• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Xitunaspis, a new eugaleaspid fish (Eugaleaspiformes,Galeaspida) from the Lower Devonian of Qujing, Yunnan

    2022-08-01 02:54:40SUNHaoRanGAIZhiKunCAIJiaChenLIQiangZHUMinZHAOWenJin
    古脊椎動物學報(中英文) 2022年3期

    SUN Hao-Ran GAI Zhi-Kun CAI Jia-Chen LI Qiang ZHU Min ZHAO Wen-Jin*

    (1 Institute of Geology and Geophysics, Chinese Academy of Sciences Beijing 100029)

    (2 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044)

    (3 University of Chinese Academy of Sciences Beijing 100049 * Corresponding author: zhaowenjin@ivpp.ac.cn)

    (4 CAS Center for Excellence in Life and Paleoenvironment Beijing 100044)

    (5 Research Center of Natural History and Culture, Qujing Normal University Qujing, Yunnan 655099)

    Abstract A new genus and species of the family Eugaleaspidae (Eugaleaspiformes, Galeaspida),Xitunaspis magnus gen. et sp. nov., is described from the Lower Devonian Xitun Formation in Qujing, Yunnan Province, China. The new genus displays the diagnostic characters of the Eugaleaspidae, including a slit-like median dorsal opening, no inner cornual process, developed median dorsal canals, and only three pairs of lateral transverse canals extending from lateral dorsal canals. Different from the other eugaleaspids, X. magnus possesses a large headshield with thick dermal bone and a more plesiomorphic sensory canal system. The phylogenetic analysis of the Galeaspida reveals that Xitunaspis clusters with Dunyu and Eugaleaspis to form a monophyletic clade Eugaleaspidae Liu, 1965, and has a closer relationship with Dunyu than Eugaleaspis by sharing the thick dermal bone of the headshield. The new finding represents the first convincing fossil record of the Eugaleaspiformes in the middle Lochkovian Xitun Formation and adds to our knowledge about the morphology of eugaleaspiforms and the evolutionary pattern of the sensory canal system in the Eugaleaspiformes and even Galeaspida.

    Key words Qujing, Yunnan; Early Devonian; Xitunaspis, Eugaleaspiformes; sensory canal system

    1 Introduction

    The Galeaspida is an extinct clade of armored jawless stem-gnathostomes, which to date is exclusively known from the Silurian and Devonian of China and Vietnam (Janvier,1996; Zhao, 2005; Zhu and Gai, 2006; Gai and Zhu, 2017). Except for some basal or earlydiverging taxa (Hanyangaspidae, Xiushuiaspidae, and Dayongaspidae), Galeaspida can be classified into three major monophyletic groups: Eugaleaspiformes, Polybrachiaspiformes,and Huananaspiformes (Zhu and Gai, 2006; Zhu et al., 2015). Recent fossil records show that the Eugaleaspiformes diverged from the basal galeaspids as early as the middle Telychian,Llandovery of Silurian (Liu et al., 2021), and survived to the Pragian of Early Devonian, in which the youngest eugaleaspiformsEugaleaspisandPterogonaspiswere known from the Xujiachong Formation in Qujing, Yunnan Province (Liu, 1975; Zhu, 1992).

    Abundant galeaspid fossils have been found from the Ludlow to Early Devonian strata in the Qujing area since the 1960s. The Early Devonian fish-bearing sequence includes the Xishancun, Xitun, Guijiatun, and Xujiachong formations in ascending order (Liu, 2002; Zhao and Zhu, 2010). The eugaleaspiformEugaleaspischangi, the huananaspiformNanpanaspis microculus, the polybranchiaspiformsPolybranchiaspisliaojiaoshanensis,Microhoplonaspis microthyris,Laxaspis qujingensis, and ‘Laxaspis rostrata’, in addition toHyperaspis acclivis(incerti ordinis, probably a polybranchiaspiform) were documented from the Xitun Formation in Qujing (Liu, 1965, 1975; Pan, 1992; Zhu et al., 2015). However, it is noteworthy thatE.changi,N. microculus,L. qujingensis, and ‘Laxaspis rostrata’, which were assumed to be from the Xitun Formation at a site of Liaokuoshan (formerly Liaojiaoshan) in their original description (Liu, 1965, 1975), were later corrected to be from the middle part of the Xishancun Formation together with the arthrodireSzelepis yunnanensis(Liu, 1979; Zhu et al., 2015).Therefore, there is still no convincing fossil record of the Eugaleaspiformes in the Xitun Formation. Here we describe the first eugaleaspiform from the Xitun Formation, which may add to our knowledge about the morphology and evolution of eugaleaspiforms and shed new light on the evolutionary pattern of the sensory canal system in galeaspids.

    2 Geological setting

    The specimens of the new taxon were collected from the grey-green marl in the lower part of the Xitun Formation near the Xitun village in Qujing City (Fig. 1A). The fish-bearing Xitun Formation, mainly dominated by variegated marls, siltstones, and shales intercalated with mudstones, was conformably in contact with the Xishancun Formation and was overlaid by the Guijiatun Formation (Cai et al., 1994; Zhao and Zhu, 2010) (Fig. 1B). Since 1960s, rich fossils of placoderms, sarcopterygians, actinopterygians, chondrichthyans, and galeaspids, constituting the famous Xitun Vertebrate Fauna, have been found in the Xitun Formation, which probably represents a foreshore-shallow water marine environment (Zhu,2000; Zhao and Zhu, 2010). The age of the Xitun Formation is middle-late Lochkovian based on the evidence from the associated spores, such asApiculiretusispora plicata,Streelispora newportensis,Stenozonotriletes pusillus,Breconisporites breconensis,Apiculatisporites microcanonus, andEmphanisporites neglectus(Cai et al., 1994; Zhu et al., 2000).

    Fig. 1 Map showing the fossil locality (A) and the fish-bearing lithological column (B) in Qujing Revised from Si et al., 2015; Meng et al., 2021

    3 Material and methods

    The new materials described herein include a nearly complete headshield (IVPP V 27400.1b, Fig. 2B) as well as its external mould (V 27400.1a, Fig. 2A) (holotype), and three incomplete headshields (V 27400.2-4, Figs. 2C, D; 3A). They are housed in the Institute of Vertebrate Paleontology and Paleoanthropology (IVPP), Chinese Academy of Sciences (CAS).The specimens were prepared mechanically using a vibro tool with a tungsten-carbide bit or needle and measured with a digital vernier calliper. They were studied under an Olympus SZ61 zoom stereo microscope. We chose the Canon EOS 5D Mark III camera coupled with a Canon macro photo lens EF 100 mm 1: 2.8L to photograph the general morphology and used a Canon macro photo lens MP-E 65 mm 1: 2.8 1-5× and Olympus SZ61 zoom stereo microscope for a close-up of the ornamentation. All fossils and data are accessible for examination in the collections of IVPP, CAS.

    The specimen V 27400.4 (Fig. 3A) was scanned at IVPP, Beijing, China using a 225 kV micro-CT (designed by the Institute of High Energy Physics, CAS). The specimen was scanned with a beam energy of 130 keV and a flux of 120 mA at a detector resolution of 42.34 μm per pixel, using a 360° rotation with a step size of 0.5° and an unfiltered aluminum reflection target. A total of 1560 transmission images were reconstructed by means of a twodimensional reconstruction software (IVPP 225KVCT Reconstruction) developed by the Institute of High Energy Physics, CAS. Three-dimensional reconstructions were then generated using Mimics (Materialize version 19.0), and images exported from Mimics were processed in Adobe Photoshop and Adobe Illustrator. We conducted the phylogenetic analysis within Galeaspida. The character data entry and formatting were performed with Mesquite (version 3.61) (Maddison and Maddison, 2019). The dataset was subjected to the parsimony analysis in TNT software package (Goloboff and Catalano, 2016). The analysis was conducted using a traditional search strategy, with default settings apart from 10000 maximum trees in memory and 1000 replications.

    4 Systematic paleontology

    Etymology FromXitun, in reference to the fossil site; andaspis(Gr.), meaning shield.

    Type speciesXitunaspis magnusgen. et sp. nov.

    Diagnosis A large-sized eugaleaspid fish with nearly semicircular headshield; rostral margin of headshield blunt; narrow leaf-shaped cornual process extending posterolaterally;inner cornual process absent; median dorsal opening longitudinal slit-like (length/width>6),extending posteriorly behind the level of the center of orbital openings and ending at the level of the posterior margin of orbital openings; orbital opening round, and dorsally positioned;typical eugaleaspid-type sensory canal system consisting of U-shaped median dorsal canals,posterior supraorbital canals, infraorbital canals, lateral dorsal canals, and three pairs of lateral transverse canals; ornamentation composed of large polygonal, flat-topping tubercles.

    Remarks The most obvious difference betweenXitunaspisand other eugaleaspids is shown in the distribution pattern of the sensory canal system. The vestige of the median transverse canal issuing from the median dorsal canal and a short central canal differentiate it from other eugaleaspids.Xitunaspisdiffers fromEugaleaspisin its larger headshield,the median dorsal opening ending at the level of the posterior margin of orbital opening,and the thicker dermal bones of the headshield.Xitunaspisdiffers fromDunyuin its width/length ratio of headshield being bigger than 1, the narrow leaf-shaped cornual processes extending posterolaterally, and the median dorsal opening ending at the level or in front of the posterior margin of orbital openings.Xitunaspisis distinguishable fromNochelaspisandYunnanogaleaspisby its polygonal flat-topping tubercles and the absence of paired inner cornual processes.

    Fig. 2 Photographs of Xitunaspis magnus gen. et sp. nov. from the Xitun Formation in QujingA, B. the external (A) and internal mould (B) of a nearly complete headshield, IVPP V 27400.1 (holotype);C, D. two incomplete headshields, V 27400.2 (C), V 27400.3 (D); E. close-up of the median dorsal opening of V 27400.3. A. in ventral view; B-E. in dorsal view; scale bars equal 10 mm Abbreviations: c. cornual process; ifc. infraorbital canal; md.o. median dorsal opening; orb. orbital opening;pi. pineal opening; ri. dermal ring encircling median dorsal opening;spi. spine-like ridge on the dermal ring of median dorsal opening

    Etymology Frommagnus(Latin), meaning large, in reference to the large-sized headshield.

    Holotype A nearly complete headshield and its external mould, IVPP V 27400.1a, b.

    Referred specimens Three incomplete headshields, IVPP V 27400.2-4.

    Locality and horizon Qujing, Yunnan, China; Xitun Formation, Lochkovian, Lower Devonian.

    Diagnosis The only known species, diagnosis as that of the genus.

    Measurements See Table 1.

    Description The holotype IVPP V 27400.1 (Fig. 2A, B) and referred specimens V 27400.2-4 (Figs. 2C, D; 3A) show thatX. magnusis a large-sized eugaleaspiform with a semicircular headshield. The measured data of five specimens demonstrate that the maximum length and width of the headshield are 103.4 and 146.0 mm, respectively (Table 1). The ratio of width/length of the headshield is about 1.4. The midline length of the headshield in the largest specimen is 85.0 mm (Table 1). The exoskeleton composed of galeaspidin is thicker than that of any known galeaspids. Its thickness is about 1.0 mm. In dorsal view, the headshield is gently convex to form a domed structure with its highest point at the middle of the posterior margin.The rostral margin is smooth and blunt.

    Fig. 3 Photographs of Xitunaspis magnus gen. et sp. nov. and its CT slices A. photograph of a nearly complete headshield V 27400.4; B. CT slice of V 27400.4, showing the sensory canal system; C. close-up of the pineal opening (box inset 1 of Fig. 3A);D. close-up of tubercles (box inset 2 of Fig. 3A); E. close-up of vascular plexus (box inset 3 of Fig. 3A);F. close-up of vascular plexus (box inset 4 of Fig. 3A);G. CT slice of V 27400.4, showing the middle region of the headshield A, C-F. in ventral view; B, G. in dorsal view; scale bars in A, B and G equal 10 mm, scale bars in C-F equal 1 mm For abbreviations see Fig. 2 plus cc. central canal; dcm. dorsal commissure; ldc. lateral dorsal canal;ltc. lateral transverse canal; mdc. median dorsal canal; soc1. anterior supraorbital canal;soc2. posterior supraorbital canal; v. mtc. vestige of median transverse canal

    The right cornual process is completely preserved in the holotype V 27400.1b (Fig. 2B).It is narrow leaf-shaped and about 27 mm long, extending posterolaterally.

    The median dorsal opening (md.o, Figs. 2A, B, D; 3A) is very long and longitudinally slit-like in shape with nearly parallel lateral margins. In the holotype, the long axis of the median dorsal opening is 34.2 mm and the short axis is 4.2 mm (Table 1), with the ratio between them being about 8.1. The median dorsal opening extends posteriorly and ends at the level or a little in front of the posterior margin of orbital openings. The median dorsal opening is encircled by a dermal ring-like structure, which bears anteriorly-tapering spine-like ridges along its medial surface (Fig. 2E).

    The orbital openings (Figs. 2A-D; 3A) are positioned dorsally on the headshield. They are nearly circular in shape and large, with a diameter of about 10.0 mm (Table 1). In the holotype, the distance between the two orbital openings reaches 44.0 mm (Table 1).

    The pineal opening is preserved in the holotype V 27400.1b (Fig. 2B) and the referred specimen V 27400.4 (Fig. 3A, C). It is located in the midline of the headshield just behind the level of the posterior margin of the orbital openings. The pineal opening is large and nearly round. The long and short axes of the pineal opening are about 3 and 2.5 mm, respectively. The length of the pre-pineal region is about 50.0 and the length of the post-pineal region is about 34.1 mm (Table 1).

    Table 1 Measurements of Xitunaspis magnus gen. et sp. nov. from Qujing (mm)

    We restore the sensory canal system, which is of the typical eugaleaspid-type, mainly based on the CT slices and 3D reconstruction of the referred specimen V 27400.4 (Figs. 3B, G;4A). The identified sensory canal system ofX. magnusincludes anterior supraorbital canals,posterior supraorbital canals, infraorbital canals, median dorsal canals, lateral dorsal canals,lateral transverse canals, dorsal commissure, and a central canal (Figs. 3B, G; 4A, B). The anterior supraorbital canals are disconnected with the posterior supraorbital canals (Figs. 3B,4A). The paired median dorsal canals are nearly parallel. Their anterior ends join smoothly with two posterior supraorbital canals at the level of the pineal organ, while their posterior ends converge with the dorsal commissure forming a U-shape (Figs. 3B, G; 4A, B). The infraorbital canals connect smoothly with the lateral dorsal canals, positioned lateral to the orbital opening(Figs. 2C, D; 3B). Three pairs of lateral transverse canals, extending from the lateral dorsal canals in either side of the headshield, are visible in the holotype V 27400.1b (Fig. 2B), CT slices, and 3D reconstruction of the specimen V 27400.4 (Figs. 3B; 4A). Among the three pairs of lateral transverse canals, the first is the shortest and extends anterior-laterally same as the second, while the third is the longest and extends posterior-laterally. The dorsal commissure connects the median dorsal canals and lateral dorsal canals, and extends to the second lateral transverse canals (Figs. 3B, G; 4A, B). A short central canal issues from the dorsal commissure(Figs. 3B, G; 4A, B), as inChangxingaspisguiandSinogaleaspis shankouensis(Gai et al.,2020). The vestiges of median transverse canals, distinct in the CT slices and 3D reconstruction of the referred specimen V 27400.4 (Figs. 3B, G; 4A), are positioned at the level between the first lateral transverse canals and the second lateral transverse canals.

    The subcutaneous vascular plexus, well-developed at the boundary between the exo- and endo-skeletons, is composed of lots of irregular vascular canals (Figs. 2A; 3A, E, F).

    The lateral margin of the headshield is smooth and the surface of the headshield is ornamented with large polygonal, flat-topping tubercles. LikeEugaleaspischangi, the tubercles on the margin of the headshield (about 4 tubercles per square millimeter) are slightly smaller than those on the center (about 3 tubercles per square millimeter) (Figs. 2B-D; 3A, B,G; 4A, B).

    Fig. 4 Reconstruction of Xitunaspis magnus gen. et sp. nov. in dorsal view A. 3D reconstruction of IVPP V 27400.4 based on Micro-CT scanning;B. restoration of the headshield by Feng Mingjuan; C. life restoration by Shi Aijuan; scale bars equal 10 mm For abbreviations see Figs. 2-3

    5 Phylogenetic analysis and results

    To explore the phylogenetic position ofXitunaspis magnusgen. et sp. nov. within Galeaspida, we conducted an extended phylogenetic analysis based on the known datasets(Gai et al., 2005, 2018; Zhu and Gai, 2006; Shan et al., 2020; Jiang et al., 2021; Meng and Gai,2021), with the addition of three new characters.

    [64] Central canal: (0) absent, (1) present.

    [65] Dermal bone of headshield: (0) no less than 1 mm in thickness, (1) less than 1 mm in thickness.

    [66] Vestige of median transverse canal: (0) absent, (1) present.

    The data entry and formatting were performed using Mesquite version 3.61 (Maddison and Maddison, 2019), and the dataset was subjected to the maximum parsimony analysis in TNT software package (Goloboff and Catalano, 2016). The analyses were conducted using a traditional search strategy, with default settings apart from the following: 10000 maximum trees in memory and 1000 replications. Bremer support values were generated in TNT by applying the ‘New Traditional Search’ using TBR and collecting suboptimal topologies with 1000 replicates. Bootstrap values were generated in TNT using 1000 replicates (Qiao et al.,2016). All characters were also treated as unordered and weighted equally, as in the earlier versions of this dataset (Shan et al., 2020; Jiang et al., 2021; Meng and Gai, 2021). The phylogenetic analysis included 48 galeaspid genera as ingroup taxa. The basal osteostracan genusAteleaspiswas selected as the outgroup for the phylogenetic analysis because Osteostraci is a sister taxon to Galeaspida (Fig. 5) andAteleaspisis regarded as the ancestral taxon of osteostracans (Sansom, 2009; Meng and Gai, 2021).

    Fig. 5 Strict consensus tree of the two most parsimonious trees and cladistically-based classification of the basal galeaspids and Eugaleaspiformes The clade Polybranchiaspidida is simplified and same as that in Shan et al., 2020. Tree length = 198,consistency index (CI) = 0.4192, retention index (RI) = 0.7609, numbers on branches denote bootstrap frequencies (above node) and Bremer support values (below node),bootstrap frequencies below 50 are not shown

    The phylogenetic analysis yielded a strict consensus tree of two equally mostparsimonious trees (Fig. 5) with a tree length of 198, the consistency index (CI) of 0.4192, and the retention index (RI) of 0.7609.

    6 Discussion and conclusion

    6.1 Taxonomic implicatio n

    Xitunaspis magnusgen. et sp. nov. exhibits the diagnostic characters of the Eugaleaspidae,including a nearly semicircular headshield, a long and longitudinally slit-like median dorsal opening, absence of the paired inner cornual processes, and a typical eugaleaspid-type sensory canal system with three pairs of lateral transverse canals. Our phylogenetic analysis indicates thatXitunaspis,Dunyu, andEugaleaspiscluster together to form the monophyletic clade Eugaleaspidae Liu, 1965 defined by the synapomorphies such as the semicircular headshield and the absence of paired inner cornual processes, whereasFalxcornus,Tridensaspis, andPterogonaspiscluster together to form another monophyletic group, the family Tridensaspidae Liu S F, 1986 (Fig. 5). Within the Eugaleaspidae,Xitunaspishas a closer relationship withDunyuthanEugaleaspisbecause they share the thick dermal bone of the headshield.

    The Eugaleaspiformes mainly consists of the families Shuyuidae, Sinogaleaspidae,Tridenaspidae, and Eugaleaspidae (Zhu et al., 2015; Shan et al., 2020).YunnanogaleaspisandNochelaspiswere consistently resolved as a paraphyletic array between the Sinogaleaspidae and Tridensaspidae plus Eugaleaspidae. They were removed from the Eugaleaspidae to keep the stability of Eugaleaspidae (Shan et al., 2020; Meng and Gai, 2021) (Fig. 5). The finding ofX. magnusand its phylogenetic result corroborate the previous analyses. The emended Eugaleaspidae still represents the most diversified clade of Eugaleaspiformes. It now includes six species of three genera, among which the two species ofDunyufrom the Ludlow (Silurian)of Yunnan and Chongqing (Liu, 1983; Zhu et al, 2012, Gai and Zhu, 2017) represent the earliest revival of Eugaleaspiformes from the Wenlock extinction of the Sinogaleaspidae. The Eugaleaspidae survived to the Pragian of Early Devonian. The youngest eugaleaspiform fish,Eugaleaspisxujiachongensis, was documented in the upper part of the Xujiachong Formation in Qujing, Yunnan Province (Liu, 1975). Therefore, the Eugaleaspidae also represents the longest lasting family of Eugaleaspiformes extending from the Ludlow (~427 million years ago) to the Pragian (~407 million years ago).X. magnus, representing the first convincing fossil record of Eugaleaspiformes in the middle Lochkovian Xitun Formation, bridged the gap of Eugaleaspiformes between the early Lochkovian Xishancun Formation and the Pragian Xujiachong Formation.

    6.2 The evolutionary pattern of sensory canal system in galeaspids

    The sensory canal system of Galeaspida, also named the lateral line system,is a system of sense organs that serves to detect movements, vibration, and pressure gradients in the surrounding water (Shan et al., 2020). It usually exhibits a grid pattern consisting of two pairs of longitudinal canals and a varied number of transverse canals, and has an evolutionary trend from complex to simple pattern (Liu Y H, 1986; Zhu et al., 2015). The anterior supraorbital canals, posterior supraorbital canals, median dorsal canals, infraorbital canals, and lateral dorsal canals belong to the longitudinal canals, while the lateral transverse canals, dorsal commissure, and median transverse canals can be referred to the transverse canals (Liu Y H, 1986). In general, the number, placement, and branching pattern of the sensory canals in galeaspids varies significantly among different groups (Liu Y H, 1986; Shan et al., 2020).There are three evolutionary patterns of sensory canal system shown in galeaspids, i.e., the hanyangaspid-type pattern (first named here) with two median transverse canals and more lateral transverse canals issuing from the infraorbital canals and undeveloped supraorbital canals as in the basal galeaspids (Fig. 6A, B), the eugaleaspid-type pattern characterized by U-shaped median dorsal canals as in Eugaleaspiformes (Fig. 6C-J), and the polybranchiaspidtype pattern featured by V-shaped posterior supraorbital canal with one median transverse canal (dorsal commissures) as in Polybranchiaspiformes and Huananaspiformes (Fig. 6K-L)(Liu Y H, 1986; Shan et al., 2020).

    In the plesiomorphic galeaspid taxa, such asHanyangaspis,Changxingaspis, andDayongaspis, the transverse canals are very developed and the longitudinal canals are reduced,which should be plesiomorphic in the sensory canal pattern of Galeaspida. The transverse canals ofHanyangaspisinclude seven or eight pairs of lateral transverse canals and two pairs of median transverse canals (the second pair is equal to the dorsal commissure) (Fig. 6A). Nine pairs of lateral transverse canals and two pairs of median transverse canals can be observed in the headshield ofChangxingaspis(Fig. 6B).

    Compared with the basal galeaspids, the transverse and longitudinal sensory canals within Eugaleaspiformes are developed on the dorsal side of headshield and generally show a trend of the reduction of the transverse canals and the increase of the longitudinal canals except for in several genera of the families Shuyuidae and Sinogaleaspidae (Fig. 6C-J). The longitudinal U-shaped medial dorsal canal, which is usually regarded as a derived character in Eugaleaspiformes, is well developed in the families Sinogaleaspidae, Eugaleaspidae, and Tridenaspidae as well as inNochelaspis(Fig. 6C-J). However, more than one of the median transverse canals are regarded as a primitive character found in the basal galeaspids as well as in the family Sinogaleaspidae (Shan et al., 2020). Therefore, the sensory canal system of the families Shuyuidae (without the medial dorsal canal) and Sinogaleaspidae (with three pairs of the median transverse canals) should represent a plesiomorphic condition of the Eugaleaspiformes. The sensory canal system of the families Eugaleaspidae and Tridenaspidae with the developed medial dorsal canals and a dorsal commissure, i.e., the typical eugaleaspidtype sensory canal system, may represent an apomorphic condition of the Eugaleaspiformes.One pair of vestiges of the median transverse canals can be observed inXitunaspis, which may be the result of the incomplete degradation of the first paired median transverse canals.The finding of the new eugaleaspiformXitunaspis magnusprovides new evidence for the evolutionary pattern of sensory canals in galeaspids.

    Fig. 6 The sensory canal system of galeaspids in different groups (revised from Shan et al., 2020)A, B. plesiomorphic taxa: A. Hanyangaspis guodingshanensis (P’an et al., 1975; Pan, 1986);B. Changxingaspis gui (Wang, 1991); C-J. Eugaleaspiformes: C. Meishanaspis lehmani (Gai et al., 2005);D. Rumporostralis xikengensis (Shan et al., 2020); E. Nochelaspis maeandrine (Zhu, 1992);F. Dunyu longiforus (Zhu et al., 2012); G. Xitunaspis magnus;H. Eugaleaspis changi (Liu, 1965); I. E. xujiachongensis (Liu, 1975); J. Pterogonaspis yuhaii (Zhu, 1992);K. Polybranchiaspiformes: Polybranchiaspis liaojiaoshanensis (Liu, 1975);L. Huananaspiformes: Sanchaspis magalarostrata (Pan and Wang, 1981). Scale bars equal 10 mm Abbreviations: 1-6. the first to sixth lateral transverse canal or median transverse canal issuing from lateral dorsal canal; a-c. the first to third lateral transverse canal issuing from the infraorbital canal;ic. inner cornual process; mtc. median transverse canal; nc.p. pore for passage of the neural canal;pb.w. postbranchial wall; poc. preorbital commissure; ro. rostral process;v.mdc. vestige of median dorsal canal; other abbreviations see Figs. 2-3

    The sensory canal system in Polybranchiaspiformes and Huananaspiformes exhibits another evolutionary pattern, i.e., the polybranchiaspid-type pattern without the median dorsal canals (Liu Y H, 1986). The typical polybranchiaspid-type sensory canal system is characterized by the longitudinal V-shaped supraorbital canals and a transverse dorsal commissure, together with the transverse lateral transverse canals and the longitudinal canals(mainly including the infraorbital canals and lateral dorsal canals). In general, the sensory canal number of the typical polybranchiaspid-type is between that of the typical eugaleaspidtype and hanyangaspid-type. For example, there are four pairs of the lateral transverse canals inPolybranchiaspisand five pairs inSanchaspis, in addition to the developed longitudinal V-shaped supraorbital canals (Fig, 6K, L). Compared with the hanyangaspid-type, the sensory canal system of the polybranchiaspid-type still displays a trend of the reduction of the transverse canals and the increase of the longitudinal canals, although its median dorsal canal is not developed. The developed V-shaped posterior supraorbital canal is regarded as a derived character only found in both Polybranchiaspiformes and Huananaspiformes (Shan et al., 2020),while the absence of the median dorsal canal probably represents a plesiomorphic condition of the basal galeaspids.

    In summary, the evolutionary patterns of the sensory canal system within the endemic Galeaspida can mainly be exhibited by the evolution and replacement among the hanyangaspid-type, the eugaleaspid-type, and the polybranchiaspid-type patterns. The latter two patterns evolved from the former, then developed independently. The findings of the oldest known eugaleaspiforms and polybranchiaspiforms in Llandovery of Silurian indicate the split among three patterns of the sensory canal system had been accomplished by the end of the early Silurian (Liu Y H, 1986; Zhu et al., 2015; Gai et al., 2018). The trend towards simplification, together with the reduction of the transverse canals and the increase of the longitudinal canals, can be observed in the evolution history of galeaspids. The sensory canal system of plesiomorphic galeaspids has a grid distribution, but we are still not very clear about the process from the grid distribution of the primitive sensory canal system to the more simplified sensory canal system in the later period.

    AcknowledgementsWe are grateful to Cui Xindong and Peng Lijian for their fieldwork, Lu Xiufen for the specimen preparation, Hou Yemao for the computed tomography scanning and rendering, Feng Mingjuan for illustration (Fig. 4B), and Shi Aijuan for the life restoration (Fig. 4C).We would also like to thank two anonymous reviewers for their constructive comments on the manuscript. This work was supported by the Strategic Priority Research Program of CAS(XDB26000000), the National Natural Science Foundation of China (41972006, 42072026),Key Research Program of Frontier Sciences, CAS (QYZDB-SSW-DQC040), and the National Program for Support of Topnotch Young Professionals.

    滇東曲靖地區(qū)早泥盆世真盔甲魚科一新屬種

    孫浩然1,2,3蓋志琨2,3,4蔡家琛2,3,4李 強5朱 敏2,3,4趙文金2,3,4

    (1 中國科學院地質與地球物理研究所 北京 100029)
    (2 中國科學院古脊椎動物與古人類研究所,中國科學院脊椎動物演化與人類起源重點實驗室 北京 100044)
    (3 中國科學院大學 北京 100049)
    (4 中國科學院生物演化與環(huán)境卓越創(chuàng)新中心 北京 100044)
    (5 曲靖師范學院自然歷史文化研究中心 云南曲靖 655099)

    摘要:記述了采自云南曲靖下泥盆統(tǒng)西屯組中的真盔甲魚科一新屬種——碩大西屯魚(Xitunaspis magnusgen. et sp. nov.)。新屬具有真盔甲魚科的典型特征,包括一個縱長裂隙狀的中背孔、沒有內角、發(fā)達的中背管以及只有3對從側背管上伸出的側橫管等,但其具有大而厚的頭甲以及更原始的感覺管系統(tǒng)等特征明顯區(qū)別于其他真盔甲魚類。系統(tǒng)發(fā)育分析表明,西屯魚屬(Xitunaspis)與盾魚屬 (Dunyu)和真盔甲魚屬(Eugaleaspis)共同組成一個單系類群——真盔甲魚科支系(Eugaleaspidae Liu, 1965), 并且三者之間西屯魚與盾魚的親緣關系更為密切。作為曲靖地區(qū)下泥盆統(tǒng)西屯組中確鑿的真盔甲魚類化石記錄,西屯魚的發(fā)現(xiàn)加深了對真盔甲魚類形態(tài)學及真盔甲魚目乃至盔甲魚亞綱中感覺管系統(tǒng)演化的認知。

    關鍵詞:云南曲靖;早泥盆世;真盔甲魚類,西屯魚;感覺管系統(tǒng)

    中圖法分類號:Q915.861文獻標識碼:A文章編號:2096-9899(2022)03-0169-15

    日本熟妇午夜| 不卡一级毛片| 日本五十路高清| 精品人妻1区二区| 床上黄色一级片| 99久久无色码亚洲精品果冻| 91麻豆av在线| 国内精品一区二区在线观看| 男人舔女人下体高潮全视频| a级毛片在线看网站| 久久久久国产一级毛片高清牌| 特大巨黑吊av在线直播| 最新美女视频免费是黄的| 国产精品国产高清国产av| 久久久久亚洲av毛片大全| 久久精品夜夜夜夜夜久久蜜豆 | 国产成人一区二区三区免费视频网站| 精品国内亚洲2022精品成人| 悠悠久久av| 久久精品国产亚洲av香蕉五月| 制服丝袜大香蕉在线| x7x7x7水蜜桃| 精品一区二区三区av网在线观看| 日韩国内少妇激情av| 国产三级中文精品| 久久久国产精品麻豆| 精品熟女少妇八av免费久了| 在线播放国产精品三级| 国产99久久九九免费精品| 国产精品亚洲美女久久久| 天天躁夜夜躁狠狠躁躁| 国产精品日韩av在线免费观看| 制服诱惑二区| 亚洲欧美激情综合另类| 国产精品电影一区二区三区| 白带黄色成豆腐渣| 久久天堂一区二区三区四区| 欧美黑人巨大hd| 亚洲成a人片在线一区二区| 国产高清videossex| 成人高潮视频无遮挡免费网站| 99国产极品粉嫩在线观看| or卡值多少钱| 久久精品国产99精品国产亚洲性色| 国产精品电影一区二区三区| 少妇熟女aⅴ在线视频| 久久香蕉精品热| 精华霜和精华液先用哪个| 一个人免费在线观看的高清视频| 国产97色在线日韩免费| 国产伦在线观看视频一区| 亚洲精品在线观看二区| 香蕉av资源在线| 一个人免费在线观看电影 | 欧美黄色淫秽网站| 欧美高清成人免费视频www| 黑人巨大精品欧美一区二区mp4| 午夜影院日韩av| 国产精品精品国产色婷婷| 好男人在线观看高清免费视频| 可以免费在线观看a视频的电影网站| 91大片在线观看| 国产精品乱码一区二三区的特点| 午夜福利高清视频| 床上黄色一级片| 在线观看日韩欧美| 国产亚洲精品一区二区www| 亚洲精品一区av在线观看| 天天添夜夜摸| 性欧美人与动物交配| 欧美日韩国产亚洲二区| 草草在线视频免费看| 国产精品 国内视频| 亚洲精品国产一区二区精华液| 日日摸夜夜添夜夜添小说| av福利片在线观看| 99精品欧美一区二区三区四区| 叶爱在线成人免费视频播放| 欧美黑人巨大hd| 国产成人欧美在线观看| av免费在线观看网站| 久久精品国产清高在天天线| 在线观看日韩欧美| 亚洲欧美日韩东京热| 午夜福利欧美成人| 给我免费播放毛片高清在线观看| 久久久久久久久中文| 最好的美女福利视频网| 啪啪无遮挡十八禁网站| 在线播放国产精品三级| 亚洲专区中文字幕在线| а√天堂www在线а√下载| 特大巨黑吊av在线直播| 999久久久精品免费观看国产| 老汉色av国产亚洲站长工具| 国产精华一区二区三区| 高清在线国产一区| av免费在线观看网站| 国产野战对白在线观看| 欧美性猛交黑人性爽| 两性夫妻黄色片| 日本一本二区三区精品| 99国产极品粉嫩在线观看| 91av网站免费观看| 熟女少妇亚洲综合色aaa.| 正在播放国产对白刺激| 在线国产一区二区在线| 久久久久久免费高清国产稀缺| 午夜视频精品福利| 18禁黄网站禁片午夜丰满| 亚洲中文av在线| 一夜夜www| 午夜福利视频1000在线观看| 人妻久久中文字幕网| 精品国内亚洲2022精品成人| 亚洲欧美日韩东京热| 国产一级毛片七仙女欲春2| 美女午夜性视频免费| 床上黄色一级片| 亚洲精品久久国产高清桃花| 免费看日本二区| 波多野结衣巨乳人妻| 亚洲熟女毛片儿| 97人妻精品一区二区三区麻豆| 久久香蕉国产精品| 国产成人影院久久av| 校园春色视频在线观看| 欧美日韩国产亚洲二区| 午夜免费成人在线视频| 长腿黑丝高跟| 日本一二三区视频观看| 色尼玛亚洲综合影院| 国产伦一二天堂av在线观看| 啦啦啦免费观看视频1| 免费观看人在逋| 夜夜夜夜夜久久久久| 国产精品国产高清国产av| 免费电影在线观看免费观看| 久久久精品国产亚洲av高清涩受| 欧美日韩瑟瑟在线播放| 女生性感内裤真人,穿戴方法视频| 欧美中文综合在线视频| 久久精品91蜜桃| 一二三四社区在线视频社区8| 欧美在线一区亚洲| 成人18禁高潮啪啪吃奶动态图| 每晚都被弄得嗷嗷叫到高潮| 亚洲九九香蕉| 男女那种视频在线观看| 日韩成人在线观看一区二区三区| 成人手机av| 一区二区三区国产精品乱码| 日韩欧美一区二区三区在线观看| 欧美日韩一级在线毛片| 午夜激情av网站| 久久精品影院6| 中文字幕精品亚洲无线码一区| 日日夜夜操网爽| 国产精品综合久久久久久久免费| 舔av片在线| 日本三级黄在线观看| 国产一区二区三区视频了| 舔av片在线| 法律面前人人平等表现在哪些方面| 999久久久精品免费观看国产| 久久久精品欧美日韩精品| 老司机福利观看| 国产精品久久久久久久电影 | 97碰自拍视频| 一个人观看的视频www高清免费观看 | 欧美黑人巨大hd| 脱女人内裤的视频| 男人舔女人下体高潮全视频| 亚洲欧美日韩高清专用| 手机成人av网站| 亚洲熟妇中文字幕五十中出| 老司机午夜十八禁免费视频| 成人高潮视频无遮挡免费网站| 少妇人妻一区二区三区视频| 51午夜福利影视在线观看| 级片在线观看| 亚洲欧美日韩无卡精品| 国产精品久久久久久人妻精品电影| 99久久综合精品五月天人人| 欧美日韩黄片免| 久久中文字幕人妻熟女| 啦啦啦韩国在线观看视频| 国产精品久久久av美女十八| 一级作爱视频免费观看| 精品不卡国产一区二区三区| 一个人免费在线观看的高清视频| 美女 人体艺术 gogo| 韩国av一区二区三区四区| 国产精品久久久久久精品电影| 午夜精品久久久久久毛片777| 欧美 亚洲 国产 日韩一| 宅男免费午夜| 亚洲欧美激情综合另类| 国产精品亚洲美女久久久| 99久久精品热视频| 国产单亲对白刺激| 国产午夜福利久久久久久| 精品国产美女av久久久久小说| 99国产精品一区二区蜜桃av| 欧美中文综合在线视频| 亚洲成av人片在线播放无| 好男人在线观看高清免费视频| 亚洲欧美精品综合久久99| 国产亚洲精品一区二区www| 每晚都被弄得嗷嗷叫到高潮| 久久精品国产亚洲av香蕉五月| 99精品欧美一区二区三区四区| 午夜亚洲福利在线播放| 亚洲免费av在线视频| 一本综合久久免费| 亚洲欧美日韩无卡精品| 亚洲av第一区精品v没综合| 少妇的丰满在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 男女下面进入的视频免费午夜| 日韩av在线大香蕉| 欧美另类亚洲清纯唯美| 婷婷亚洲欧美| 少妇被粗大的猛进出69影院| 免费搜索国产男女视频| 中文在线观看免费www的网站 | 久久久久性生活片| 色哟哟哟哟哟哟| 岛国在线免费视频观看| 亚洲av成人一区二区三| 99在线人妻在线中文字幕| 成熟少妇高潮喷水视频| 亚洲乱码一区二区免费版| 日本 欧美在线| 久久人妻av系列| 变态另类成人亚洲欧美熟女| 亚洲精品久久成人aⅴ小说| 久久中文字幕一级| 久久草成人影院| 亚洲色图 男人天堂 中文字幕| 国产精品国产高清国产av| 免费看a级黄色片| 国产高清视频在线观看网站| 亚洲av电影不卡..在线观看| 国产野战对白在线观看| 久久性视频一级片| 成年版毛片免费区| 免费观看人在逋| 啦啦啦韩国在线观看视频| 亚洲片人在线观看| 欧美中文日本在线观看视频| 人人妻,人人澡人人爽秒播| 这个男人来自地球电影免费观看| 特级一级黄色大片| 成在线人永久免费视频| 国产99久久九九免费精品| 国产av一区二区精品久久| 国产97色在线日韩免费| 小说图片视频综合网站| 国产蜜桃级精品一区二区三区| 中国美女看黄片| 日日摸夜夜添夜夜添小说| 色综合亚洲欧美另类图片| 女人被狂操c到高潮| ponron亚洲| 日韩大码丰满熟妇| 国产精品99久久99久久久不卡| 99国产综合亚洲精品| 国产99久久九九免费精品| 丰满的人妻完整版| 亚洲男人的天堂狠狠| 波多野结衣高清无吗| 91国产中文字幕| 欧美激情久久久久久爽电影| 黄频高清免费视频| 成人精品一区二区免费| 国产亚洲欧美在线一区二区| 亚洲天堂国产精品一区在线| 久久精品91蜜桃| 琪琪午夜伦伦电影理论片6080| 成熟少妇高潮喷水视频| 精华霜和精华液先用哪个| 欧美日韩福利视频一区二区| 亚洲精品在线美女| 黄片大片在线免费观看| 欧美成人午夜精品| a在线观看视频网站| 激情在线观看视频在线高清| а√天堂www在线а√下载| 9191精品国产免费久久| 91成年电影在线观看| 淫妇啪啪啪对白视频| 亚洲成人中文字幕在线播放| 久久久久国内视频| 欧美性长视频在线观看| 久久久精品欧美日韩精品| 亚洲 欧美一区二区三区| 他把我摸到了高潮在线观看| 校园春色视频在线观看| 99re在线观看精品视频| 色av中文字幕| 国产精品香港三级国产av潘金莲| 欧美日韩亚洲国产一区二区在线观看| 亚洲国产精品sss在线观看| 欧美人与性动交α欧美精品济南到| 不卡av一区二区三区| 露出奶头的视频| 可以在线观看毛片的网站| 午夜免费观看网址| 日本三级黄在线观看| 欧美日本亚洲视频在线播放| 亚洲人成伊人成综合网2020| 精品国产超薄肉色丝袜足j| 最近最新中文字幕大全免费视频| 久久久久免费精品人妻一区二区| 亚洲美女视频黄频| 亚洲成人久久爱视频| 欧美日韩国产亚洲二区| 丰满的人妻完整版| 老司机午夜福利在线观看视频| 日韩欧美 国产精品| 亚洲五月天丁香| 窝窝影院91人妻| 色噜噜av男人的天堂激情| 国产成人欧美在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 国产精华一区二区三区| 亚洲欧美日韩东京热| 叶爱在线成人免费视频播放| 色综合婷婷激情| 国产三级黄色录像| 欧美最黄视频在线播放免费| 亚洲国产欧美人成| 精品高清国产在线一区| 听说在线观看完整版免费高清| 中文字幕高清在线视频| 麻豆国产97在线/欧美 | 欧美日韩瑟瑟在线播放| 精品久久久久久久毛片微露脸| 国产又黄又爽又无遮挡在线| 美女大奶头视频| 99精品久久久久人妻精品| 国产精品 欧美亚洲| 成人av一区二区三区在线看| 国产成人aa在线观看| 老司机在亚洲福利影院| 性色av乱码一区二区三区2| 91九色精品人成在线观看| 欧美性猛交黑人性爽| 国内久久婷婷六月综合欲色啪| 国产三级在线视频| 免费看日本二区| 成人三级黄色视频| 久久久久久亚洲精品国产蜜桃av| 日韩欧美精品v在线| 精品一区二区三区四区五区乱码| www.自偷自拍.com| 夜夜夜夜夜久久久久| 人人妻人人澡欧美一区二区| 国产69精品久久久久777片 | 69av精品久久久久久| www日本在线高清视频| 欧美日韩乱码在线| 亚洲av中文字字幕乱码综合| 免费av毛片视频| 欧美一级毛片孕妇| 亚洲av成人不卡在线观看播放网| 一级作爱视频免费观看| 免费无遮挡裸体视频| 99国产综合亚洲精品| 久久 成人 亚洲| 国产欧美日韩一区二区三| 亚洲精品国产一区二区精华液| 男人舔女人下体高潮全视频| 国产高清videossex| 1024香蕉在线观看| 老司机福利观看| 99国产极品粉嫩在线观看| 亚洲人成伊人成综合网2020| 女人高潮潮喷娇喘18禁视频| 欧美一级毛片孕妇| 国产av一区二区精品久久| 高清在线国产一区| av欧美777| x7x7x7水蜜桃| 麻豆成人av在线观看| 免费观看人在逋| 色综合婷婷激情| 日韩三级视频一区二区三区| 亚洲国产精品久久男人天堂| 亚洲美女黄片视频| 日韩有码中文字幕| 精品电影一区二区在线| 免费在线观看成人毛片| 日韩欧美精品v在线| 精品午夜福利视频在线观看一区| 久久99热这里只有精品18| 首页视频小说图片口味搜索| 大型黄色视频在线免费观看| 国产亚洲av嫩草精品影院| 亚洲成人免费电影在线观看| 国产av又大| 国内少妇人妻偷人精品xxx网站 | 久久伊人香网站| 亚洲国产看品久久| 很黄的视频免费| 久久久久久人人人人人| 高清毛片免费观看视频网站| 91在线观看av| 他把我摸到了高潮在线观看| av片东京热男人的天堂| 一区二区三区激情视频| 欧美日韩亚洲综合一区二区三区_| 伦理电影免费视频| 久久精品成人免费网站| 真人做人爱边吃奶动态| 88av欧美| 国产av一区在线观看免费| 国产精品影院久久| 真人一进一出gif抽搐免费| 国产精品亚洲一级av第二区| 51午夜福利影视在线观看| 国产1区2区3区精品| 十八禁网站免费在线| 人妻久久中文字幕网| 欧美+亚洲+日韩+国产| 青草久久国产| 麻豆成人av在线观看| 亚洲一码二码三码区别大吗| 成人永久免费在线观看视频| 亚洲性夜色夜夜综合| 男男h啪啪无遮挡| 亚洲av美国av| 久久伊人香网站| 国产高清视频在线播放一区| 久久久久国内视频| 免费无遮挡裸体视频| 国内毛片毛片毛片毛片毛片| 久久久久久久久中文| 免费高清视频大片| 久久热在线av| 国产蜜桃级精品一区二区三区| 全区人妻精品视频| 一a级毛片在线观看| 欧美黄色淫秽网站| 好男人电影高清在线观看| 久久亚洲真实| 欧美日韩国产亚洲二区| a级毛片a级免费在线| 啦啦啦韩国在线观看视频| 国产av不卡久久| 黄色丝袜av网址大全| 少妇人妻一区二区三区视频| 91国产中文字幕| 成人国产综合亚洲| 黄色视频,在线免费观看| 中文字幕av在线有码专区| 宅男免费午夜| 国产片内射在线| 少妇人妻一区二区三区视频| 操出白浆在线播放| 999久久久精品免费观看国产| 国产精品 国内视频| 激情在线观看视频在线高清| 我要搜黄色片| 久久久久久久久中文| 国产精品九九99| 夜夜躁狠狠躁天天躁| 草草在线视频免费看| 免费看十八禁软件| 婷婷精品国产亚洲av| 国内毛片毛片毛片毛片毛片| 99国产精品99久久久久| 亚洲无线在线观看| 国产1区2区3区精品| 天堂√8在线中文| 亚洲在线自拍视频| www.999成人在线观看| 两个人看的免费小视频| 18禁国产床啪视频网站| 精品久久久久久久久久久久久| 久久这里只有精品中国| svipshipincom国产片| 男人舔女人下体高潮全视频| 欧美一级毛片孕妇| 亚洲国产精品sss在线观看| 亚洲一区高清亚洲精品| 人人妻人人澡欧美一区二区| 亚洲人成伊人成综合网2020| 国产三级在线视频| 国产精品亚洲av一区麻豆| 天天躁夜夜躁狠狠躁躁| 女警被强在线播放| 好男人电影高清在线观看| 国产熟女午夜一区二区三区| 国产精品国产高清国产av| 制服丝袜大香蕉在线| 亚洲中文日韩欧美视频| 岛国视频午夜一区免费看| 男女那种视频在线观看| 国产精品久久久久久精品电影| 国内久久婷婷六月综合欲色啪| 国产真人三级小视频在线观看| 成熟少妇高潮喷水视频| 亚洲最大成人中文| 男人舔女人下体高潮全视频| 97超级碰碰碰精品色视频在线观看| 嫩草影视91久久| 女警被强在线播放| 嫩草影视91久久| 国内精品久久久久久久电影| 欧美又色又爽又黄视频| 欧美人与性动交α欧美精品济南到| 日本黄大片高清| 丝袜人妻中文字幕| 全区人妻精品视频| 最近视频中文字幕2019在线8| 成人欧美大片| 长腿黑丝高跟| 亚洲国产中文字幕在线视频| 亚洲乱码一区二区免费版| 十八禁人妻一区二区| 全区人妻精品视频| 18禁裸乳无遮挡免费网站照片| 国产精品亚洲一级av第二区| 俺也久久电影网| 亚洲熟女毛片儿| 午夜福利视频1000在线观看| 国产99白浆流出| 99在线视频只有这里精品首页| 三级国产精品欧美在线观看 | 夜夜爽天天搞| 婷婷精品国产亚洲av| 午夜免费激情av| 18禁观看日本| 国产97色在线日韩免费| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲欧美精品综合久久99| 久久婷婷人人爽人人干人人爱| 久久久久精品国产欧美久久久| 久久国产乱子伦精品免费另类| 午夜免费成人在线视频| 日本一二三区视频观看| 我的老师免费观看完整版| 一级作爱视频免费观看| 成人av一区二区三区在线看| 亚洲国产精品成人综合色| 欧美日韩精品网址| 日韩大码丰满熟妇| 91九色精品人成在线观看| videosex国产| 无限看片的www在线观看| av视频在线观看入口| 免费在线观看视频国产中文字幕亚洲| 亚洲七黄色美女视频| 精品福利观看| 18禁裸乳无遮挡免费网站照片| 久久婷婷成人综合色麻豆| 中国美女看黄片| 欧美精品啪啪一区二区三区| 国模一区二区三区四区视频 | 国产av一区在线观看免费| 99精品欧美一区二区三区四区| 窝窝影院91人妻| 亚洲性夜色夜夜综合| 亚洲最大成人中文| 久久精品成人免费网站| 午夜视频精品福利| 欧美色欧美亚洲另类二区| 巨乳人妻的诱惑在线观看| 女人高潮潮喷娇喘18禁视频| 精品午夜福利视频在线观看一区| 亚洲av成人不卡在线观看播放网| 亚洲免费av在线视频| 国内揄拍国产精品人妻在线| 久久人妻av系列| 久久久久久大精品| 日韩精品中文字幕看吧| 搡老妇女老女人老熟妇| 亚洲熟女毛片儿| bbb黄色大片| av中文乱码字幕在线| 欧美另类亚洲清纯唯美| 男女床上黄色一级片免费看| 国产探花在线观看一区二区| 久久国产精品影院| 老熟妇乱子伦视频在线观看| 在线观看午夜福利视频| 亚洲成人久久性| 夜夜夜夜夜久久久久| 久久亚洲精品不卡| xxx96com| 午夜福利免费观看在线| 两性午夜刺激爽爽歪歪视频在线观看 | 男女视频在线观看网站免费 | 亚洲欧美日韩高清专用| av天堂在线播放| 美女扒开内裤让男人捅视频| 欧美黑人欧美精品刺激| 黑人操中国人逼视频| 亚洲五月天丁香| 国产精品综合久久久久久久免费| 成人国语在线视频| 他把我摸到了高潮在线观看| 可以在线观看毛片的网站| 一个人免费在线观看电影 | 精品电影一区二区在线| 精品欧美一区二区三区在线| 精品国产美女av久久久久小说| 免费一级毛片在线播放高清视频| 亚洲一码二码三码区别大吗| 亚洲 欧美 日韩 在线 免费| aaaaa片日本免费| 国产免费av片在线观看野外av| 国产激情欧美一区二区|