• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    EAST-Educational Adaptive-optics Solar Telescope

    2022-08-02 08:18:20ChanghuiRaoXuejunRaoZhimaoDuHuaBaoChengLiJinlongHuangYoumingGuoLiboZhongQingLinXinGeJinshengYangXinlongFanYangyiLiuDanJiaXinLiMeiLiMingZhangYuntaoChengJiahuiZhouJiawenYaoLanqiangZhangandNaitingGu

    Changhui Rao, Xuejun Rao, Zhimao Du, Hua Bao, Cheng Li, Jinlong Huang, Youming Guo, Libo Zhong,Qing Lin, Xin Ge, Jinsheng Yang, Xinlong Fan, Yangyi Liu, Dan Jia, Xin Li, Mei Li, Ming Zhang, Yuntao Cheng,Jiahui Zhou, Jiawen Yao, Lanqiang Zhang, and Naiting Gu

    1 The Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China; chrao@ioe.ac.cn

    2 The Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, Chengdu 610209, China

    3 The University of Chinese Academy of Sciences, Beijing 10049, China

    4 Shanghai Astronomy Museum, Shanghai 201306, China

    5 Sichuan Police College, Luzhou 646000, China

    Received 2022 January 26; revised 2022 April 2; accepted 2022 April 5; published 2022 May 20

    Abstract For the public having a better understanding of solar activities, the Educational Adaptive-optics Solar Telescope(EAST)was built in July 2021 and is located at the Shanghai Astronomy Museum.The EAST consists of a 65 cm aperture solar telescope with a 177-element adaptive optics system and two-channel high resolution imaging system at the Hα and TiO bands, in addition to three full disk solar telescopes at Ca K, Hα and TiO bands equipped on the tube of the main telescope. In this paper, the configuration of the EAST is described. Its performance and on-sky observational results are presented. The EAST, to our knowledge, is the most advanced solar telescope for the popularization of science in the world.Due to its excellent performance,the data acquired by the EAST can also be used for research on solar physics and space weather prediction.

    Key words:instrumentation:adaptive optics–instrumentation:high angular resolution–techniques:high angular resolution – Sun: general

    1. Introduction

    With the development of the economy, solar activity has become closely related to human life. In order to study solar activity, various types of solar observation equipments have been developed.Large-aperture solar telescopes play important roles in solar observation and research. In recent years, solar high-resolution observation instruments were rapidly developed,such as the 1 m New Vacuum Solar Telescope(Liu et al.2014), the 1.5 m GREGOR Solar Telescope, the 1.6 m Goode Solar Telescope (Cao et al. 2010), the 1.8 m Chinese Large Solar Telescope (CLST) (Rao et al. 2015, 2020), the 4 m Daniel K. Inouye Solar Telescope (DKIST) (Rimmele et al.2020)and the developing 2.5 m WeHoT Solar Telescope(Fang et al.2019)and 4 m European Solar Telescope(Collados et al.2013). Those instruments enable people to understand the fine structure of the Sun, not just large-scale activities.

    The construction of solar telescopes for public outreach in planetariums or museums can be traced back to the 1920s(Kisskinova et al. 2011). Solar telescopes in museums with an aperture larger than 30 cm can be roughly divided into two categories according to the optical system. The first category uses the celestial optical system, and usually has a towershaped architecture with large size. All early solar telescopes are constructed like such a system. The solar tower of the Deutsches Museum was built in 1925. Sunlight is directed through the celestial optical system for splitting. One of the beams can form a 1 m diameter white light image,and the other can form a solar spectrum through the reflective grating. The Griffith Solar Tower was built in 1935 (Leslie & Margolis 2017). Its celestial optical system uses a set of three plane mirrors to reflect sunlight into three different directions,realizing solar white light image projection, direct human eye observation and diffraction grating spectral observation.

    The other category is solar telescopes using the Gregorian optical system which were implemented in later solar systems.The Beijing Planetarium Solar Vacuum Telescope was built in 2004. It consists of a 30 cm diameter primary mirror and four 8 cm diameter telescopes. It can project a 1.8 m white light solar image. The Solar Vacuum Telescope of the Nagoya City Science Museum in Japan was built in 2010. It has a diameter of 30 cm and can form a white light image with a diameter of 1.9 m. The solar tower of Hong Kong’s Ma Wan Park was completed in July 2012. The web site of the tower is http://www.mawanpark.com/eng/attractions/solar-tower.html. It has a 35 cm diameter vacuum solar telescope, which can form a white light image with a diameter of 1 m.

    To give the public a more intuitive understanding of the phenomena and laws of solar activity, like other planetariums,the Shanghai Astronomy Museum (Shanghai Science and Technology Museum Branch) proposed the idea of building a solar tower. In addition to observing the Sun, a visitor can also see how the solar telescope works. After one year of monitoring the daytime visibility in the Lingang area, it was found that the average daytime seeing in the Lingang area was r0≥3 cm. We experimentally applied adaptive optics (AO)technology (Rao et al. 2003, 2010, 2016b) to the solar telescope to make up for the lack of seeing condition in this site.

    Figure 1. The 65 cm solar telescope and optical table with the adaptive optics system and two-channel high resolution imaging systems in the Coudé room.

    The Educational Adaptive-optics Solar Telescope(EAST)is designed to simultaneously obtain high-resolution images of the active region and full disk images of the solar photosphere and chromosphere. The full disk solar telescope is integrated into the main telescope instead of building separately. To achieve better results under strong turbulence conditions, an advanced solar AO system (Kong et al. 2016; Rao et al.2016a, 2018) is equipped on the telescope.

    In this paper,we will introduce the solar telescope,including the optical configuration, mechanical system and thermal control system in Section 2. In Section 3,the solar AO system is described and the system performances are evaluated. In Section 4,the imaging system and on-sky observational results of the EAST are reported. Finally, we conclude the work.

    2. System Configuration

    EAST, shown in Figure 1, is composed of a 65 cm aperture solar telescope with a 177-element adaptive optics system and two-channel high resolution imaging systems at the Hα(656.28 nm) and TiO (705.8 nm) bands. Moreover, three full disk solar telescopes at Ca K (393.4 nm), Hα and TiO bands are mounted on the tube of the main telescope for solar observation.

    EAST employs a two-mirror Gregorian configuration. The spectral range of the telescope is from 0.4 to 1.6 μm. The complete optical design of EAST is drawn in Figure 2. The focal length of the primary mirror M1 is 900 mm, corresponding to the focal ratio of about f/1.43. M1 uses ULE?(Ultra-Low Expansion Glass) material. The surface-shape rms error is about λ/40 (λ=632.8 nm). At the prime focus (F1),there is a field stop (heat stop).The elliptical secondary mirror M2 provides the Coudé focus F2.The main optical parameters of the telescope system are listed in Table 1.

    For the vacuum tube of EAST, the experimental results for the heat stop during about 8 hr are plotted in Figure 3.It can be seen that the temperature difference between the heat stop and the outside condition is controlled within±1° C (Liu et al.2015).

    The tracking performance of EAST is displayed in Figures 4 and 5. The low velocity solar tracking rms errors during 80 s are 0.12″ and 0.11″ for azimuth and elevation axis,respectively. The corresponding long time solar tracking root mean square(rms)errors during 800 s are 0 19 and 0 28.The high-performance servo control system provides continuous and stable tracking for the telescope, reduces the workload of the AO system,and ensures clarity and stability of the images.

    In the EAST, both full disk solar imaging and high resolution imaging systems are installed. The high-resolution images are obtained after AO correction to improve the quality of the observations. The details of the AO system and the imaging system are described below.

    3. Solar AO System

    The optical design of the solar AO system is illustrated in Figure 6. The light from the telescope transmits to the AO system and then is collimated by the lens collimator. The AO system is composed of a tip/tilt mirror (TM), a deformable mirror (DM), a correlation Shack-Hartmann wavefront sensor(WFS)and a high speed real time controller(RTC).An zoomed view of the optical system is also depicted in Figure 6,and it is used to convert the diameter between DM and WFS.After AO,two-channel high resolution imaging systems at the Hα and TiO bands respectively are installed.

    Figure 2. Optical configuration of the EAST (main optical system).

    Figure 3. The temperature control results for the heat stop.

    Table 1 The Optical Parameters of the Telescope System

    The arrangement of sub-apertures of WFS and the corresponding actuators of DM is shown in Figure 7. The number of DM actuators is 177.The main parameters of the WFS and DM are listed in Table 2.The correction ability of this configuration for the first 65 modes of the Zernike aberrations(Noll 1976)is displayed in Figure 8.

    Figure 4. 0°.004 s-1 low velocity solar tracking error (rms 0 12 and 0 11) .

    Figure 5. Long time solar tracking error (rms 0 19 and 0 28)

    Figure 6. Optical structure of AO system for the EAST.

    Figure 7. The correspondence between the actuators of DM and the subapertures of WFS.

    Table 2 The Parameters of the WFS and DM

    The WFS detector implemented in the AO system is an EoSens 3CL CMOS Camera, which delivers 8 bit-per pixel data in the region of 360×360 pixels, at the frame rate of 4000 Hz.The WFS subaperture is arranged as 15×15 and the number of effective subapertures is 140, therefore the number of pixels per subaperture and the reference image size are both 24×24 pixels.

    In the EAST AO system,the calculation of cross-correlation between live image IL(N×N pixels) and reference image IR(N×N pixels) by fast Fourier transform (FFT) takes the form as follows

    Before the Fourier transform, the reference image needs to be multiplied by a Hamming window to eliminate the influence of truncated sampling on the spectrum.The Hamming window takes the form as follows

    Figure 8. The correction ability for the first 65 modes of the Zernike aberrations.

    where α is usually taken as 0.46.

    The RTC is employed to extract the gradient of each subaperture, meanwhile the RTC uses the average gradient of all the subapertures to control the fine tracking loop and relies on the reconstructed wavefront information to control the high order correction loop simultaneously.

    Figure 9. Real time processing of RTC.

    Figure 10. Comparison of the Zernike rms error in open loop (circle) and closed loop (square) modes. The solid curve is the fitting of the Kolmogorov turbulence model to the open loop data.

    Figure 11. The distribution of r0 at the time (UT) between 2:47 and 3:03 on 2021 October 3.

    Figure 12. Closed-loop image shift vector length distribution at the time (UT)between 2:47 and 3:03 on 2021 October 3.

    Figure 13.Residual wavefront error distribution at the time(UT)between 2:47 and 3:03 on 2021 October 3.

    Figure 14.An unsharp masked and intensity-clipped image of solar penumbra fibers.

    To meet the demand of timing delay and jitter, the RTC platform is a custom-built architecture based on two advanced Xilinx-series FPGA cards,one for data acquisition and another for digital data I/O, and a×86 Multi-core CPU computing server with Linux CentOS 8.2 operating system. The real time processing is depicted in Figure 9, in which WFS camera images are acquired by a field-programmable gate array(FPGA) acquisition card, the control signals of TM and DM are transformed by FPGA digital I/O card, and dark field and flat field preprocessing, cross-correlation computation,parabolic interpolation, wavefront reconstruction and proportional-integral-differential (PID) servo are accomplished in a multi-core CPU.

    Figure 15. The layout of the full solar imaging system targeting the chromosphere (Hα band) for the EAST.

    Table 3 The Parameters of the Imaging Optical System

    In implementation, the kernel of the Linux operating system is modified to a real and non-real time dual-kernel mechanism for different computing tasks. The CPU instruction sets and 512 bit, 256 bit and 128 bit registers are effectively utilized to optimize computation, so all the four arithmetic operations of up to 16 bit float can be calculated simultaneously in one CPU instruction cycle. By this way and integrated with the multicore parallel method, RTC computing resources are fully released. Finally, combined with the classical parallel acceleration techniques, such as pipeline, systolic array and multichannels/cores parallelism, the total timing delay of about 160 μs and jitter of about±20.0 μs are achieved to make the system be the fastest solar AO system until now.

    The performance of the AO system is evaluated. The WFS measurements and the DM commands recorded by the RTC are first used to calculate the pseudo open loop wavefront in order to estimate the seeing. Then, the performance including tracking and high-order loop correction is evaluated.

    Figure 16. The observations of the three band full disk channels.

    The seeing during observation is estimated by fitting the variances of open loop Zernike modes, from the 3rd to 14th,according to the theory of Noll(Noll 1976).Figure 10 displays a comparison of open loop and closed loop Zernike mode rms error as well as the Kolmogorov turbulence fitting result.Obviously, the modes from 3rd to 77th are all effectively compensated.

    Figure 11 shows the histogram of the Fried parameter r0at the time (UT) between 2:47 and 3:03 on 2021 October 3. At different times,r0is always between 3 and 9 cm at the 500 nm wavelength, and its average is about 6 cm. As the AO system kept operating in closed loop during this period,it indicates that this AO system can still work even when r0(500 nm)is as small as 3 cm.

    The fine tracking loop stays closed so as to correct the global tilt and stabilize the image motion. The tracking error distribution is displayed in Figure 12.In most of the cases,the tracking error is below 0 1 with an average of 0 08.

    Figure 17. The images of the three observation modes at two high resolution imaging channels (Hα band (left), Tio band (right)). The first row is the open loop images, the second row is the AO corrected images and the third row is the speckle reconstruction of the AO images.

    In this AO system, besides tip-tilt, the remaining 75 higherorder Zernike modes are compensated by the DM. The distribution of high-order closed-loop wavefront errors is depicted in Figure 13, where most of the them are between 20 and 50 nm with an average of 33 nm.

    We show an unsharp masked and intensity-clipped image of solar penumbra fibers in Figure 14. Remarkably, these fibers can be distinguished. The intensity cut through the fibers from the lower left to the upper right red line in the image reveals that the width of the central dark lane in the faint fibers is only 3 pixels, that is, 0 3411. The interpolated pixels have a distance of 0 1137. The red bar in the image plot marks the width of the dark lane between the penumbra fibers. The diffraction limit of the system is 0 24. This shows that the system resolution is superior to 1.4 times the diffraction limit.

    4. Observation Results

    The imaging system of the EAST contains three full disk solar imaging systems at Ca K, Hα and TiO bands and two high resolution imaging channels at the Hα and TiO bands which are installed on the tube of the main telescope and the Coudé room for solar observation respectively.The parameters of the imaging systems are listed in Table 3.

    The full disk photosphere layer (TiO) imaging subsystem is composed of a filter and two groups of spherical lenses. The field of view (FoV) is 66′ to keep the whole solar image in the FoV.

    The layout of the full disk chromosphere (Hα and Ca K)imaging optical system is illustrated in Figure 15. The telescope is composed of a transmission Keplerian telescope and imaging lens. Two plane scanning mirrors are placed between the primary and secondary mirrors of the Keplerian telescope to keep the whole solar image in the FoV when the main solar telescope observes the solar active region in the arbitrary position. For narrow band imaging, a Lyot filter is placed in the system.

    For the AO-corrected high resolution imaging, in order to prevent vignetting from affecting the imaging quality, the imaging pupil of the system is placed in the middle of the Lyot filter. Therefore, it is necessary to add a beam shrinking component at the rear end of AO as illustrated in Figure 15.The beam shrinking assembly is composed of two groups of achromatic doublets.

    The full disk observation channels provide the real time images of the Ca line, Hα band and TiO band images, as displayed in Figure 16. The processing procedure of full disk observations contains the flat-fielding, removing the radial profile, removing the large-scale distortion patterns, etc. The results observed at 10:31 AM on 2021 May 9 are shown at below.

    Figure 17 features the imaging observation results from the two high resolution observation channels without AO correction,with AO correction and with speckle reconstruction based on the AO correction (Zhong et al. 2014). The correction of the AO system removes the static aberration and some low-order aberrations of the system, which can significantly improve the imaging quality and signal-to-noise ratio, but it cannot get the effect close to the diffraction limit in a large FoV,so post image reconstruction technology is needed. Speckle image reconstruction technology realizes the high-resolution reconstruction of the target in the frequency domain through the statistical analysis of multiple short exposure images. These results were observed at 8:09 AM on 2021 August 29 of NOAA 12860. From these figures,you can find different features at different heights of the solar atmosphere with high spatial resolution.

    5. Summary and Remarks

    The EAST was put into operation for the popularization of science in August 2021. Due to the excellent performance of the solar telescope and advanced solar AO system, EAST can also be used for science observations related to solar physics research and space weather prediction.

    We would like to express our gratitude to everyone in the EAST team for their efforts. Prof. Wenhan Jiang from IOE,CAS and Prof. Cheng Fang from Nanjing University are also acknowledged for their good suggestions and special support.This work was supported by the National Natural Science Foundation of China(NSFC,Grant Nos.11727805,11703029,11733005 and 12103057).

    法律面前人人平等表现在哪些方面 | 日韩 欧美 亚洲 中文字幕| 18禁国产床啪视频网站| 一级片免费观看大全| 日本vs欧美在线观看视频| 亚洲精品久久午夜乱码| 成人av一区二区三区在线看 | 高潮久久久久久久久久久不卡| 精品福利观看| 亚洲精品久久成人aⅴ小说| 亚洲精品粉嫩美女一区| 一区在线观看完整版| 欧美精品av麻豆av| 丰满饥渴人妻一区二区三| 80岁老熟妇乱子伦牲交| 久久久久久久久久久久大奶| svipshipincom国产片| 热99国产精品久久久久久7| 午夜免费成人在线视频| 午夜福利在线免费观看网站| 国产成人av教育| 久久青草综合色| 日韩中文字幕欧美一区二区| 99精品欧美一区二区三区四区| 亚洲精品日韩在线中文字幕| 欧美大码av| 欧美精品亚洲一区二区| 宅男免费午夜| 如日韩欧美国产精品一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 手机成人av网站| 午夜影院在线不卡| 久久久久久久久久久久大奶| 老司机福利观看| 中文字幕高清在线视频| 国产深夜福利视频在线观看| 欧美日韩亚洲综合一区二区三区_| 人人妻人人澡人人看| 久久青草综合色| 999精品在线视频| 人人妻人人爽人人添夜夜欢视频| 欧美成狂野欧美在线观看| 中文字幕最新亚洲高清| 另类精品久久| 五月开心婷婷网| 午夜精品久久久久久毛片777| 久久人人爽av亚洲精品天堂| 国产欧美日韩一区二区三区在线| 天天添夜夜摸| 亚洲免费av在线视频| 亚洲av成人一区二区三| 女人高潮潮喷娇喘18禁视频| 在线看a的网站| av又黄又爽大尺度在线免费看| 高清欧美精品videossex| 国产野战对白在线观看| 国产成人精品久久二区二区91| 亚洲成国产人片在线观看| av电影中文网址| 涩涩av久久男人的天堂| 亚洲一码二码三码区别大吗| 伦理电影免费视频| 老司机靠b影院| 捣出白浆h1v1| 99久久精品国产亚洲精品| 大片免费播放器 马上看| 好男人电影高清在线观看| 国产亚洲欧美在线一区二区| 菩萨蛮人人尽说江南好唐韦庄| 亚洲成人手机| 午夜精品国产一区二区电影| 午夜福利在线免费观看网站| 人妻久久中文字幕网| www日本在线高清视频| 在线观看一区二区三区激情| 男女下面插进去视频免费观看| 大片电影免费在线观看免费| 午夜两性在线视频| 国产一区二区激情短视频 | 在线观看一区二区三区激情| 久久久久国内视频| 日本av手机在线免费观看| 亚洲精品国产区一区二| 一二三四社区在线视频社区8| 一区二区三区精品91| 国产精品欧美亚洲77777| 亚洲五月色婷婷综合| 国产一卡二卡三卡精品| 视频区图区小说| 丝袜美足系列| 欧美精品高潮呻吟av久久| 香蕉丝袜av| 国产成人一区二区三区免费视频网站| 欧美精品啪啪一区二区三区 | 欧美日韩福利视频一区二区| 免费在线观看日本一区| 韩国精品一区二区三区| 亚洲欧美一区二区三区黑人| 夜夜夜夜夜久久久久| 国产成人啪精品午夜网站| 久久青草综合色| 国产高清视频在线播放一区 | 午夜福利影视在线免费观看| 精品一区二区三卡| 亚洲av欧美aⅴ国产| 一级毛片电影观看| 悠悠久久av| 国产一区二区三区综合在线观看| 日本vs欧美在线观看视频| 人妻人人澡人人爽人人| 国产又色又爽无遮挡免| 日本一区二区免费在线视频| 久久热在线av| 国产精品久久久久久精品电影小说| 中文字幕色久视频| 精品欧美一区二区三区在线| svipshipincom国产片| 欧美精品啪啪一区二区三区 | 97精品久久久久久久久久精品| 精品亚洲成a人片在线观看| 久久毛片免费看一区二区三区| 亚洲,欧美精品.| 99国产综合亚洲精品| 免费人妻精品一区二区三区视频| 可以免费在线观看a视频的电影网站| 精品国内亚洲2022精品成人 | 叶爱在线成人免费视频播放| 青草久久国产| 欧美另类亚洲清纯唯美| 大片免费播放器 马上看| 动漫黄色视频在线观看| 国产主播在线观看一区二区| 久久中文字幕一级| 操出白浆在线播放| 久久综合国产亚洲精品| 少妇粗大呻吟视频| 欧美老熟妇乱子伦牲交| 国产精品.久久久| 久久久水蜜桃国产精品网| 国产精品久久久久久人妻精品电影 | 欧美日韩中文字幕国产精品一区二区三区 | 日日摸夜夜添夜夜添小说| 天堂8中文在线网| 午夜福利影视在线免费观看| 妹子高潮喷水视频| 啦啦啦啦在线视频资源| 免费在线观看影片大全网站| 久久精品国产a三级三级三级| 日韩电影二区| 午夜福利乱码中文字幕| 国产亚洲欧美在线一区二区| 人成视频在线观看免费观看| 亚洲精品乱久久久久久| 丁香六月欧美| 水蜜桃什么品种好| 搡老岳熟女国产| 亚洲av日韩精品久久久久久密| 国产精品九九99| 中国美女看黄片| 黄色片一级片一级黄色片| 狂野欧美激情性xxxx| 久久午夜综合久久蜜桃| 最新在线观看一区二区三区| 亚洲情色 制服丝袜| 99国产精品99久久久久| 久久久久网色| 又紧又爽又黄一区二区| 丝袜脚勾引网站| 亚洲精品成人av观看孕妇| 一本综合久久免费| 久久国产亚洲av麻豆专区| 黑人操中国人逼视频| 黄色怎么调成土黄色| 国产成人免费观看mmmm| 黄色a级毛片大全视频| 一边摸一边抽搐一进一出视频| 王馨瑶露胸无遮挡在线观看| 色婷婷久久久亚洲欧美| 国产高清视频在线播放一区 | 午夜老司机福利片| 男女国产视频网站| 欧美乱码精品一区二区三区| 久久国产亚洲av麻豆专区| 国产在视频线精品| 在线十欧美十亚洲十日本专区| 五月天丁香电影| 亚洲欧美日韩另类电影网站| 亚洲av成人不卡在线观看播放网 | 亚洲国产精品一区三区| 久久国产亚洲av麻豆专区| 无限看片的www在线观看| 国产精品免费视频内射| 国产精品麻豆人妻色哟哟久久| 中文字幕最新亚洲高清| av电影中文网址| av国产精品久久久久影院| 黄色视频在线播放观看不卡| 新久久久久国产一级毛片| 丝袜美腿诱惑在线| 两人在一起打扑克的视频| 黄色毛片三级朝国网站| 亚洲精品国产av蜜桃| 日韩一区二区三区影片| 他把我摸到了高潮在线观看 | 捣出白浆h1v1| cao死你这个sao货| 在线观看免费午夜福利视频| 久久久久精品国产欧美久久久 | 日韩视频在线欧美| 久久精品aⅴ一区二区三区四区| 中文字幕人妻丝袜一区二区| 国产一区二区三区av在线| 99热网站在线观看| 亚洲国产欧美在线一区| 9191精品国产免费久久| 日日摸夜夜添夜夜添小说| 亚洲欧美日韩另类电影网站| 另类精品久久| 亚洲国产毛片av蜜桃av| 久久亚洲精品不卡| 国产免费福利视频在线观看| 十分钟在线观看高清视频www| 久久久国产一区二区| 免费av中文字幕在线| 亚洲欧美清纯卡通| 一二三四在线观看免费中文在| 麻豆乱淫一区二区| 性色av一级| 一区二区三区激情视频| 亚洲成人免费av在线播放| 国产免费福利视频在线观看| 人妻久久中文字幕网| 老司机亚洲免费影院| 国产高清视频在线播放一区 | 国产麻豆69| 精品国内亚洲2022精品成人 | 性色av乱码一区二区三区2| 日韩大片免费观看网站| 中文字幕精品免费在线观看视频| 国产精品麻豆人妻色哟哟久久| 香蕉丝袜av| 首页视频小说图片口味搜索| 欧美精品啪啪一区二区三区 | 亚洲欧美精品自产自拍| 久久久精品国产亚洲av高清涩受| 秋霞在线观看毛片| 精品免费久久久久久久清纯 | 久久久精品94久久精品| 国产又爽黄色视频| 极品人妻少妇av视频| 麻豆乱淫一区二区| 久久久久久久久久久久大奶| 久久精品亚洲熟妇少妇任你| www.av在线官网国产| 国产精品 欧美亚洲| 乱人伦中国视频| 中文欧美无线码| 岛国在线观看网站| 精品国产乱码久久久久久男人| 欧美少妇被猛烈插入视频| 欧美激情久久久久久爽电影 | 色婷婷久久久亚洲欧美| 男女无遮挡免费网站观看| 叶爱在线成人免费视频播放| 夜夜夜夜夜久久久久| av不卡在线播放| 久久精品国产亚洲av香蕉五月 | 午夜福利视频在线观看免费| 欧美xxⅹ黑人| 美女扒开内裤让男人捅视频| 久久久久国产精品人妻一区二区| 精品乱码久久久久久99久播| 欧美日韩视频精品一区| 亚洲中文日韩欧美视频| 男女午夜视频在线观看| 人成视频在线观看免费观看| 不卡av一区二区三区| av有码第一页| 日本av手机在线免费观看| av视频免费观看在线观看| 一本色道久久久久久精品综合| 成人av一区二区三区在线看 | 999久久久国产精品视频| 亚洲人成电影观看| 久热爱精品视频在线9| 肉色欧美久久久久久久蜜桃| 欧美日韩国产mv在线观看视频| 人人妻人人爽人人添夜夜欢视频| 国产成人啪精品午夜网站| 亚洲成人免费av在线播放| 精品熟女少妇八av免费久了| 日韩中文字幕欧美一区二区| 日韩大码丰满熟妇| 亚洲专区国产一区二区| 日韩人妻精品一区2区三区| 欧美人与性动交α欧美软件| 成人免费观看视频高清| av在线播放精品| 宅男免费午夜| 亚洲精品国产色婷婷电影| 国产日韩欧美在线精品| 亚洲精品乱久久久久久| 一个人免费看片子| 成人国语在线视频| 日本91视频免费播放| 国产成人av教育| 国产成人欧美| 波多野结衣一区麻豆| 亚洲欧美日韩另类电影网站| 亚洲精品日韩在线中文字幕| 亚洲精品第二区| 男女免费视频国产| 岛国在线观看网站| 天天操日日干夜夜撸| 欧美人与性动交α欧美软件| 中文字幕人妻丝袜制服| 夜夜骑夜夜射夜夜干| 色94色欧美一区二区| 啦啦啦中文免费视频观看日本| 考比视频在线观看| 久久久精品94久久精品| 国产精品国产av在线观看| 熟女少妇亚洲综合色aaa.| 国产成人系列免费观看| 日本av免费视频播放| 国产视频一区二区在线看| 人成视频在线观看免费观看| 欧美日韩精品网址| 中亚洲国语对白在线视频| 在线 av 中文字幕| 天天操日日干夜夜撸| 欧美性长视频在线观看| 国产免费福利视频在线观看| 女性被躁到高潮视频| 亚洲性夜色夜夜综合| 啦啦啦在线免费观看视频4| 中文字幕人妻丝袜一区二区| 人人妻人人添人人爽欧美一区卜| 人妻一区二区av| 亚洲欧洲精品一区二区精品久久久| 精品人妻一区二区三区麻豆| 1024视频免费在线观看| 国产成人免费无遮挡视频| videos熟女内射| 69av精品久久久久久 | 欧美久久黑人一区二区| 性色av一级| 国产成人精品在线电影| √禁漫天堂资源中文www| 中文字幕制服av| 久久99一区二区三区| 一级毛片女人18水好多| 午夜影院在线不卡| 国产一区二区三区av在线| netflix在线观看网站| 亚洲第一av免费看| 国产精品成人在线| 国产在视频线精品| 美女午夜性视频免费| 后天国语完整版免费观看| 夜夜骑夜夜射夜夜干| 久久av网站| 欧美一级毛片孕妇| 亚洲国产欧美日韩在线播放| 在线看a的网站| 亚洲精品av麻豆狂野| 青春草视频在线免费观看| 欧美日韩福利视频一区二区| 曰老女人黄片| 国产欧美亚洲国产| 久久久久视频综合| 国产无遮挡羞羞视频在线观看| 精品国产乱码久久久久久男人| 国产成人av激情在线播放| 欧美av亚洲av综合av国产av| 日韩中文字幕视频在线看片| 日韩电影二区| 精品一区在线观看国产| 亚洲av美国av| 免费在线观看日本一区| 久久精品人人爽人人爽视色| 丰满少妇做爰视频| 肉色欧美久久久久久久蜜桃| 手机成人av网站| 久久久久久久久久久久大奶| 日韩一区二区三区影片| 后天国语完整版免费观看| 国产成人欧美| 久久这里只有精品19| av天堂在线播放| 性少妇av在线| 啦啦啦免费观看视频1| 欧美另类亚洲清纯唯美| 91麻豆精品激情在线观看国产 | 岛国毛片在线播放| netflix在线观看网站| 美女脱内裤让男人舔精品视频| 国产成+人综合+亚洲专区| 少妇裸体淫交视频免费看高清 | videosex国产| 一本久久精品| 精品福利永久在线观看| 亚洲五月色婷婷综合| 免费人妻精品一区二区三区视频| 每晚都被弄得嗷嗷叫到高潮| 极品人妻少妇av视频| 免费黄频网站在线观看国产| 免费久久久久久久精品成人欧美视频| 少妇被粗大的猛进出69影院| 国产成人av激情在线播放| 在线天堂中文资源库| 国产成人免费无遮挡视频| 精品久久久久久久毛片微露脸 | 美女高潮到喷水免费观看| 大片免费播放器 马上看| 久久中文字幕一级| 老司机在亚洲福利影院| 免费人妻精品一区二区三区视频| 亚洲国产成人一精品久久久| 国产成人一区二区三区免费视频网站| 免费黄频网站在线观看国产| 国产亚洲午夜精品一区二区久久| 午夜福利,免费看| 日本av手机在线免费观看| av有码第一页| 我要看黄色一级片免费的| 大型av网站在线播放| 又紧又爽又黄一区二区| 69精品国产乱码久久久| videos熟女内射| 亚洲九九香蕉| 一本久久精品| a级毛片在线看网站| 亚洲熟女毛片儿| tocl精华| 女人高潮潮喷娇喘18禁视频| 国产男女内射视频| 久久亚洲国产成人精品v| 国产99久久九九免费精品| 亚洲人成77777在线视频| 欧美性长视频在线观看| 日韩大码丰满熟妇| 亚洲专区中文字幕在线| 久久99一区二区三区| 精品国产国语对白av| 日本a在线网址| 国产精品99久久99久久久不卡| 桃红色精品国产亚洲av| 伊人久久大香线蕉亚洲五| 国产精品亚洲av一区麻豆| 在线观看免费视频网站a站| 青春草亚洲视频在线观看| 国产一区二区三区综合在线观看| 亚洲欧美一区二区三区久久| 大型av网站在线播放| 麻豆乱淫一区二区| 视频区图区小说| av在线老鸭窝| 国产精品一区二区在线不卡| 亚洲中文av在线| 人妻人人澡人人爽人人| av超薄肉色丝袜交足视频| 妹子高潮喷水视频| e午夜精品久久久久久久| 青春草视频在线免费观看| 制服人妻中文乱码| 国产一区二区激情短视频 | 国产黄色免费在线视频| 久久久久久久国产电影| 爱豆传媒免费全集在线观看| 亚洲精品一二三| 亚洲 欧美一区二区三区| 久久人妻福利社区极品人妻图片| 少妇 在线观看| 美女主播在线视频| 午夜影院在线不卡| 久久热在线av| 国产av精品麻豆| 老司机在亚洲福利影院| 久久香蕉激情| 无遮挡黄片免费观看| 国产精品 欧美亚洲| 亚洲精品美女久久av网站| 人妻人人澡人人爽人人| 亚洲精品日韩在线中文字幕| 亚洲成人免费电影在线观看| 亚洲伊人久久精品综合| 久久久精品免费免费高清| 色视频在线一区二区三区| 99精国产麻豆久久婷婷| 久久国产精品影院| 国产成人一区二区三区免费视频网站| 久久狼人影院| xxxhd国产人妻xxx| 欧美xxⅹ黑人| 999久久久精品免费观看国产| 少妇人妻久久综合中文| 日本撒尿小便嘘嘘汇集6| 巨乳人妻的诱惑在线观看| 黑人欧美特级aaaaaa片| 欧美日韩亚洲综合一区二区三区_| 九色亚洲精品在线播放| 欧美日韩福利视频一区二区| 日韩 欧美 亚洲 中文字幕| 91老司机精品| 国产亚洲精品久久久久5区| 精品少妇一区二区三区视频日本电影| 99久久国产精品久久久| 国产精品香港三级国产av潘金莲| 久久青草综合色| 肉色欧美久久久久久久蜜桃| 韩国高清视频一区二区三区| 桃花免费在线播放| 宅男免费午夜| 美国免费a级毛片| 18在线观看网站| 黄色 视频免费看| 国产成人欧美在线观看 | 啦啦啦免费观看视频1| 欧美久久黑人一区二区| 日韩欧美免费精品| 日韩中文字幕欧美一区二区| 女人精品久久久久毛片| 黄片小视频在线播放| 国产成人精品久久二区二区免费| a级毛片在线看网站| 成年av动漫网址| 国产精品免费大片| 大香蕉久久网| a 毛片基地| 视频区图区小说| 一区二区日韩欧美中文字幕| 中文字幕高清在线视频| 麻豆av在线久日| 国产精品影院久久| 欧美精品av麻豆av| 日韩视频一区二区在线观看| 国产视频一区二区在线看| 日韩制服骚丝袜av| 他把我摸到了高潮在线观看 | 午夜视频精品福利| 亚洲国产av影院在线观看| 丝袜喷水一区| 国产成人一区二区三区免费视频网站| 久久国产精品人妻蜜桃| 免费在线观看视频国产中文字幕亚洲 | 久久中文看片网| 中文字幕最新亚洲高清| 一二三四社区在线视频社区8| 亚洲av成人一区二区三| 大型av网站在线播放| 久久人人爽人人片av| 欧美亚洲 丝袜 人妻 在线| 美女视频免费永久观看网站| 美女主播在线视频| 黑人巨大精品欧美一区二区蜜桃| 最黄视频免费看| 新久久久久国产一级毛片| 18禁裸乳无遮挡动漫免费视频| 午夜福利乱码中文字幕| 高潮久久久久久久久久久不卡| 国产精品一区二区在线观看99| 一本久久精品| 亚洲一区二区三区欧美精品| 秋霞在线观看毛片| av福利片在线| 99国产极品粉嫩在线观看| 爱豆传媒免费全集在线观看| 欧美+亚洲+日韩+国产| 少妇人妻久久综合中文| 一个人免费看片子| 一级片'在线观看视频| 国产精品香港三级国产av潘金莲| 国产精品免费大片| 久久亚洲国产成人精品v| av在线播放精品| 大陆偷拍与自拍| 成年人午夜在线观看视频| 亚洲精品自拍成人| 亚洲中文字幕日韩| 中文字幕人妻熟女乱码| 男女午夜视频在线观看| 免费久久久久久久精品成人欧美视频| 久久天堂一区二区三区四区| 精品少妇久久久久久888优播| 美女高潮到喷水免费观看| av电影中文网址| 母亲3免费完整高清在线观看| 一区二区三区激情视频| 国产极品粉嫩免费观看在线| 精品亚洲成a人片在线观看| 美女扒开内裤让男人捅视频| 国产av一区二区精品久久| 咕卡用的链子| 一区在线观看完整版| 久久久精品免费免费高清| 一区二区三区乱码不卡18| 亚洲色图 男人天堂 中文字幕| 一区福利在线观看| 王馨瑶露胸无遮挡在线观看| 两性夫妻黄色片| 国产主播在线观看一区二区| 天天躁日日躁夜夜躁夜夜| 国产欧美日韩一区二区精品| 午夜免费观看性视频| 人妻人人澡人人爽人人| 99精品久久久久人妻精品| 亚洲视频免费观看视频| 免费在线观看视频国产中文字幕亚洲 | 女性被躁到高潮视频| 国产成人一区二区三区免费视频网站| 亚洲国产精品999| 亚洲午夜精品一区,二区,三区| 老司机午夜十八禁免费视频| 十八禁网站网址无遮挡|