• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    GRB 190530A:From Precursor,Prompt Emission to Afterglow all Originated from Synchrotron Radiation

    2022-08-02 08:18:20HuiYaLiuXiangGaoWangLiPingXinZiMinZhouLiangJunChenBingLiYuanGuiYangQiLuoChengKuiLiShaoLinXiongLingJunWangXuHuiHanLiMingSongJianYanWeiEnWeiLiangandShuangNanZhang

    Hui-Ya Liu, Xiang-Gao Wang , Li-Ping Xin , Zi-Min Zhou, Liang-Jun Chen, Bing Li , Yuan-Gui Yang,Qi Luo , Cheng-Kui Li , Shao-Lin Xiong , Ling-Jun Wang , Xu-Hui Han, Li-Ming Song , Jian-Yan Wei,En-Wei Liang , and Shuang-Nan Zhang

    1 Guangxi Key Laboratory for Relativistic Astrophysics, Department of Physics, Guangxi University, Nanning 530004, China; wangxg@gxu.edu.cn

    2 GXU-NAOC Center for Astrophysics and Space Sciences, Nanning 530004, China

    3 CAS Key Laboratory of Space Astronomy and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China

    4 Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

    5 School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China

    Received 2022 March 1; revised 2022 March 31; accepted 2022 April 7; published 2022 May 20

    Abstract GRB 190 530A was jointly observed by the High Energy X-ray Telescope of the Hard X-ray Modulation Telescope (Insight-HXMT/HE) and the Ground-Based Wide-Angle Camera network (GWAC-N) with the extremely large field of view. After triggered by Insight-HXMT/HE and Fermi/GBM, we observed the optical emission of GRB 190 530A,using the 30 cm telescope of GWAC (GWAC-F30)to search and locate its position.Subsequent observation of the late afterglow of GRB 190 530A was made with the 2.16 m telescope at Xinglong Observatory.In this paper,we make a detailed exploration of the origin of GRB 190 530A.In the prompt emission,a “double-tracking” pattern is presented both for the low-energy spectral index α and the peak energy Ep in the Band function with Insight-HXMT/HE and Fermi/GBM data; the results of GRB 190 530A are consistent with the Amati and Yonetoku correlations; the spectral lag (τ) versus energy (E) can be estimated with τ = -3.0 ±0.06+(0.17 ±0.03)log E. The synchrotron radiation can account for the origin of GRB 190 530A prompt emission behaviors. The α and Ep of the precursor are essentially the same as that of the main prompt emission, implying that they have the same origin. For the afterglow, it can be described with the external forward shock model in ISM circumburst medium. In summary, from precursor, prompt emission to afterglow of GRB 190 530A all originated from synchrotron radiation.

    Key words: (stars:) gamma-ray burst: individual (GRB 190530A) – (stars:) gamma-ray burst: general – virtual observatory tools

    1. Introduction

    Gamma-ray bursts (GRBs) in the universe were first discovered by the Vela military satellites. The distribution of GRBs across the sky is completely random. The energy of gamma photons ranges from 1 keV to several GeV and above,and the duration is usually from 10-2to 103s. From observations, it can be found that there are basically two types of cosmic GRBs.One class of GRBs,called long-soft GRBs,last for more than 2 s, and gamma photons have lower energy. The other class,called short-hard GRBs,last for less than 2 s and are characterized by a higher gamma-photon energy.A long GRB is supposed to come from the core-collapse of a massive star(Woosley 1993;Paczyński 1998;MacFadyen&Woosley 1999;Kumar & Zhang 2015), and the theory is confirmed by the fact that some long GRBs are observed in association with supernovae. While short GRBs are believed to be the mergers of two compact stars (Paczynski 1986; Eichler et al. 1989;Narayan et al. 1992), the short GRB is associated with the gravitational wave burst caused by the merger of two neutron stars, which confirms the origin model. The central engine of GRBs remains a long-lasting question in GRB physics,but two main contenders have been proposed for the central engine: a hyper-accreting stellar-mass black hole (e.g., Woosley 1993;Popham et al.1999;Narayan et al.2001;Liu et al.2007,2018;Lei et al. 2013; Song et al. 2016) or a newly formed, highly magnetized, millisecond neutron star (e.g., Usov 1992; Dai &Lu 1998; Spruit et al. 2001; Dai et al. 2006; Rowlinson et al.2013, 2014; Lü & Zhang 2014; Zheng et al. 2021).

    These events provided energy for a high-energy relativistic jet, which has powerful γ-ray radiation with an isotropic equivalent energy of ~1050–1054erg. Observationally, most light curves exhibit rapid variability. Following the prompt γray emission, the blast wave interacts with the circumburst medium and produces an afterglow emission (Paczynski &Rhoads 1993; Huang et al. 2018). With the launch of space observatory such as the Fermi (Meegan et al. 2009; Atwood et al. 2009) and Niel Gehrels Swift (Gehrels et al. 2004)telescopes,the knowledge of the origin of the prompt emission and afterglow of GRBs has been improved significantly.However, the nature of the radiation mechanism still remains unclear. The non-thermal nature of the GRB spectra is generally interpreted in terms of radiation processes, such as synchrotron processes(Rees&Meszaros 1994;Li et al.2020).

    GRB 190 530A is an interesting case, having a bright and long main prompt emission with a duration of about 16 seconds, and also a fainter precursor emission with a duration of about 5 seconds.The main prompt emission episode also has a complex structure and consists of several pulses. In this paper, we present the joint observation of GRB 190 530A by the High Energy X-ray Telescope of the Hard X-ray Modulation Telescope (Insight-HXMT/HE) and the Groundbased Wide-Angle Camera Network (GWAC-N). Combining our data with other observations,we provide an analysis of the GRB 190 530A from its precursor, prompt emission to afterglow. Our observations are presented in Section 2. The temporal characteristics analysis and detailed time-resolved spectral analysis of the multi-pulse in the prompt emission are performed in Section 3,where the evolution patterns of Epand α are also provided. The light curves during the X-ray and optical emission of this burst are analyzed in Section 4. Then,its physical interpretation for the evolution patterns of Epand α as well as the X-ray and optical emission are discussed in Section 5.

    2. Observations and Data Reduction

    2.1. Prompt Gamma-Ray Emission

    GRB 190 530A triggered Insight-HXMT/HE(Li et al.2018;Luo et al. 2020; Song et al. 2022), Fermi/LAT and Fermi/GBM at 10:19:08 on 2019 May 30 (UT dates are adopted). Insight-HXMT/HE detected GRB 190 530A with T90=20.31 s in the 80–800 keV energy band (Yi et al. 2019),the location is (R.A., decl.)=(120.53, 35.47) degrees (J2000)with an error radius of 1 degree.The burst was especially bright in the Insight-HXMT/HE detector, producing over 18,182 counts. The count rate above the background in the most illuminated HE detectors and the total count from this burst are 214,189(Yi et al.2019).The T90of GRB 190 530A is 18.4 s in Fermi/GBM detection, and the onboard location is (R.A.,Dec)=(120.7,36.1)degrees(J2000)with an error radius of 1°(Biltzinger et al. 2019). The discrepancy of the detected duration (T90) is caused by the difference in sensitivity of Insight-HXMT/HE and Fermi/GBM in their different energy bands.The gamma-ray fluence and the one-second peak photon flux in the 10–1000 keV band are Sγ=(3.72±0.01) × 10-4erg cm-2and Fγ=160.5±0.7 photon s-1cm-2with Fermi/GBM (Bissaldi & Meegan 2019). Fermi/LAT detected this burst,and the onboard location is(R.A.,decl.)=(120.76,35.5)degrees (J2000) with an error radius of 0.12 degree (Longo et al. 2019).

    2.2. Optical and X-Ray Afterglow Observations

    GWAC-N is adjusted to simultaneously observe with Insight-HXMT/HE, which can perform cross-identification of the follow-up observations of X/γ-ray and optical transients.The GRB 190 530A was jointly observed by Insight-HXMT/HE and GWAC-N. The Swift/XRT detected the X-ray afterglow of the burst and published the observation in GCN Circulars at 04:14:12 on 2019 May 31 (Melandri et al. 2019).GWAC-N is currently located at the Xinglong Observatory(lat= 40°2 3′ 39 ′′N(xiāo),lon= 117°3 4′ 30 ′′E)in China,part of the future ground segment of the space-based multi-band astronomical variable objects monitor(SVOM)mission dedicated to the study of the transient sky with both spaced-based and ground-based multi-wavelength instruments (Wei et al. 2016).Due to the extremely large field of view (FOV) (25°×25°) of GWAC array, with fast follow-up GWAC-F60 (the 60 cm telescope of GWAC) and GWAC-F30 (the 30 cm telescope of GWAC)telescopes and the fast responding observation system(the AOM presented in Han et al.2021),the GWAC-N is well suited for the optical follow-up of GRB candidates detected by GWAC array with a localization accuracy of 1 arc second for the target source (Turpin et al. 2020). For the candidates, fast extra multi-wavelength follow-up observations at deeper magnitudes (typically R ~19 for an exposure of 120 s). These provide multiple observing capabilities and strategies for the optical tracking of gravitational waves (GWs) and GRBs.

    As the time of Insight-HXMT/HE trigger was before sunset at Xinglong Observatory,GWAC array was not involved in the observation. We observed the optical emission of GRB 190 530A, using GWAC-F30 to search and locate its position at 2.49 h after the burst,and published the observation in GCN Circulars at 01:42:46 on 2019 May 31. We began imaging the field using GWAC-F30, which uses different filters (Johnson UBVRI) with a large FOV and obtained seven images of 20 s exposures. The search location result of GRB 190 530A is shown in Figure 1. The purple color in the left figure is the location of Insight-HXMT/HE with an error of 1°.The red and green colors are the location from Fermi/LAT with an error of 0°.12 and Fermi/GBM with an error of 1°, respectively. The blue circle in the figure represents the position of GRB 190 530A. The point-spread-function photometry is applied using the DAOPHOT package (Stetson 1987) from the IDL Astronomy User’s Library.6http://idlastro.gsfc.nasa.gov/Data reduction is carried out following the standard routines using the IRAF7http://ast.noao.edu/data/software/package, and the photometry is R=15.10±0.04 mag (Xin et al. 2019a)reported in Table 1. The photometry is based on the nearby USNO-B1.0 stars. Subsequently, we made a deep follow-up observation of GRB 190 530A detected by GWAC-F30 with the 2.16 m telescope equipped with the BFOSC camera at Xinglong Observatory. 62 images of 50 s exposures were obtained. The optical afterglow was clearly detected in our stacked image with a magnitude of R=19.63±0.10 mag(Xin et al.2019b)at the mid time of about 1.12 days after the burst,calibrated with nearby SDSS stars. The redshift z of GRB 190 530A was set to 0.9386 (Gupta et al. 2022). Note that we denote T0as the burst trigger time of the initial detection.

    Figure 1. The observed field near GRB 190 530A in the R filter with GWAC-F30. (a) The position of GRB 190 530A from Insight-HXMT/HE, with an error of 1 degree(purple color).The red and green colors are the location from Fermi/LAT with an error of 0.12 degree and Fermi/GBM with an error of 1 degree,respectively.(b) The blue circle in the image represents the position of GRB 190 530A.

    Table 1 Optical Observation of GRB 190 530A

    The bright optical counterpart of GRB 190 530A was also detected by several ground-based telescopes,such as the AS-32(0.7 m)telescope at the Abastumani Observatory at ~1.32 days(Belkin et al. 2019; Belkin & IKI GRB FuN Collaboration 2019), the 1.5 m telescope at the Sierra Nevada Observatory in Spain at ~0.44 days (Kann et al.2019a, 2019b), the 1 m telescope of SAO RAS at ~1.35 days(Moskvitin & Uklein 2019), the AZT-33IK telescope at the Sayan Observatory at ~2.23 days (Belkin & IKI GRB FuN Collaboration 2019), and the 2 m Himalayan Chandra Telescope at the Indian Astronomical Observatory at ~3.19 days(Kumar&Pandey 2019).The X-ray Telescope(XRT;Burrows et al. 2005) onboard Swift began observing the field of GRB 190 530A,33.8 ks after the burst trigger(Melandri et al.2019).

    3. Spectral Analysis of the Prompt Emission

    3.1. Selected Data and Spectral Analysis

    We obtain all events data in 18 CsI detectors from the Insight-HXMT/HE trigger catalog.8http://archive.hxmt.cn/grbThe source time intervals for all detectors are chosen to be the same as for the GRB data analysis, thus data of all detectors can be added up to reduce the statistical uncertainties.We study the temporal and spectral prompt emission properties of GRB 190 530A using the five brightest HE detectors (CsI 0, 2, 4, 6 and 10) with the largest effective areas. We use the Insight-HXMT burst analysis(HXMTbeta) software to create prompt emission light curves and spectra using Insight-HXMT/HE observation. The background signals are estimated from the segments before and after the GRB for the time intervals T0-300 s to T0-50 s and T0+70 s to T0+300 s, respectively.

    Meanwhile, we use gtburst software to obtain Fermi/GBM data in time-stamped event(TTE)mode from the Fermi/GBM trigger catalog.9https://heasarc.gsfc.nasa.gov/W3Browse/fermi/fermigtrig.htmlWe select the brightest NaI detectors (NaI 1 and 2)and BGO detector(BGO 0)as these detectors are closer to the direction of the burst. We use the gtburst software to create prompt emission light curves and spectra using Fermi/GBM observation. The background signal is estimated for the same time interval as for the Insight-HXMT/HE data.

    We perform the modeling of the joint Insight-HXMT/HE and Fermi/GBM spectrum using the Heasoft tool grppha(Virgili et al. 2012) software to investigate the possible emission mechanisms of GRB 190 530A. We employ the typical empirical Band function (Band et al. 1993) to fit spectral data of GRB 190 530A. The Band function is described as a smoothly broken power law:

    where A is the normalization of Band spectrum,α and β are the low-energy and high-energy photon spectral indices, E0is break energy of the spectrum.The peak energy in the spectrum is called Ep, which is related to E0by Ep=(2+α)E0. As the obtained spectral files for Insight-HXMT/HE and Fermi/GBM are consistent with statistics for Poisson fluctuations with Gaussian background (pgstat), the χ2-statistics is used for the joint spectral analyses. The spectral fitting package Xspec(Arnaud 1996) is used for the spectral analysis. We consider Insight-HXMT/HE and Fermi/GBM spectrum over the energy range of 8–900 keV (NaI detectors), 0.2–40 MeV (BGO detectors) and 100–600 keV (HE detectors) for the spectral analysis.

    3.2. Analysis Results

    3.2.1. The Main Prompt Emission

    The γ-ray emission light curve of GRB 190 530A consists of a precursor emission (Episode I, T0-0.3 s to T0+4.5 s) and main prompt emission (T0+7.8 s to T0+24.4 s), as shown Figure 2. The main prompt emission consists of three pulses,e.g., Episode II (T0+7.8 s to T0+11.5 s), III (T0+11.5 s to T0+16.1 s) and IV (T0+16.1 s to T0+24.4 s). The background-subtracted 0.064 s binned light curves of Insight-HXMT/HE and Fermi/GBM detectors are provided in multiple energy channels (given in the ten panels) in Figure 2. The fitting result of time-integrated spectrum (from T0-0.3 s to T0+24.4 s) for GRB 190 530A is shown in Figure 3,with α=-1.00±0.01, β=-3.60±0.13, and Ep=883.5±11.6 keV. Then we subdivide the prompt emission light curve of GRB 190 530A into 13 intervals after considering the temporal characteristics, as shown in Figure 2. The fitting results of time-resolved spectrum is show in Table 2.The timeintegrated and time-resolved spectrum fitting results shown that the Band model can well describe the spectral shape for all time intervals. Given the sensitivity of the detectors, the remaining high-energy bump indicates that there might not exist an additional high-energy component.

    Because the prompt emission light curve of GRB 190 530A exhibits multi-pulse behavior, the spectral evolution may be influenced by a complex central engine. The temporal evolution of Epand α for GRB 190 530A display significant“double-tracking” trends along with photon counts, as shown in Figure 4. It is a multiple-pulse burst rather than a singlepulse burst like for GRB 131 231A in Li et al. (2019), which also has the “double-tracking” pattern for both its Epand α in all time-resolved spectra. In general, multiple-pulse bursts are more difficult to extrapolate for the evolution of Epand α. In Uhm et al. (2018) and Gupta et al. (2022), the “doubletracking” behavior was interpreted using the synchrotron radiation model. Zhang & Mészáros (2002) presented the Ep∝L1/2relation in the synchrotron model, where L is the luminosity of the ejecta. Regarding the prompt spectral evolutions, the synchrotron emission origin can account for the “double-tracking” behaviors of Epand α.

    3.2.2. The Precursor Emission

    Figure 2. The prompt emission light curves of GRB 190 530A with 0.064 s binned. Observations from the Insight-HXMT/HE detectors and Fermi detectors are shown in red solid and blue solid lines, respectively. The green vertical solid line represents the burst trigger time and green vertical dotted lines correspond to the time ranges used for spectral analysis.The time interval from T0-0.3 s to T0+24.4 s is subdivided into 13 intervals after considering the temporal characteristics. Episode I: T0 + (-0.3–4.5) s, Episode II: T0 +(7.8–11.5) s, Episode III: T0 + (11.5–16.1) s and Episode IV: T0 +(16.1–24.4) s.

    Some GRBs light curves consist of a weak segment followed by a bright-burst segment. The weak segment is called precursor emission, which may be separated or tightly connected to the subsequent main structure (main prompt emission). These weak precursors may or may not trigger a gamma-ray burst.GRB 190 530A showed a precursor emission in its light curve, i.e., Episode I, as shown in Figure 2. The spectral indices of the precursor are essentially the same as that of the main prompt emission in Table 2, and both show the same“double-tracking”pattern of Epand α as the main prompt emission in Figure 4. It indicates that they have the same physical origin.

    Figure 3. Joint fit of Insight-HXMT/HE and Fermi/GBM time-integrated(T0-0.3 s to T0 + 24.4 s) spectrum with band function.

    3.2.3. The Spectral Lag

    The spectral lag of a GRB is defined as the time delay of high-energy photons with respect to low-energy photons,and is commonly observed in long GRBs (Norris et al. 1986; Cheng et al. 1995; Band 1997; Norris et al. 2000). To study GRB spectral lag,which can be measured as a relative lag of the light curves in different energy bands,the cross correlation function analysis is used. For GRB 190 530A, the spectral lag (τ) with respect to 100–245 keV is estimated for the 245–600 keV energy band of the Insight-HXMT/HE detectors of GRB 190 530A. Furthermore, the spectral lag (τ) with respect to 8–25 keV is estimated for four energy bands (8–25, 25–50,50–100,100–300,and 300–1000 keV)of the NaI detectors and two energy bands(300–1000 and 1000–5000 keV)of the BGO detectors.The procedure to obtain the spectral lag τ can be seen in Lu et al. (2018). As shown in Figure 5, the results of GRB 190 530A show that τ increases with increasing energy E(given the same reference band for the same detector).It shows a clear dependence of τ on E, with a linear function τ=kτlog (E) + b= (0.17±0.03)logE-3.0±0.06. A similar dependence of τ on E can be also found in the H2S-dominated tracking pulses (Lu et al. 2018). This may indicate that the spectral lag is the result of the temporal evolution of Ep(Ukwatta et al.2012).The generic physical model discussed by Uhm&Zhang(2016)and Uhm et al. (2018)suggests that this relation can be realized more easily if the emission originates from electrons within the same fluid unit, so that the emission features can evolve continuously as the fluid unit moves in space (Lu et al. 2018). Such a scenario naturally produces asymmetric pulse profiles. Lu et al. (2018) found that the spectrum evolves uniformly within each pulse,which indicates that pulses are the fundamental units of GRB radiation.

    Figure 4. The evolution of Ep (right Y-axis in (a)) and α (right Y-axis in (b)) as the photon counts (left Y-axis).

    Table 2 Spectral Fitting Results of GRB 190 530A with Insight-HXMT/HE and Fermi/GBM Data

    3.2.4. Correlations

    Two experimental correlations are tested, i.e., the Ep,z-Eγ,iso(Amati; Amati et al. 2002; Amati 2006) and Ep,z-Lp,iso(Yonetoku; Yonetoku et al. 2004, 2010) relations.Wang et al. (2018) investigated several empirical correlations(Amati, Frail, Ghirlanda, and Liang-Zhang), and they suggest the Ep,z-Eγ,iso(Amati) correlation as

    Figure 5.GRB 190 530A spectral lag τ evolves with energy E.The blue solid line represents the best linear fitting result for its spectral lag behavior.

    Figure 6. GRB 190 530A in Ep,z-Eγ,iso plane (Amati relation). The data points in the graph are taken from Wang et al.(2018).Red circle,orange circle,yellow circle, cyan circle and magenta circle represent all pulses, Episode I,Episode II, Episode III and Episode IV, respectively. The solid line mean the Amati relation,and their 2σ dispersion regions are shown with the dashed lines.

    4. Optical and X-Ray Afterglow

    Figure 7. GRB 190 530A in Ep,z-Lp,iso plane (Yonetoku relation). Orange pentagram, yellow pentagram, cyan pentagram and magenta pentagram represent Episode I, Episode II, Episode III and Episode IV, respectively.The data points in the graph are taken from Ito et al.(2019)and Yonetoku et al.(2010). The solid line represents the Yonetoku relation, and the dashed line means the 2σ confidence interval of Yonetoku relation.

    The GRB 190 530A data are available on the Swift online repository10https://www.swift.ac.uk/xrt_curves/00020893/hosted by the University of Leicester(Evans et al.2009,2010).To understand the origin of the X-ray and optical afterglow data, we produce the spectral energy distribution using joint optical and X-ray data.We perform the joint optical and X-ray data modeling using Xspec(Arnaud 1996)software.We include the Galactic and intrinsic absorber using the Xspec models phabs and zphabs. The absorption of the Galaxy with NH=5.07 × 1020cm-2is adequate to address the observed soft X-ray absorption (Willingale et al. 2013). For the extinction at the redshift of the burst, the optical extinction is found to be negligible even when the extinction laws of the Galaxy and the Small and Large Magellanic Clouds are used in the fit. The spectrum can be well fitted by a power-law with ΓOX=1.81±0.14 and χ2/dof=478/499 (as shown in Figure 8), where dof stands for degrees of freedom.

    Figure 8.The temporal and spectral analysis of GRB 190 530A.(a):SED analysis of GRB 190 530A,the blue line shows the extrapolation for the spectral index of X-ray emission.(b)The temporal fitting of GRB 190 530A.The fitting results of the X-ray and optical afterglow are represented with a single power-law(blue line)and a broken power-law (orange line), respectively.

    To get the temporal profile of the GRB 190 530A afterglow,we employ a single power-law function

    where F0is the flux normalization and α is the afterglow flux decay index, and also a broken power-law function

    where F1is the flux normalization, α1and α2are respectively the afterglow flux decay indices before and after the break time(tb), and ω is a smoothness parameter which represents the sharpness of the break.

    For the R-band afterglow, we first obtain the data which are corrected for the Galactic extinction in the direction of the burst using the model described in Schlafly & Finkbeiner (2011).The R-band light curve can be well fitted by a broken power law with a normal decay index of αR,I=1.50±0.08, and a break at tb≈120 ks followed with a steep index αR,II=2.04±0.11, as shown in Figure 8 (b). Swift/XRT did not explicitly detect the phenomenon of a jet break, the X-ray afterglow can be fitted using a single power-law function with a temporal decay index of αX=1.49±0.07.

    Combining the results of our temporal analysis and spectral analysis, we use the closure relation (α-β, β and α are the spectral index and temporal decay index, respectively) of the fireball external forward shock model to test the optical and X-ray data of GRB 190 530A. The value of spectral index is βOX=ΓOX-1=0.81±0.14.We find that the temporal slopes of the first segment for both optical and X-ray bands(αR,I=1.50±0.08, αX=1.49±0.07) satisfy the relation α=3β/2 ~1.22±0.21 for the normal decay in ISM circumburst medium in a slow-cooling spectral regime νm<νo<νX<νc(νmis the characteristic synchrotron frequency,νcis the cooling frequency, νoand νXis the frequency of optical and X-ray bands). For the post break of the optical band, it also satisfy corresponding post jet break closure relation α=(6β+3)/4 ~1.97.The p value of GRB 190 530A is estimated to be p=2β+1=2.62±0.28.

    5. Discussion and Conclusions

    GRB 190 530A was jointly observed by Insight-HXMT/HE and GWAC-N with their extremely large FOV.After triggered by Insight-HXMT/HE and Fermi/GBM, we observed the optical emission of GRB 190 530A, using GWAC-F30 to search and locate its position. Subsequent observation of the late afterglow of GRB 190 530A was made with the 2.16 m telescope at Xinglong Observatory. GRB 190 530A was also observed by Fermi/GBM,Swift/XRT and other ground-based optical telescopes.

    Figure 9. Modeling the optical and X-ray light curves with an external forward shock model in ISM circumburst medium. (a) The theoretical prediction from the external forward shock, compared with the observed data. (b) The best fitting parameters and their probability distribution.

    We studied the temporal and spectral characteristics of the prompt emission of GRB 190 530A using Insight-HXMT/HE and Fermi/GBM observations.An analysis of this event in the afterglow was carried out using GWAC-F30, the 2.16 m telescope at Xinglong Observatory, Swift/XRT and other optical observations.We found that from the precursor,prompt emission to afterglow of GRB 190 530A all emission can be interpreted with synchrotron radiation. The properties of GRB 190 530A are summarized as follows:

    1. In the prompt emission of GRB 190 530A,a single Band function without adding extra components is adequate to fit the Insight-HXMT/HE and Fermi/GBM data for the time-integrated and time-resolved spectra. The spectrum shows the“double-tracking”evolution pattern both for Epand α; the spectral lag increases with increasing photon energy, τ=-3.0±0.06 + (0.17±0.03)logE; GRB 190 530A well satisfies the Amati and Yonetoku relations. The prompt emission of GRB 190 530A originated from synchrotron radiation.

    A precursor is generally defined as an emission episode whose peak intensity is much lower than that of the main prompt emission episode and with a quiescent separation period from the main prompt emission episode (Koshut et al.1995; Burlon et al. 2008, 2009; Troja et al. 2010). Precursors may or may not trigger the gamma-ray detectors(Lazzati 2005),e.g.,GRB 041 219A(G?tz et al.2011),GRB 050 820A(Cenko et al.2006),and GRB 060 124(Romano et al.2006).For GRB 1 905 030A,there is a quiet period of about 3 seconds between the precursor emission and the main prompt emission. The precursor of GRB 190 530A has triggered the gamma-ray detectors,may be due to that GRB 190 530A is bright enough.Two leading models have been advocated to interpret the precursor. One is that the collapse of a rapidly rotating stellar core leads to fragmentation (King et al. 2005). If the delayed accretion of fragmented debris leads a second burst, the debris must have comparable masses with the materials in the initial major accretion. This behavior has not been seen to date in numerical simulations (e.g.,Masada et al. 2007;Metzger et al.2008). Another is that there is a long-standing speculation when rotation and magnetic fields are taken into account, the core collapse of massive star can lead to some form of magnetohydrodynamics (MHD) outflows (Wang & Mészáros 2007).In that scenario,the precursor is produced by a weak jet formed during the initial core collapse, possibly related to MHD processes associated with a short-lived massive star,while the main prompt emission is produced by a stronger jet fed by the fallback accretion onto the black hole,resulted from the collapse of massive star.For GRB 190 530A,it is still hard to conclude which model is preferred.

    Acknowledgment

    We acknowledge the support of the staff of the Xinglong 2.16 m telescope. We thank the anonymous referee for helpful recommendations to enhance this work. This work was partially supported by the Open Project Program of the Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences. This work is supported by the National Key R&D Program of China (grant No.2021YFA0718500),the National Natural Science Foundation of China(grant Nos.U1938201,12103055,11863007 and 11973055), the Guangxi Science Foundation (grant No.2018GXNSFGA281007), the Innovation Project of Guangxi Graduate Education (grant No. YSCW2019050), and the Teaching reform project of Guangxi Higher Education (grant No. 2019JGZ102).

    ORCID iDs

    Xiang-Gao Wang, https://orcid.org/0000-0001-8411-8011

    Li-Ping Xin https://orcid.org/0000-0002-9422-3437

    Bing Li https://orcid.org/0000-0002-0238-834X

    Qi Luo https://orcid.org/0000-0003-1853-7810

    Cheng-Kui Li https://orcid.org/0000-0001-5798-4491

    Shao-Lin Xiong https://orcid.org/0000-0002-4771-7653

    Ling-Jun Wang https://orcid.org/0000-0002-8352-1359

    Li-Ming Song https://orcid.org/0000-0003-0274-3396

    En-Wei Liang https://orcid.org/0000-0002-7044-733X

    Shuang-Nan Zhang https://orcid.org/0000-0001-5586-1017

    av在线app专区| a级一级毛片免费在线观看| 国产免费一区二区三区四区乱码| 一本色道久久久久久精品综合| 日韩欧美 国产精品| 看免费成人av毛片| 美女中出高潮动态图| 青春草国产在线视频| 国产精品久久久久久精品古装| 亚洲国产毛片av蜜桃av| 精品酒店卫生间| 高清午夜精品一区二区三区| 欧美日韩在线观看h| 亚洲精品乱久久久久久| 午夜免费鲁丝| 亚洲国产精品成人久久小说| 免费看日本二区| 极品少妇高潮喷水抽搐| 人妻一区二区av| 身体一侧抽搐| 3wmmmm亚洲av在线观看| 最近最新中文字幕免费大全7| 青春草亚洲视频在线观看| 久久午夜福利片| 99久久综合免费| a 毛片基地| 国产视频内射| 国产91av在线免费观看| 日韩一区二区三区影片| 中文字幕人妻熟人妻熟丝袜美| 99久久人妻综合| 欧美成人午夜免费资源| 男女无遮挡免费网站观看| 一级爰片在线观看| 小蜜桃在线观看免费完整版高清| 新久久久久国产一级毛片| 观看免费一级毛片| 一个人免费看片子| 日本欧美视频一区| 18+在线观看网站| 亚洲无线观看免费| 久久久久久久久久久免费av| 少妇高潮的动态图| 免费观看av网站的网址| 午夜福利网站1000一区二区三区| 国产成人a区在线观看| 国产一级毛片在线| 美女高潮的动态| 国产免费又黄又爽又色| 久久久久久久久久成人| 国产在线免费精品| 交换朋友夫妻互换小说| 亚洲国产日韩一区二区| 欧美高清性xxxxhd video| 99久国产av精品国产电影| 亚洲aⅴ乱码一区二区在线播放| 日日摸夜夜添夜夜爱| 最近手机中文字幕大全| 91精品伊人久久大香线蕉| 综合色丁香网| 美女xxoo啪啪120秒动态图| 偷拍熟女少妇极品色| 人人妻人人添人人爽欧美一区卜 | 91aial.com中文字幕在线观看| 国产成人精品久久久久久| h日本视频在线播放| 99视频精品全部免费 在线| 在线天堂最新版资源| 寂寞人妻少妇视频99o| 午夜福利高清视频| 男人舔奶头视频| 国产女主播在线喷水免费视频网站| 日本与韩国留学比较| 边亲边吃奶的免费视频| 全区人妻精品视频| 亚洲最大成人中文| 18+在线观看网站| 人妻制服诱惑在线中文字幕| 国产爱豆传媒在线观看| 亚洲熟女精品中文字幕| 男的添女的下面高潮视频| 久久国产精品大桥未久av | 免费少妇av软件| 极品教师在线视频| 亚洲欧美日韩另类电影网站 | 中文字幕免费在线视频6| 在线观看美女被高潮喷水网站| 亚洲国产精品专区欧美| 欧美bdsm另类| 欧美亚洲 丝袜 人妻 在线| 在线看a的网站| 色网站视频免费| h日本视频在线播放| 免费大片黄手机在线观看| 久久久久久久久久成人| 亚洲精华国产精华液的使用体验| 青春草视频在线免费观看| 国产一区有黄有色的免费视频| 高清毛片免费看| 蜜桃亚洲精品一区二区三区| 午夜激情福利司机影院| 亚洲国产精品成人久久小说| 国产精品嫩草影院av在线观看| 午夜福利影视在线免费观看| 精品久久久久久久末码| 高清不卡的av网站| 一级二级三级毛片免费看| 97在线视频观看| 九色成人免费人妻av| 在线观看三级黄色| 一本色道久久久久久精品综合| 精品国产乱码久久久久久小说| 在线观看免费日韩欧美大片 | 少妇人妻精品综合一区二区| 人妻少妇偷人精品九色| 国产老妇伦熟女老妇高清| 美女cb高潮喷水在线观看| 一区二区三区乱码不卡18| 午夜老司机福利剧场| 成人无遮挡网站| 久久午夜福利片| 欧美xxxx黑人xx丫x性爽| videossex国产| 午夜老司机福利剧场| 一区二区三区免费毛片| 毛片一级片免费看久久久久| 最近中文字幕高清免费大全6| 久久99热这里只频精品6学生| 免费大片18禁| 偷拍熟女少妇极品色| 国产精品女同一区二区软件| 久久综合国产亚洲精品| 久久99热这里只频精品6学生| 免费观看性生交大片5| 18禁在线播放成人免费| 久久人人爽av亚洲精品天堂 | 国产午夜精品一二区理论片| 少妇的逼水好多| 午夜免费男女啪啪视频观看| 亚洲欧美成人精品一区二区| 男人添女人高潮全过程视频| 夜夜爽夜夜爽视频| 久久国产精品男人的天堂亚洲 | 久热这里只有精品99| 欧美高清成人免费视频www| 18+在线观看网站| 亚洲性久久影院| 精品少妇黑人巨大在线播放| 亚洲欧美日韩东京热| 精品酒店卫生间| 国产精品一区二区在线观看99| 欧美最新免费一区二区三区| 在线天堂最新版资源| av在线蜜桃| 久久久亚洲精品成人影院| 国产精品国产三级专区第一集| 只有这里有精品99| 五月伊人婷婷丁香| 亚洲美女视频黄频| 日本vs欧美在线观看视频 | 一本色道久久久久久精品综合| 777米奇影视久久| 97在线视频观看| 欧美日韩视频高清一区二区三区二| 青青草视频在线视频观看| 日日摸夜夜添夜夜爱| 国语对白做爰xxxⅹ性视频网站| 大香蕉97超碰在线| 亚洲国产色片| 人妻少妇偷人精品九色| 亚洲欧美一区二区三区国产| 简卡轻食公司| 狂野欧美激情性bbbbbb| 午夜激情福利司机影院| 麻豆乱淫一区二区| 美女高潮的动态| 国产一级毛片在线| 国产91av在线免费观看| 亚洲图色成人| 国产大屁股一区二区在线视频| 丝袜喷水一区| 国产国拍精品亚洲av在线观看| 亚洲精品色激情综合| 久久久久视频综合| 黑人高潮一二区| 亚洲av福利一区| 亚洲国产欧美在线一区| 色吧在线观看| 一级片'在线观看视频| 日韩av免费高清视频| 免费久久久久久久精品成人欧美视频 | 日日撸夜夜添| 日韩av不卡免费在线播放| 欧美三级亚洲精品| 久热这里只有精品99| a级一级毛片免费在线观看| 午夜免费男女啪啪视频观看| 色5月婷婷丁香| 不卡视频在线观看欧美| 日韩,欧美,国产一区二区三区| 久久久久国产网址| 人妻夜夜爽99麻豆av| 22中文网久久字幕| 免费高清在线观看视频在线观看| 国产亚洲5aaaaa淫片| 亚洲欧美日韩无卡精品| 最新中文字幕久久久久| 亚洲怡红院男人天堂| 国产精品一及| av又黄又爽大尺度在线免费看| 国产国拍精品亚洲av在线观看| 黑人猛操日本美女一级片| 深爱激情五月婷婷| 亚洲色图综合在线观看| 18禁在线无遮挡免费观看视频| 97热精品久久久久久| 99久久精品国产国产毛片| 亚洲欧美中文字幕日韩二区| 秋霞在线观看毛片| 国产精品久久久久久精品古装| 纯流量卡能插随身wifi吗| 亚洲国产精品国产精品| 成人综合一区亚洲| 久久婷婷青草| 亚洲欧美成人精品一区二区| 日韩,欧美,国产一区二区三区| 老司机影院毛片| 亚洲av日韩在线播放| 日韩人妻高清精品专区| 亚洲欧美日韩无卡精品| 99久久精品热视频| av又黄又爽大尺度在线免费看| 免费av中文字幕在线| 黄色怎么调成土黄色| 国模一区二区三区四区视频| 亚洲精品日本国产第一区| 久久精品国产亚洲网站| 欧美成人精品欧美一级黄| 乱码一卡2卡4卡精品| 亚洲人成网站在线观看播放| 精品少妇黑人巨大在线播放| 在线天堂最新版资源| 汤姆久久久久久久影院中文字幕| 男女下面进入的视频免费午夜| 在线观看三级黄色| 色视频在线一区二区三区| 精品久久久久久久末码| 下体分泌物呈黄色| 欧美日韩亚洲高清精品| 又黄又爽又刺激的免费视频.| 人人妻人人看人人澡| 国产黄片美女视频| 三级国产精品欧美在线观看| 国产精品成人在线| 日韩大片免费观看网站| a级毛片免费高清观看在线播放| 黄色怎么调成土黄色| av国产久精品久网站免费入址| 亚洲欧美中文字幕日韩二区| 成人二区视频| 新久久久久国产一级毛片| 少妇的逼水好多| 亚洲经典国产精华液单| 日韩av不卡免费在线播放| 男女下面进入的视频免费午夜| 高清av免费在线| 啦啦啦中文免费视频观看日本| 日韩欧美精品免费久久| 在线免费观看不下载黄p国产| 久久久久久人妻| 午夜免费观看性视频| 国产探花极品一区二区| 精品国产露脸久久av麻豆| 免费高清在线观看视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 国国产精品蜜臀av免费| av卡一久久| 最近的中文字幕免费完整| 久久精品国产亚洲av天美| 国产精品国产av在线观看| 久久国产精品大桥未久av | 欧美日韩一区二区视频在线观看视频在线| 1000部很黄的大片| 精品国产乱码久久久久久小说| 你懂的网址亚洲精品在线观看| 精品人妻偷拍中文字幕| 男女下面进入的视频免费午夜| 亚洲欧洲日产国产| 91久久精品国产一区二区成人| 国产精品一区www在线观看| 女的被弄到高潮叫床怎么办| 男人添女人高潮全过程视频| 黄色配什么色好看| 国产永久视频网站| 久久热精品热| 日日啪夜夜撸| 久久99蜜桃精品久久| av国产免费在线观看| 国产亚洲午夜精品一区二区久久| 91精品国产国语对白视频| 亚洲精品第二区| 欧美97在线视频| 国产av精品麻豆| 黄片wwwwww| 欧美日韩视频高清一区二区三区二| 最近的中文字幕免费完整| 夜夜爽夜夜爽视频| 欧美日韩一区二区视频在线观看视频在线| 99热国产这里只有精品6| 18禁在线播放成人免费| 欧美xxxx性猛交bbbb| 中文字幕久久专区| 高清午夜精品一区二区三区| 国产精品秋霞免费鲁丝片| 啦啦啦中文免费视频观看日本| a级毛色黄片| 久久久欧美国产精品| 国产爱豆传媒在线观看| 国产亚洲91精品色在线| 日本一二三区视频观看| 日日啪夜夜爽| .国产精品久久| 精品国产三级普通话版| av在线播放精品| 一级av片app| 91狼人影院| 久久99精品国语久久久| 伦理电影免费视频| 少妇人妻精品综合一区二区| 午夜免费观看性视频| 成人毛片a级毛片在线播放| 爱豆传媒免费全集在线观看| 欧美xxxx黑人xx丫x性爽| 内地一区二区视频在线| 色5月婷婷丁香| 亚洲av中文av极速乱| 国产精品爽爽va在线观看网站| 欧美极品一区二区三区四区| 精品少妇黑人巨大在线播放| 国产午夜精品久久久久久一区二区三区| 少妇的逼好多水| 欧美日韩国产mv在线观看视频 | 久久久亚洲精品成人影院| 有码 亚洲区| 国产片特级美女逼逼视频| 国产亚洲av片在线观看秒播厂| 成人免费观看视频高清| 哪个播放器可以免费观看大片| 久久青草综合色| 欧美极品一区二区三区四区| 成人高潮视频无遮挡免费网站| 亚洲成人中文字幕在线播放| 亚洲av电影在线观看一区二区三区| 在线免费观看不下载黄p国产| 国产精品麻豆人妻色哟哟久久| 免费观看在线日韩| 一本—道久久a久久精品蜜桃钙片| 欧美成人a在线观看| 精品亚洲乱码少妇综合久久| 99视频精品全部免费 在线| 一本—道久久a久久精品蜜桃钙片| 免费观看的影片在线观看| 一级爰片在线观看| 国产女主播在线喷水免费视频网站| 一级片'在线观看视频| 黄色视频在线播放观看不卡| 国产午夜精品一二区理论片| 午夜福利在线在线| 欧美性感艳星| 国产精品一二三区在线看| 人人妻人人爽人人添夜夜欢视频 | 尾随美女入室| 观看av在线不卡| 嫩草影院入口| 尤物成人国产欧美一区二区三区| 成人亚洲欧美一区二区av| 亚洲国产av新网站| 一区二区三区免费毛片| 免费黄频网站在线观看国产| 成年美女黄网站色视频大全免费 | 亚洲精品中文字幕在线视频 | 国产成人aa在线观看| 人人妻人人看人人澡| 久久99蜜桃精品久久| 久久97久久精品| 亚洲精品乱码久久久v下载方式| 欧美最新免费一区二区三区| 久久久久视频综合| 国产美女午夜福利| 欧美高清成人免费视频www| 免费人妻精品一区二区三区视频| 成人18禁高潮啪啪吃奶动态图 | 99国产精品免费福利视频| 精华霜和精华液先用哪个| 欧美zozozo另类| videos熟女内射| 日本黄大片高清| 免费av中文字幕在线| 国产视频内射| 日本黄色日本黄色录像| 国产伦精品一区二区三区视频9| 亚洲综合精品二区| 亚洲丝袜综合中文字幕| 自拍偷自拍亚洲精品老妇| 国产免费视频播放在线视频| 国产高清三级在线| 久久久亚洲精品成人影院| 亚洲欧美成人精品一区二区| 欧美日韩在线观看h| 99久久综合免费| 国产免费又黄又爽又色| 国产极品天堂在线| 啦啦啦视频在线资源免费观看| 老女人水多毛片| 亚洲精品乱码久久久久久按摩| 日本av手机在线免费观看| 又爽又黄a免费视频| 亚洲精品aⅴ在线观看| 深爱激情五月婷婷| 欧美成人午夜免费资源| 大话2 男鬼变身卡| 国产精品精品国产色婷婷| 高清毛片免费看| 1000部很黄的大片| 国产高清国产精品国产三级 | 亚洲精品乱码久久久久久按摩| 一级毛片久久久久久久久女| 久久精品国产a三级三级三级| 人妻夜夜爽99麻豆av| 青青草视频在线视频观看| 高清在线视频一区二区三区| 欧美精品人与动牲交sv欧美| 国产精品女同一区二区软件| 又爽又黄a免费视频| 午夜日本视频在线| 久久韩国三级中文字幕| 免费人成在线观看视频色| 中文欧美无线码| 丰满少妇做爰视频| 免费看不卡的av| 最黄视频免费看| 国产片特级美女逼逼视频| 国产探花极品一区二区| 亚洲一级一片aⅴ在线观看| 欧美xxxx性猛交bbbb| 亚洲中文av在线| 国产男女内射视频| 亚洲精品国产av蜜桃| 91久久精品电影网| 啦啦啦视频在线资源免费观看| 97超视频在线观看视频| 18禁裸乳无遮挡免费网站照片| 成年女人在线观看亚洲视频| 亚洲av成人精品一二三区| 色婷婷久久久亚洲欧美| 人人妻人人爽人人添夜夜欢视频 | 久久av网站| 久久久成人免费电影| 丝袜脚勾引网站| 国产一区二区三区综合在线观看 | 国产一区二区在线观看日韩| 我要看黄色一级片免费的| 欧美高清成人免费视频www| 99热国产这里只有精品6| 久久久久网色| 高清视频免费观看一区二区| 精品一区二区免费观看| 亚洲欧美一区二区三区国产| 岛国毛片在线播放| 亚洲精品色激情综合| 免费看av在线观看网站| 日本免费在线观看一区| 欧美性感艳星| 国产亚洲av片在线观看秒播厂| 亚洲精品日韩在线中文字幕| 亚洲高清免费不卡视频| 另类亚洲欧美激情| 99久久精品热视频| 最近的中文字幕免费完整| 女性生殖器流出的白浆| 有码 亚洲区| 成年av动漫网址| 亚洲精品自拍成人| 大片免费播放器 马上看| 久久这里有精品视频免费| 99热国产这里只有精品6| 熟女人妻精品中文字幕| 网址你懂的国产日韩在线| 丰满乱子伦码专区| 久久精品国产鲁丝片午夜精品| 日韩一本色道免费dvd| 嫩草影院入口| 亚洲精华国产精华液的使用体验| 久久久久久伊人网av| 欧美丝袜亚洲另类| 国产精品久久久久久久电影| 我要看日韩黄色一级片| 国产 一区 欧美 日韩| 亚洲精品日韩av片在线观看| 中文乱码字字幕精品一区二区三区| 九草在线视频观看| 一级毛片电影观看| 国产日韩欧美亚洲二区| 黄片无遮挡物在线观看| 成年人午夜在线观看视频| 人妻制服诱惑在线中文字幕| 免费久久久久久久精品成人欧美视频 | 三级国产精品欧美在线观看| 亚洲色图综合在线观看| 80岁老熟妇乱子伦牲交| 亚洲综合色惰| 亚洲精品456在线播放app| 男的添女的下面高潮视频| 王馨瑶露胸无遮挡在线观看| 91精品一卡2卡3卡4卡| 国产成人免费观看mmmm| 极品教师在线视频| 亚洲精品自拍成人| 高清欧美精品videossex| www.av在线官网国产| 91久久精品国产一区二区三区| av在线老鸭窝| 成人国产麻豆网| 久久精品久久久久久久性| 亚洲av日韩在线播放| 欧美成人一区二区免费高清观看| 亚洲,欧美,日韩| 亚洲欧洲日产国产| tube8黄色片| 少妇人妻 视频| 日本黄色片子视频| 久久精品人妻少妇| 国产精品熟女久久久久浪| xxx大片免费视频| 久久精品国产亚洲av天美| 成人黄色视频免费在线看| 人妻系列 视频| 日韩一本色道免费dvd| 五月天丁香电影| 免费观看在线日韩| 欧美日韩国产mv在线观看视频 | 王馨瑶露胸无遮挡在线观看| 人人妻人人澡人人爽人人夜夜| 国产成人免费无遮挡视频| 亚洲经典国产精华液单| 男男h啪啪无遮挡| 老司机影院毛片| 最后的刺客免费高清国语| 国产一区二区三区综合在线观看 | 国产精品久久久久久av不卡| www.av在线官网国产| 91在线精品国自产拍蜜月| 亚洲中文av在线| 免费观看无遮挡的男女| 人人妻人人澡人人爽人人夜夜| 插阴视频在线观看视频| 高清午夜精品一区二区三区| 热99国产精品久久久久久7| 精品国产一区二区三区久久久樱花 | 久久影院123| 久久av网站| 亚洲精品久久午夜乱码| 大香蕉久久网| 国模一区二区三区四区视频| 国产男女超爽视频在线观看| 国模一区二区三区四区视频| 99精国产麻豆久久婷婷| 亚洲四区av| 国产成人精品久久久久久| 我要看黄色一级片免费的| 高清黄色对白视频在线免费看 | 精品久久久精品久久久| 亚洲成人av在线免费| 亚洲综合精品二区| 亚洲第一区二区三区不卡| 热99国产精品久久久久久7| 日本黄大片高清| 最近的中文字幕免费完整| 久久久亚洲精品成人影院| 97精品久久久久久久久久精品| 久久久午夜欧美精品| 欧美3d第一页| 日本色播在线视频| 欧美极品一区二区三区四区| 又大又黄又爽视频免费| 女的被弄到高潮叫床怎么办| 另类亚洲欧美激情| 中国国产av一级| 少妇高潮的动态图| 好男人视频免费观看在线| 精品熟女少妇av免费看| 色婷婷久久久亚洲欧美| 身体一侧抽搐| 久久99热6这里只有精品| 久久精品国产自在天天线| 夜夜爽夜夜爽视频| 国产精品一区二区在线不卡| 亚洲国产日韩一区二区| 男男h啪啪无遮挡| 人体艺术视频欧美日本| 国产亚洲精品久久久com| 2022亚洲国产成人精品| 亚洲精品中文字幕在线视频 | 九草在线视频观看| 天天躁日日操中文字幕| 欧美区成人在线视频| 乱系列少妇在线播放| 欧美精品一区二区免费开放| 久久精品国产亚洲av天美| 亚洲一级一片aⅴ在线观看| 成年女人在线观看亚洲视频| 亚洲精品国产色婷婷电影| 国产毛片在线视频| 啦啦啦视频在线资源免费观看| 精品国产一区二区三区久久久樱花 |