2015, in which 500 X-ray flares are collected. The corresponding parameters for GRB X-ray flares are given by fitting with a smooth broken power law function.

    However, the waiting times mentioned by Yi et al. (2016)are very different from that by Sidoli et al.(2019).Sidoli et al.(2019) defined the waiting time as Twaiting=Tpeak,i+1?Tpeak,i,the time interval between the peaks of subsequent flares,while the waiting time for GRB X-ray flares is defined as Twaiting=Tstart,i+1?Tstart,i, where Tstart,i+1and Tstart,iare the start times for the i+1th and ith flares, respectively (Yi et al.2016). Although the two types of waiting times are defined differently, there is a small discrepancy between them as the duration is not too long. This definition of waiting time is also used widely in some other natural systems(Wang&Dai 2013;Wang et al. 2015, 2017; Zhang et al. 2020), especially for the solar X-ray flares (Wheatland et al. 1998; Aschwanden 2011).For some sources, the number of X-ray flares is limited.Therefore, we selected 86 X-ray flares for IGR J16418-4532,IGR J16328-4726 and IGR J18450-0435. We took the values of X-ray flares for the three different sources given in Table A1 of Sidoli et al. (2019) and investigated the distributions of them. Note that the derived parameters by Sidoli et al. (2019),which will be investigated by us, are dependent on the parameters of the Bayesian block algorithm. In this paper, we are mainly focused on investigating whether or not the cumulative distribution of the relevant parameters follows a power law form. Therefore, there may have no influences on our studies for the different definition of the waiting time and the use of different parameters by the Bayesian block algorithm, which would change the values of the power law index rather than the form.

    For the three sources, the number of X-ray flares is not sufficient to bin the data, therefore, the cumulative distribution rather than a differential distribution of a power law model, is chosen for further analyses.The benefit of using the cumulative distributions is that there is no need to arbitrarily bin the X-ray flare data, enabling a comparison among the selected sources for different parameter distributions and avoiding the loss of information for the X-ray flares. Compared with Sidoli et al.(2019), we compiled more parameters about X-ray flares from SFXTs, including the rise time, the decay time, the duration time, the waiting time, the isotropic energy, the mean luminosity and the peak luminosity for X-ray flares.In general,the observed differential distribution for the number of events can be described with a threshold power-law distribution as follows

    A cumulative number distribution is usually defined as the integral of the total number of events above a given value x.Therefore, the corresponding cumulative distribution function of Equation(1)can be written as follows(αx≠1)(Aschwanden 2015; Lyu et al. 2020)

    where x0is a constant by considering the threshold effects(e.g.,incomplete sampling below x0,background contamination),αxis the power law index of the distribution of flares, Nenvrefers to the total number of events, x1and x2are the minimum and maximum values of x, respectively. The uncertainty of the cumulative distribution in a given bin i is approximately calculated as, where Ncum,iis the number of events in the ith bin.It can be seen that there are only two free parameters in the cumulative distribution function. Due to the existence of selection effect, it is inevitable that there will be some points with serious deviation from the normal cumulative distributions. In the process of our data fitting, we do not consider the individual data points that clear out of the normal cumulative distributions. Generally, because of incomplete sampling for those selected X-ray flares, the cumulative distributions will be generated above the threshold x0. Therefore, when adopting the threshold x0as a free parameter along with the index αxto fit the cumulative distributions, the power law index αxfor X-ray flares can be well constrained. It also should be pointed out that the cumulative number distribution of Equation (2) is a power law function with an index of αx,therefore the derivation of the power law index though the X-ray flare values are an important quest in this work.

    Table 1 The Best-fitting Power-law Slopes (αx) of Each Parameters of Three Sources

    3. Results and Discussion

    According to the report in Appendix Table A1 of Sidoli et al.(2019), some of X-ray flares are not well identified, and they have marked those unresolved flares with an asterisk in Table A1. Although the number of unresolved flares is limited, we still divided those X-ray flares into two groups for each source,i.e., the whole sample and the resolved flares sample. In this work,we use a python module pymc3https://pypi.org/project/pymc/to fit the data and get the confidence intervals of the parameters with the Monte Carlo Markov Chain (MCMC) method. Generally, because of incomplete sampling at a low value threshold,the distributions of X-ray flare parameters show an approximate flat part or a gap at the beginning regime (Cliver et al. 2012; Aschwanden 2015; Wang et al. 2015). Therefore, in order to avoid the selection effect or the influence of incomplete sampling, the cumulative distributions for the X-ray flares are fitted with Equation (2) above the threshold x0(the dashed line). The fitting results αxof each parameter are shown in Table 1.

    The cumulative distributions of different parameters for all three sources are shown in Figures 1–7. For the cumulative distributions of IGR J16418-4532, the best-fitting power-law slopes of the rise time, the decay time, the duration time, the waiting time,the isotropic energy,the mean luminosity and the peak luminosity for X-ray flares for resolved flares are 1.71±0.19, 1.84±0.15, 1.94±0.07, 1.58±0.27, 1.47±0.25, 1.78±0.21 and 1.59±0.15, respectively. The bestfitting power-law indices of the corresponding values for the whole sample of IGR J16418-4532 are 1.82±0.13, 1.92±0.09, 1.95±0.07, 1.93±0.06, 1.55±0.24, 1.91±0.11 and 1.78±0.22, respectively. Both the whole sample and the subsample show the similar power-law distributions of the different X-ray flare parameters.More interestingly,the similar power-law like distributions for the supergiant fast X-ray transients are found by Paizis & Sidoli (2014), who investigated nine years of INTEGRAL X-ray flare data(17–100 keV). The long-based INTEGRAL observations for all currently known supergiant fast X-ray transients are fully applied to characterize their hard X-ray transient emission for the first time, by means of the cumulative luminosity distribution with their supergiant fast X-ray transient flares.The average luminosity distribution for IGR J16418-4532 in Paizis&Sidoli(2014)is 1.31±0.31,and the power-law slope is well consistent with our values for this same X-ray transient.

    The observed flares of supergiant X-ray flares are probably connected with neutron star accreting winds from its supergiant companion. The actual accretion rates are dependent on the specific winds and the orbital velocity of such a system. This has been proposed to explain the observed flares in supergiant X-ray transients (Shakura et al. 2014). In this scenario, a large amount of plasma at a high accretion rate onto a neutron star is required to produce the bright X-ray flares and the Rayleigh–Taylor instability could occur in a quasi-spherical shell above the magnetosphere shell of the neutron star. This instability is produced by an instant increase during the accretion, sporadically given by the stellar winds of the optical OB-companion in supergiant evolutionary phase (Sidoli et al. 2019, 2021).Therefore, such instability can reproduce the observed flares,which is associated with a large energy released from the supergiant fast X-ray transients. When considering the orbital motion of the neutron star in the binary system, the flares accompanied with some smoothing variations could occur.More detailed descriptions can be found in Shakura et al.(2014) and Paizis & Sidoli (2014). As the discussion from Paizis & Sidoli (2014), their results suggested that SFXTs flares can be possibly considered as “avalanches” in selforganized criticality systems, which are triggered when a critical state is reached. In this case, accretion can be interpreted as the slow and steady driver toward the critical state required to the self-organized criticality system to produce the avalanche.

    Figure 1.The best-fit indices are shown for the cumulative distributions of the rise time of X-ray flares from IGR J16418-4532,IGR J16328-4726 and IGR J18450-0435,respectively.Top panel:Distributions of the resolved X-ray flares.Bottom panel:Distributions of all X-ray flares.The gray region stands for the 95%confidence level, the red line is the best fitting result, and the dashed line is marked as the threshold x0.

    Figure 2. Distributions of the decay time of X-ray flares.

    Figure 3. Distributions of the duration time of X-ray flares.

    Figure 4. Distributions of the waiting time of X-ray flares.

    Similar distributions of X-ray flares for IGR J16328-4726 and IGR J18450-0435 are also appeared, respectively. Both sources show the similar power-law distributions for the whole sample and subsample. The rise times, decay times, duration times, waiting times, energies and luminosities distributions can be well described by the power-law model for X-ray flares from supergiant fast X-ray transients. We suggested that the power-law like behavior for those flares should be an indication of self-organized criticality, and the supergiant fast X-ray transients flares should be associated with avalanching resulting in a self-organized criticality system when an instability threshold is arrived. Our results are consistent with the interpretations for supergiant fast X-ray transients flares in Shakura et al. (2012, 2014) and Paizis & Sidoli (2014).

    Figure 5. Distributions of the isotropic energy of X-ray flares.

    Figure 6. Distributions of the mean luminosity of X-ray flares.

    Furthermore, the characteristics of self-organized criticality systems are the scale-free power law distributions of various event parameters, such as the duration time, the isotropic energy or the peak luminosity of events. According to Aschwanden (2012), who provided a theoretical framework to quantitatively connect the concept of fractal dimensions to the cumulative frequency distributions of self-organized criticality avalanche systems. It is theoretically predicted that the power-law slope of cumulative frequency distribution for the self-organized criticality systems can be defined with the Euclidean space dimensions S=1, 2, 3. Some theoretical indices, such as the duration frequency distribution (αT), the isotropic energy distribution (αE) and the peak luminosity distribution (αL) of X-ray flares, have been provided by Aschwanden (2012) aswhere S=1, 2 and 3 are the Euclidean dimensions. It can be seen that the indices are αT=αE=αL=1 for S=1,αE=1.29 and αT=αL=1.5 for S=2, αT=2, αE=1.5 and αL=1.67 for S=3, respectively.

    Figure 7. Distributions of the peak luminosity of X-ray flares.

    Because the number of X-ray flares provided by Sidoli et al.(2019)for the three sources is limited,we simply take the three sources as the candidates and compare the fitting results with the theoretical indices.Basing on statistical analysis,the energy distribution power-law slopes are 1.47±0.25 and 1.55±0.24,which are well consistent with the theoretical index 1.5 for S=3. The peak luminosity distribution power-law slopes are 1.59±0.15 and 1.78±0.22 for IGR J16418-4532, corresponding to αL=1.67 for S=3. The duration distributions are with the indices 1.94±0.07 and 1.95±0.07 for IGR J16418-4532,and also well correspond to the theoretical duration index αT=2 for S=3. The duration distributions for IGR J16328-4726 and IGR J18450-0435 are consistent with the theoretical slope αT=2 for S=3, and the energy distribution power-law slopes of the two sources also correspond to αE=1.5 for S=3 case. But it is not easy to determine which dimension for the peak luminosity distributions of two cases, because the theoretical indices are αp=1.5 for S=2 and αp=1.67 for S=3. Both of the two Euclidean space dimensions are appeared in IGR J16328-4726 and IGR J18450-0435 for the peak luminosity distributions. However, due to the small number of X-ray flares, it is difficult for us to further test the standard self-organized criticality models with X-ray flares from the supergiant fast X-ray transients. Therefore, much more X-ray flares are required for the further research.However, based on the present results, it is found that the derived power law slopes are consistent with the prediction of the the three-dimensional space(S=3)for the selected events.

    To obtain the power-law like distribution values for different astrophysical sources is our main motivation in this work. It should be mentioned that, although the power-law like distributions are the marks of the self-organized criticality systems, it does not mean that they have the same power-law values for one astrophysical source.For example, according to Sidoli & Paizis (2018), for the case of IGR J16418-4532, a power law slope of 2.28±0.40 is obtained for the luminosity distribution with the public INTEGRAL observations,which is much steeper than our values and previous results of Paizis &Sidoli (2014) for the same source. This steeper slope of IGR J16418-4532 in Sidoli&Paizis(2018)has been studied by the most recent flares, which are not included in Paizis & Sidoli(2014)and Sidoli et al.(2019).Therefore,different X-ray flares should have distinctive cumulative power-law distribution values. Additionally, the different satellites have different operating modes and wavelengths. Furthermore, different bin sizes for the parameters of X-ray flares could also generate an exponential cut-off at the upper end of the size distribution on account of finite system-size effects, and thus the variation of the power-law distributions can also be occurred. Besides, the X-ray data used in our paper are all extracted and processed by Sidoli et al. (2019) through Bayesian blocks analysis, this is a segmentation technique, widely applied to astronomical timeseries.However,the typical parameters of X-ray flare may vary when different extraction methods are adopted, and the statistical results for X-ray flares may also be different (the power law indexes) rather than the form. The most important insight should be related to the relationships among the powerlaw distribution slopes of different self-organized criticality parameters of X-ray flares,which is dependent on the nonlinear scaling laws among the self-organized criticality parameters.

    4. Conclusions

    X-ray flares from X-ray binary systems are the common astronomical phenomena. According to Sidoli et al. (2019),who provided the behavior of some essential flares extracted from EXTraS database, and a total of 144 X-ray flares from nine supergiant fast X-ray transients have been obtained.In this paper, we are focused on studying the statistical properties of X-ray flares from the supergiant fast X-ray transients obtained in Sidoli et al.(2019),including rise time,decay time,duration time, waiting time, peak luminosity, isotropic energy and the mean luminosity of X-ray flares for IGR J16418-4532, IGR J16328-4726 and IGR J18450-0435,respectively.We find that the cumulative distributions of those X-ray flare parameters show the similar power-law forms. These similar distributions can be well explained by the self-organized criticality model.Although supergiant fast X-ray transients are generally believed to have different physical mechanisms when compared with GRBs, the similar distribution still indicates that they likely reflect certain self-organized criticality behaviors in their different generation processes.Therefore,by applying the cumulative distribution method to the flare in the supergiant fast X-ray transients, we suggest that these features are connected with the accretion mechanism for the magnetized neutron stars, and that these special X-ray flares from high mass X-ray binaries can be a typical behavior of self-organized criticality systems.

    Acknowledgments

    We thank the anonymous referee for constructive and helpful comments.We thank Fa-Yin Wang and Yong Shao for helpful discussion. This work is supported by the National Natural Science Foundation of China(grant No.U2038106),and China Manned Spaced Project (CMS-CSST-2021-A12).

    脱女人内裤的视频| 亚洲中文字幕日韩| 久久午夜综合久久蜜桃| 欧美另类亚洲清纯唯美| 爱豆传媒免费全集在线观看| 99久久精品国产亚洲精品| 日本一区二区免费在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 两性夫妻黄色片| 国产黄频视频在线观看| 交换朋友夫妻互换小说| 欧美黑人欧美精品刺激| 国产真人三级小视频在线观看| 日本91视频免费播放| 久久久久久久国产电影| 韩国高清视频一区二区三区| 日韩一区二区三区影片| 91字幕亚洲| 久久精品国产a三级三级三级| 欧美精品亚洲一区二区| 一级a爱视频在线免费观看| 成人黄色视频免费在线看| 日韩熟女老妇一区二区性免费视频| 他把我摸到了高潮在线观看 | 久久国产精品影院| 99国产精品一区二区三区| 国产免费视频播放在线视频| 91大片在线观看| 成人影院久久| 亚洲av电影在线观看一区二区三区| 免费不卡黄色视频| 极品人妻少妇av视频| 久久精品久久久久久噜噜老黄| 久久精品成人免费网站| 国产精品偷伦视频观看了| 69精品国产乱码久久久| 日韩大码丰满熟妇| tocl精华| 麻豆国产av国片精品| 麻豆av在线久日| 大型av网站在线播放| 国产亚洲欧美在线一区二区| av欧美777| 建设人人有责人人尽责人人享有的| 欧美人与性动交α欧美软件| 国产99久久九九免费精品| 免费久久久久久久精品成人欧美视频| 女警被强在线播放| 亚洲人成电影观看| 国产免费福利视频在线观看| 久久中文看片网| 午夜免费观看性视频| 日韩精品免费视频一区二区三区| 丝袜喷水一区| 涩涩av久久男人的天堂| 国产亚洲av片在线观看秒播厂| 悠悠久久av| 亚洲中文字幕日韩| 亚洲国产成人一精品久久久| 亚洲精品第二区| 欧美亚洲日本最大视频资源| 美女视频免费永久观看网站| 999久久久精品免费观看国产| 丰满饥渴人妻一区二区三| 亚洲欧美激情在线| 一区二区三区激情视频| 亚洲精品成人av观看孕妇| 国产视频一区二区在线看| a 毛片基地| 侵犯人妻中文字幕一二三四区| 亚洲五月色婷婷综合| 亚洲欧美日韩另类电影网站| 亚洲欧美激情在线| 欧美日韩黄片免| 中文字幕制服av| 欧美日韩精品网址| 超碰成人久久| 亚洲精品成人av观看孕妇| 国产无遮挡羞羞视频在线观看| 又紧又爽又黄一区二区| 下体分泌物呈黄色| www日本在线高清视频| 热99国产精品久久久久久7| 夜夜骑夜夜射夜夜干| 99国产精品一区二区三区| 国产日韩欧美视频二区| 下体分泌物呈黄色| 性色av一级| 在线观看人妻少妇| 国产av一区二区精品久久| 亚洲成人国产一区在线观看| 成人免费观看视频高清| 精品乱码久久久久久99久播| 欧美午夜高清在线| 亚洲国产精品999| 免费在线观看完整版高清| 国产三级黄色录像| 欧美日韩亚洲综合一区二区三区_| 黄片大片在线免费观看| 啪啪无遮挡十八禁网站| 欧美精品一区二区大全| 欧美激情极品国产一区二区三区| 久久亚洲国产成人精品v| 十八禁网站网址无遮挡| 性高湖久久久久久久久免费观看| 岛国毛片在线播放| 久久久国产精品麻豆| 大香蕉久久网| 国产成人精品在线电影| 99国产综合亚洲精品| 精品国产乱码久久久久久男人| 亚洲欧美一区二区三区黑人| 亚洲欧美精品自产自拍| 宅男免费午夜| 亚洲国产看品久久| 国产伦理片在线播放av一区| 人人妻人人爽人人添夜夜欢视频| 捣出白浆h1v1| 日韩,欧美,国产一区二区三区| 欧美国产精品va在线观看不卡| 高清欧美精品videossex| 久久久久网色| 日韩中文字幕欧美一区二区| 激情视频va一区二区三区| 中文字幕制服av| 十八禁高潮呻吟视频| 国产日韩欧美亚洲二区| 日韩视频在线欧美| 在线天堂中文资源库| 亚洲精品中文字幕一二三四区 | 欧美在线黄色| 国产不卡av网站在线观看| 91精品三级在线观看| 亚洲精品美女久久久久99蜜臀| 19禁男女啪啪无遮挡网站| 国产在线免费精品| 久久久国产精品麻豆| 欧美激情高清一区二区三区| 亚洲七黄色美女视频| 国产成人精品久久二区二区91| 日韩人妻精品一区2区三区| 亚洲精品日韩在线中文字幕| 在线观看免费日韩欧美大片| 中文字幕人妻熟女乱码| 一区二区av电影网| 爱豆传媒免费全集在线观看| 国产精品免费大片| 亚洲欧美日韩高清在线视频 | 免费av中文字幕在线| svipshipincom国产片| 久久久久精品国产欧美久久久 | 亚洲五月色婷婷综合| 欧美亚洲日本最大视频资源| 三上悠亚av全集在线观看| 自线自在国产av| 日韩欧美国产一区二区入口| 精品亚洲成国产av| 日韩电影二区| 国产av一区二区精品久久| 一本一本久久a久久精品综合妖精| 亚洲国产日韩一区二区| 精品久久久久久久毛片微露脸 | 国产国语露脸激情在线看| 首页视频小说图片口味搜索| 多毛熟女@视频| 人人澡人人妻人| 午夜福利视频精品| 两性午夜刺激爽爽歪歪视频在线观看 | 91精品国产国语对白视频| 天天躁日日躁夜夜躁夜夜| 美女国产高潮福利片在线看| 久久久精品区二区三区| 欧美+亚洲+日韩+国产| 精品人妻1区二区| 欧美精品高潮呻吟av久久| 在线永久观看黄色视频| 精品人妻1区二区| 精品亚洲乱码少妇综合久久| 亚洲一区中文字幕在线| 亚洲三区欧美一区| 天天躁夜夜躁狠狠躁躁| 搡老岳熟女国产| 久久久欧美国产精品| 欧美日韩中文字幕国产精品一区二区三区 | 超色免费av| 亚洲国产av影院在线观看| 国产成人啪精品午夜网站| 中国国产av一级| 精品国产乱子伦一区二区三区 | 99国产精品免费福利视频| 国产一区二区激情短视频 | 亚洲专区字幕在线| 国产精品久久久久久精品电影小说| 国产亚洲av高清不卡| 欧美+亚洲+日韩+国产| 日韩电影二区| 亚洲精品美女久久久久99蜜臀| 最近中文字幕2019免费版| 麻豆av在线久日| 欧美日韩一级在线毛片| 欧美黄色淫秽网站| 亚洲国产精品一区三区| 一本久久精品| 国产视频一区二区在线看| 天天躁夜夜躁狠狠躁躁| 久久精品熟女亚洲av麻豆精品| 十八禁网站网址无遮挡| 精品福利永久在线观看| 日韩有码中文字幕| 亚洲综合色网址| 久久 成人 亚洲| a 毛片基地| 亚洲伊人色综图| 一区二区三区激情视频| av线在线观看网站| 亚洲第一青青草原| 色94色欧美一区二区| 满18在线观看网站| 欧美日韩视频精品一区| 大码成人一级视频| 国产99久久九九免费精品| 欧美日韩av久久| 国产精品麻豆人妻色哟哟久久| 99re6热这里在线精品视频| 天天操日日干夜夜撸| 国产97色在线日韩免费| 黄色怎么调成土黄色| 欧美激情久久久久久爽电影 | 亚洲一区二区三区欧美精品| 99精品久久久久人妻精品| √禁漫天堂资源中文www| 丁香六月欧美| av免费在线观看网站| 乱人伦中国视频| 捣出白浆h1v1| 国产精品 国内视频| 午夜精品久久久久久毛片777| 熟女少妇亚洲综合色aaa.| 国产成人免费无遮挡视频| 国产精品久久久久久精品电影小说| 亚洲精品国产av蜜桃| 80岁老熟妇乱子伦牲交| 黑丝袜美女国产一区| 中文欧美无线码| 亚洲精品国产一区二区精华液| 亚洲av片天天在线观看| 韩国高清视频一区二区三区| 男人添女人高潮全过程视频| 日本精品一区二区三区蜜桃| 免费观看av网站的网址| 国产成人一区二区三区免费视频网站| 精品一区在线观看国产| 欧美人与性动交α欧美软件| 每晚都被弄得嗷嗷叫到高潮| 亚洲第一av免费看| 久久久水蜜桃国产精品网| 国产精品 国内视频| 国产精品亚洲av一区麻豆| 啦啦啦中文免费视频观看日本| 在线十欧美十亚洲十日本专区| 18禁观看日本| 亚洲精品美女久久av网站| 欧美在线一区亚洲| 亚洲伊人久久精品综合| 精品国内亚洲2022精品成人 | 一本一本久久a久久精品综合妖精| 欧美精品人与动牲交sv欧美| av片东京热男人的天堂| 啦啦啦中文免费视频观看日本| 水蜜桃什么品种好| 精品亚洲成a人片在线观看| 亚洲国产日韩一区二区| 亚洲精品日韩在线中文字幕| www.精华液| 欧美 亚洲 国产 日韩一| 国产深夜福利视频在线观看| 久久精品人人爽人人爽视色| 欧美日韩成人在线一区二区| av国产精品久久久久影院| 亚洲av成人不卡在线观看播放网 | 人人妻人人添人人爽欧美一区卜| 每晚都被弄得嗷嗷叫到高潮| videosex国产| 免费不卡黄色视频| 一本大道久久a久久精品| 少妇精品久久久久久久| 国产有黄有色有爽视频| 欧美中文综合在线视频| 天堂俺去俺来也www色官网| 国产伦理片在线播放av一区| 十八禁人妻一区二区| 黄色a级毛片大全视频| 老汉色∧v一级毛片| 国产欧美亚洲国产| 视频区图区小说| 精品卡一卡二卡四卡免费| 嫩草影视91久久| 日韩熟女老妇一区二区性免费视频| 国产欧美日韩综合在线一区二区| 久久青草综合色| 欧美日韩亚洲高清精品| 一二三四社区在线视频社区8| tocl精华| 久久青草综合色| 成人av一区二区三区在线看 | 亚洲欧美日韩高清在线视频 | 在线观看www视频免费| 1024香蕉在线观看| a在线观看视频网站| 欧美国产精品一级二级三级| 手机成人av网站| 久久狼人影院| 人成视频在线观看免费观看| 各种免费的搞黄视频| 亚洲av成人一区二区三| 在线观看人妻少妇| 久久人妻福利社区极品人妻图片| 日韩一卡2卡3卡4卡2021年| 国产成人精品久久二区二区免费| 男人舔女人的私密视频| 天天添夜夜摸| 性少妇av在线| 不卡av一区二区三区| 波多野结衣av一区二区av| 精品国产一区二区三区久久久樱花| 一区二区av电影网| 黑人操中国人逼视频| 亚洲av成人不卡在线观看播放网 | 脱女人内裤的视频| 国产无遮挡羞羞视频在线观看| 99re6热这里在线精品视频| 亚洲欧美成人综合另类久久久| 自拍欧美九色日韩亚洲蝌蚪91| 欧美人与性动交α欧美软件| 国产日韩欧美在线精品| 国产av精品麻豆| 夜夜夜夜夜久久久久| 精品国产国语对白av| 国产在线一区二区三区精| 一个人免费在线观看的高清视频 | 亚洲欧美日韩高清在线视频 | 在线观看www视频免费| 两个人免费观看高清视频| 国产成人精品无人区| 日本猛色少妇xxxxx猛交久久| 欧美日韩精品网址| 精品视频人人做人人爽| 交换朋友夫妻互换小说| 亚洲欧洲精品一区二区精品久久久| 亚洲欧美精品综合一区二区三区| 国产主播在线观看一区二区| 1024视频免费在线观看| 黑人欧美特级aaaaaa片| 动漫黄色视频在线观看| 中文字幕人妻丝袜一区二区| 日韩有码中文字幕| 男男h啪啪无遮挡| 嫩草影视91久久| 免费女性裸体啪啪无遮挡网站| 国产激情久久老熟女| 国产精品免费视频内射| 在线精品无人区一区二区三| 自拍欧美九色日韩亚洲蝌蚪91| 乱人伦中国视频| 最新的欧美精品一区二区| 免费日韩欧美在线观看| 一个人免费在线观看的高清视频 | 老司机靠b影院| 丝袜人妻中文字幕| 色老头精品视频在线观看| 90打野战视频偷拍视频| 99久久精品国产亚洲精品| 老司机深夜福利视频在线观看 | av片东京热男人的天堂| 欧美性长视频在线观看| 1024香蕉在线观看| 99精品久久久久人妻精品| 欧美久久黑人一区二区| 午夜视频精品福利| 99国产综合亚洲精品| 人妻久久中文字幕网| av不卡在线播放| 久久精品熟女亚洲av麻豆精品| 国产精品偷伦视频观看了| 热re99久久国产66热| 巨乳人妻的诱惑在线观看| 一级,二级,三级黄色视频| 黑人欧美特级aaaaaa片| 欧美日韩亚洲高清精品| 91成年电影在线观看| 91麻豆av在线| 97精品久久久久久久久久精品| 1024香蕉在线观看| 国产极品粉嫩免费观看在线| 亚洲成人手机| 亚洲第一av免费看| 又大又爽又粗| 啦啦啦在线免费观看视频4| 精品人妻一区二区三区麻豆| 性色av乱码一区二区三区2| 国产片内射在线| 乱人伦中国视频| 国产成人影院久久av| 在线观看舔阴道视频| 久久毛片免费看一区二区三区| 日本一区二区免费在线视频| 男人爽女人下面视频在线观看| 亚洲国产日韩一区二区| 老司机福利观看| 丝袜在线中文字幕| 日本a在线网址| 欧美久久黑人一区二区| 丝袜喷水一区| 亚洲天堂av无毛| av不卡在线播放| 国产精品二区激情视频| 亚洲免费av在线视频| 一区二区三区激情视频| 久久人妻熟女aⅴ| 黑人欧美特级aaaaaa片| 波多野结衣av一区二区av| 亚洲美女黄色视频免费看| 亚洲自偷自拍图片 自拍| 久久精品国产亚洲av香蕉五月 | 每晚都被弄得嗷嗷叫到高潮| 亚洲欧美一区二区三区黑人| 精品少妇久久久久久888优播| 午夜福利视频在线观看免费| 国产色视频综合| 国产在视频线精品| 18禁国产床啪视频网站| 老司机午夜十八禁免费视频| 久久久久国产精品人妻一区二区| 国产精品一区二区在线观看99| 制服人妻中文乱码| 黑人巨大精品欧美一区二区蜜桃| 啪啪无遮挡十八禁网站| 精品高清国产在线一区| 国产精品久久久人人做人人爽| 精品久久久久久电影网| 狂野欧美激情性bbbbbb| 亚洲人成77777在线视频| 久久午夜综合久久蜜桃| 极品少妇高潮喷水抽搐| 亚洲一区二区三区欧美精品| 99久久综合免费| 亚洲视频免费观看视频| 日本wwww免费看| 黑人巨大精品欧美一区二区mp4| 啦啦啦中文免费视频观看日本| 在线观看免费高清a一片| 一本一本久久a久久精品综合妖精| 日本vs欧美在线观看视频| 免费在线观看影片大全网站| 国产精品 国内视频| 国产亚洲精品一区二区www | 国产片内射在线| 免费女性裸体啪啪无遮挡网站| 亚洲精品国产色婷婷电影| 乱人伦中国视频| 黄片大片在线免费观看| 在线观看舔阴道视频| 亚洲成av片中文字幕在线观看| 亚洲国产欧美在线一区| 在线亚洲精品国产二区图片欧美| 69av精品久久久久久 | 久久综合国产亚洲精品| 新久久久久国产一级毛片| 欧美成狂野欧美在线观看| 亚洲欧美精品综合一区二区三区| 免费观看av网站的网址| 久久国产亚洲av麻豆专区| 80岁老熟妇乱子伦牲交| 亚洲伊人久久精品综合| 亚洲熟女毛片儿| 中文字幕人妻丝袜制服| 黄色怎么调成土黄色| 久久国产精品男人的天堂亚洲| 波多野结衣一区麻豆| 不卡av一区二区三区| www.999成人在线观看| 欧美日韩亚洲国产一区二区在线观看 | 在线观看免费高清a一片| 80岁老熟妇乱子伦牲交| 美女扒开内裤让男人捅视频| 午夜影院在线不卡| 首页视频小说图片口味搜索| av线在线观看网站| 国产极品粉嫩免费观看在线| 三上悠亚av全集在线观看| 成人黄色视频免费在线看| 麻豆乱淫一区二区| 国产成人精品无人区| 高清欧美精品videossex| 美女高潮到喷水免费观看| 中文字幕最新亚洲高清| 少妇精品久久久久久久| 日韩大片免费观看网站| 日本91视频免费播放| 亚洲欧美成人综合另类久久久| 久久久精品区二区三区| 亚洲精品日韩在线中文字幕| 色婷婷久久久亚洲欧美| 国产成人精品在线电影| 久久国产精品人妻蜜桃| 久久狼人影院| 菩萨蛮人人尽说江南好唐韦庄| 国产欧美日韩一区二区三区在线| 久久免费观看电影| 无限看片的www在线观看| 国产在线免费精品| 黑人欧美特级aaaaaa片| 日韩欧美一区视频在线观看| 久久久久久亚洲精品国产蜜桃av| 午夜视频精品福利| 十八禁人妻一区二区| 老熟妇乱子伦视频在线观看 | 日韩人妻精品一区2区三区| 老司机影院成人| 成人免费观看视频高清| 青春草亚洲视频在线观看| 日韩 欧美 亚洲 中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 美女视频免费永久观看网站| 国产精品 国内视频| 欧美性长视频在线观看| 精品国产一区二区三区久久久樱花| 中文字幕av电影在线播放| 欧美老熟妇乱子伦牲交| 亚洲国产中文字幕在线视频| av在线app专区| 精品国产一区二区久久| 乱人伦中国视频| 老司机午夜十八禁免费视频| 久久人人97超碰香蕉20202| 黄色片一级片一级黄色片| 纯流量卡能插随身wifi吗| 国产色视频综合| 秋霞在线观看毛片| 天天操日日干夜夜撸| 在线 av 中文字幕| 国产精品自产拍在线观看55亚洲 | 精品少妇黑人巨大在线播放| 高清在线国产一区| 精品一品国产午夜福利视频| 中文精品一卡2卡3卡4更新| 无遮挡黄片免费观看| 99久久精品国产亚洲精品| 黑人巨大精品欧美一区二区蜜桃| 99香蕉大伊视频| 久久久久久久大尺度免费视频| 国产av又大| 亚洲精品在线美女| 最新的欧美精品一区二区| 97精品久久久久久久久久精品| 老鸭窝网址在线观看| 国产精品久久久久成人av| 99精国产麻豆久久婷婷| 黑人操中国人逼视频| 久久av网站| 少妇人妻久久综合中文| 国产欧美日韩一区二区三区在线| 十八禁人妻一区二区| 黄色毛片三级朝国网站| 亚洲av美国av| 精品第一国产精品| 久久天堂一区二区三区四区| 国产高清videossex| 他把我摸到了高潮在线观看 | 777米奇影视久久| 日本91视频免费播放| 女人精品久久久久毛片| 精品亚洲乱码少妇综合久久| 亚洲国产av影院在线观看| 乱人伦中国视频| 性少妇av在线| 十八禁高潮呻吟视频| 两人在一起打扑克的视频| 黑人巨大精品欧美一区二区蜜桃| 人人妻人人澡人人看| 91字幕亚洲| 日本wwww免费看| 女人高潮潮喷娇喘18禁视频| 色婷婷av一区二区三区视频| 欧美+亚洲+日韩+国产| 日韩制服骚丝袜av| 免费黄频网站在线观看国产| 夜夜夜夜夜久久久久| 欧美精品高潮呻吟av久久| 婷婷丁香在线五月| 久久精品熟女亚洲av麻豆精品| 亚洲avbb在线观看| 久热这里只有精品99| 久久久久精品国产欧美久久久 | 交换朋友夫妻互换小说| 国产精品1区2区在线观看. | 国产精品 欧美亚洲| 国产免费av片在线观看野外av| 成人影院久久| 深夜精品福利| 久久99热这里只频精品6学生| 在线天堂中文资源库| 久久国产亚洲av麻豆专区| 人人妻人人澡人人爽人人夜夜| 午夜91福利影院| 欧美xxⅹ黑人| a级毛片黄视频| 亚洲国产欧美一区二区综合| 97精品久久久久久久久久精品| 日韩大码丰满熟妇| 啦啦啦啦在线视频资源| tocl精华| 欧美+亚洲+日韩+国产| 国产成人免费观看mmmm| 在线观看一区二区三区激情|