• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Physical Properties and Starspot Activity of the Triple System KIC 6525196

    2022-08-01 01:47:36YangPanJianNingFuXiaoBinZhangJiaXinWangandChunQianLi

    Yang Pan , Jian-Ning Fu, Xiao-Bin Zhang, Jia-Xin Wang, and Chun-Qian Li,5

    1 School of Physics and Astronomy, China West Normal University, Nanchong 637002, China; pyncxh@126.com

    2 Department of Astronomy, Beijing Normal University, Beijing 100875, China

    3 Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China

    4 School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

    5 School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, China

    Received 2022 April 12; revised 2022 May 15; accepted 2022 May 16; published 2022 June 17

    Abstract We present the results of photometric and spectroscopic analyses for the triple-lined system KIC 6525196, an eclipsing binary accompanied by a third star. By modeling the Kepler light curves and radial velocities from LAMOST and HIDES observations, absolute parameters of the system are determined. Both components of the eclipsing binary are found to be solar-like stars with masses and radii of M1=1.0286±0.0026 M⊙,R1=1.127±0.008 R⊙, and M2=0.9667±0.0024 M⊙, R2=0.963±0.007 R⊙. The mass of the third star is determined to be M3=0.772±0.010 M⊙.With the out-of-eclipse light residuals,we measure rotation period and decay timescale of an active region by using the autocorrelation function. In comparison to the Sun, the activity level of the system is significantly stronger.In addition,a possible short photometric activity cycle of ~244 days is detected.

    Key words: stars: activity – (stars:) binaries: eclipsing – (stars:) binaries: spectroscopic

    1. Introduction

    The majority of stars are binaries, triples and multiples in galaxies.Recently,eclipse timing variation studies showed that about 20% of close binaries have tertiary companions(Rappaport et al. 2013; Conroy et al. 2014). The masses and orbital parameters of the constituent stars are crucial to understanding the process of the formation and dynamical evolution of triple stars(Toonen et al.2020).Eclipsing binaries(EBs) are valuable objects because masses and radii can be determined directly from observations, which is important to constrain stellar evolutionary models. In addition,the late-type EBs are also crucial to starspot activities. The properties of starspots,including sizes,decay timescale,and starspot activity cycles, can be deduced from brightness variations due to starspots. For instance, Wang et al. (2022) studied the properties and evolution of starspots on three double-lined detached EBs.Pi et al.(2019)found a ~3.6 yr starspot cycle on the RS CVn-type binary DV Psc. Hu et al. (2020) detected a~11 yr magnetic-activity cycle on W UMa-type binary v0599 Aur. Reinhold et al. (2017) found evidence of photometric activity cycles for 3203 Kepler stars by measuring variations of light curve amplitude.Montet et al.(2017)detected a sample of stars with photometric complete cycles from Kepler light curves. Since the masses and orbital properties of the triple stars can be directly measured from the combination of photometry and radial velocities (RVs), triple-lined stars, EBs plus a tertiary component,are optimal samples for investigating dynamical evolution and stellar activity.

    The primary aim of the Kepler mission is to detect transiting exoplanets (Borucki et al. 2010). As a by-product, more than 2000 EBs with continuous high-precision photometry have been discovered (Kirk et al. 2016). The follow-up LAMOST spectroscopic observations in the Kepler field,such as the lowresolution LAMOST-Kepler (LK) project (De Cat et al. 2015;Zong et al. 2018b; Fu et al. 2020) and the time-domain LAMOST-Kepler Medium Resolution Spectroscopic Survey(LK-MRS; Zong et al. 2020), provide reliable atmospheric parameters and RVs for these EBs. By combing LAMOST spectra and photometric light curves, several works of orbital parameters and magnetic activity of EBs have been studied(e.g.,Lu et al.2020;Pan et al.2020;Zhu et al.2021;Niu et al.2022).Therefore, the combination between Kepler photometry and LAMOST spectroscopy gives an opportunity to measure physical parameters and explore starspot activity of triple-lined systems.

    Figure 1. Top: Observed (black dots) and fitted (red line) light curves of KIC 6525196 and the residuals. Bottom: The primary (blue circles) and secondary (green circles) RVs and the corresponding fitting curves (red lines) of KIC 6525196 and the residuals. Filled circles represent RVs from LAMOST, and open ones are the HIDES RVs.

    KIC 6525196 is a triple-star candidate, a close double-lined EB with a tertiary companion, identified by Rappaport et al.(2013) and Borkovits et al. (2016) via analysis of eclipse time variations (ETV, PETV=415.8 days). Later, through an analysis of Kepler light curves in combination with RVs measured from the HIgh-Dispersion Echelle Spectrograph(HIDES) spectrograph, He?miniak et al. (2017) confirmed that KIC 6525196 is a triple-lined spectroscopic system composed of an inner solar-like double-lined EB and an outer tertiary companion. By convention, the inner double-lined EB is designated as A (=Aa+Ab, namely the primary + the secondary),and the outer tertiary companion as B.In addition,He?miniak et al.(2017)point out that out-of-eclipse variation of the binary is due to starspot evolution.From the out-of-eclipse variation, two rotation periods (P1≈3.392 days, P2≈3.448 days), close to the orbital period of Aa+Ab (Porb~3.420 days), were identified by Lurie et al. (2017), which hint that there may be two active regions on the binary. To better understand their modulation behavior, an analysis of out-ofeclipse variation is needed.

    This paper is organized as follows.In Section 2,we describe the Kepler photometric and LAMOST spectroscopic observations, and the determination of RVs. In Section 3, the innerorbit modeling and outer-orbit modeling are carried out to determine the physical parameters of KIC 6525916. Section 4 presents the analysis of the out-of-eclipse residuals and the analysis results are discussed in Section 5,finally followed by a summary in Section 6.

    2. Kepler Photometry and LAMOST Spectroscopy

    KIC 6525196 was observed by Kepler in long-cadence mode(29.4 minutes sampling) and short-cadence mode (59 s sampling). There are 18 long-cadence quarters of data (Q0–Q17) and two short-cadence quarters of data (Q2, Q3). The contamination factors reported in MAST6https://archive.stsci.edu/kepler/data_search/search.phpare lower, 4.0e-4, in all long-cadence quarters, which indicates that the photometry of the targets there is hardly contaminated by light from nearby stars. In this study, we only use the detrended and normalized long-cadence data provided by the Kepler Eclipsing Binary Catalog (KEBC, Pr?a et al. 2011; Slawson et al. 2011; Kirk et al. 2016). The obvious outliers in the light curves were removed.Using the linear ephemerids given by the KEBC,the phase-folded long-cadence light curves are displayed in the top panel of Figure 1.

    KIC 6525196 was observed by the LK-project in lowresolution mode and the LK-MRS survey in medium-resolution mode. The combination of the two observation modes can be beneficial. In the low-resolution mode, the atmospheric parameters can be determined easily. However, we cannot distinguish the contribution of the primary, secondary and a possible third components of the triple system. But, in the medium-resolution mode,it is easy to distinguish the spectra of the primary and secondary components of some detached EBs,such as 2MASS J04100497+2931023 (Meng et al. 2021). In addition, the LAMOST spectra are helpful to the study of magnetic activity (e.g., Zhang et al. 2020, 2021b). Two lowresolution spectra (wavelength range 370–900 nm, R ~1800)with signal-to-noise ratio (S/N) ~ 100 and seventy-one medium-resolution ones (wavelength range 495–535 nm and 630–680 nm, R ~7500) with S/N greater than 30 were obtained. The atmospheric parameters from the low-resolution spectrum are given in LAMOST Data Release 8 (DR8)7http://www.lamost.org/dr8/v1.0/as Teff=6103±22 K,logg=4.28 ±0.04, [Fe/H]=?0.53±0.02.With the medium-resolution spectra,we extracted RVs by a cross-correlation algorithm (Li et al. 2021). Twenty singlelined RVs (v1), fifteen double-lined RVs (v1, v2) and thirty-six triple-lined RVs(v1,v2,v3)were extracted.The subscripts 1,2 and 3 respectively refer to the primary(Aa),the secondary(Ab)and the tertiary companion(B).In the following analysis,only the double-lined and triple-lined RVs are considered. To correct the RV variations(v1,v2)of the close binary caused by the third star, the systemic velocities (γ) of the binary were calculated as the formula described in He?miniak et al. (2017)

    where q is mass ratio, and v1(ti) and v2(ti) are the RVs of the binary at any time ti.Adopting the value of mass ratio(0.9383)given in Table 2 in He?miniak et al. (2017), the corrected RVs of the binary(v1(ti)?γ(ti),v2(ti)?γ(ti))are shown in Figure 1.Further, since there exists zero-point offset among RVs (Liu et al. 2019; Zhang et al. 2021a), the RVs of the third star are calibrated by the APOGEE RV standard stars published in Huang et al. (2018). The calibrated RVs of the third components (v3) are presented in Table 1 and are displayed in Figure 1. Meanwhile, the HIDES RVs corresponding to the close binary and the third star from He?miniak et al.(2017)are also listed in Table 1 and displayed in Figure 1.

    3. The Inner-orbit and Outer-orbit Modeling

    The triple-lined system KIC 6525196 consists of the inner EB Aa+Ab and the outer companion B.Under the assumption that the inner-orbit of Aa+Ab is Keplerian and circular, to obtain physical parameters of inner pair Aa+Ab, we simultaneously modeled a phase-binned average light curve and RVs using the Wilson–Devinney (WD, 2013) code(Wilson & Devinney 1971; Wilson 1979, 1990, 2012).

    We adopt the effective temperature of the primary to be T1=6103 K determined from the LAMOST low-resolution spectrum at the nearby conjunction phase. The gravitydarkening exponents and bolometric albedos for each star with convective envelopes (Lucy 1967; Ruciński 1969) were set to be 0.5 and 0.32, respectively. The logarithmic monochromatic limb-darkening coefficients in Kepler band (xK, yK) were interpolated from WD code, and the logarithmic bolometric(Xbolo,Ybolo)ones were adopted from van Hamme (1993).The ten adjustable parameters in the model are the inclination (i),the mass ratio (q=m2/m1), the semimajor axis of the binary(a), the center-of-mass velocity (γ0), the effective temperature of the secondary (T2), the surface potential (Ω1,2), the phase shift, the dimensionless luminosity of the primary (L1) and the third light (l3).

    Table 2 gives the orbital and physical parameters of the bestfit model. Since the errors of the fitting parameters in the WD code are only fitting errors and are underestimated (Pr?a &Zwitter 2005), the errors of the absolute parameters are also underestimated. Figure 1 shows the synthetic light curves and RVs(red lines)from the best-fit model as well as the observed minus computed(O ?C)residuals.The results suggest that the close binary consists of two solar-like stars which are consistent with the ones in Table 2 in He?miniak et al. (2017).

    The system parameters of outer orbit A+B have been determined from ETVs(Rappaport et al.2013;Borkovits et al.2016) and HIDES RVs (He?miniak et al. 2017). With the HIDES RVs and supplemental RVs from LAMOST, as depicted in Figure 2, we recalculate the system parameters of the outer orbit. Since the distance between A and B is much larger than the semimajor axis of the close binary, the A+B pair can be assumed as a binary in a Keplerian orbit. The free parameters are orbital period (PAB), pericenter time (Tper),semi-amplitudes(KA,KB),eccentricity(eAB),systemic velocity of the whole triple (γAB) and longitude of periastron (ωAB).These RVs are fitted with the EMCEE code.8https://emcee.readthedocs.io/en/stable/The criteria for convergence are that the length of sample chains must be greater than 100 times the estimated autocorrelation time(Goodman&Weare 2010)and such relative variations must be by less than 5%. The results are listed in Table 3 and are in agreement with parameters obtained by He?miniak et al.(2017). Figure 2 shows the systemic velocities of the close binary (Aa+Ab) and the directly measured RVs of the third component.Since the absolute mass of A(MA=M1+M2)has been determined from the inner-orbit modeling (see Table 2),the inclination of the outer orbit could be calculated to be iAB~85°,and then the mass of the third star(MB,namely M3)is determined to be MB~0.77 M⊙.

    4. Analysis of Out-of-eclipse Flux Residuals

    The out-of-eclipse flux residuals are obtained by subtracting the fitted light curves from the detrended data.The top panel of Figure 3 shows the out-of-eclipse variations due to starspot modulation from Q1-17,together with zoom-in views from Q4 in the middle panel. To study the behaviors of the starspot modulation, using the out-of-eclipse residuals, we measure rotation period, decay timescale, and size of active region and detect photometric activity cycle.

    Table 1 KIC 6525196 Radial Velocities

    Table 1(Continued)

    4.1. The Rotation Period, Decay Timescale and Size of Active Region

    The rotation period and decay timescale of an active region are measured using the discrete autocorrelation function(ACF)method(Edelson&Krolik 1988;McQuillan et al.2013,2014;Giles et al. 2017). The ACF calculates the degree of selfsimilarity of light curves at a series of different time lags. The ACF of the out-of-eclipse residuals for Q1-17 is displayed in the bottom panel of Figure 3. Due to starspot decay in the active region, the peak in the ACF decreases with the increase of time lag. According to Giles et al. (2017), this behavior is analogous to the displacement of an underdamped simple harmonic oscillator (uSHO),

    Here τARand P are, respectively, the decay timescale and rotation period of the dominant active region, and A, B and y0are fit parameters without significant meaning. To obtain the decay timescale of the active region, the ACF of the out-ofeclipse residuals is fitted by the uSHO equation (Giles et al.2017) utilizing the code EMCEE. The fitting results are expressed in Table 4.

    4.2. The Detection of Photometric Activity Cycle

    To describe the time behavior of the out-of-eclipse residuals,a time-frequency analysis called sliding Lomb–Scargle periodogram (sLSP; Zong et al. 2018a) is applied to show the variation of the amplitudes and periods. The sliding window width and time step are set to 90 days and 2 days,respectively.Figure 4 displays the sLSP. The magnitude of the normalized amplitude is indicated by the color bar. From the sLSP diagram, the normalized amplitudes of the active region have an obvious quasi-periodic modulation with period of ~200 days, which hints that a starspot activity cycle probably exists.

    Figure 2.The RVs of the outer orbit A+B.Red circles signify the calculated systemic RVs of the inner binary Aa+Ab(γ),and black circles represent the direct RV measurements of the third component(B)(v3).Filled circles correspond to RVs from LAMOST,and open ones are RVs from HIDES.The red dashed lines are fitting curves.

    Table 2 Physical Parameters of the Inner Binary Aa+Ab

    Table 3 Physical Parameters of the Outer Orbit System A+B

    According to Reinhold et al.(2017),the amplitudes of the outof-eclipse light curve residuals can also be used to detect the photometric activity cycle. Therefore, first, we calculate the variability range Rvar(Basri et al.2011)in every orbital cycle(E).Then,a Lomb–Scargle(LS)periodogram is computed for the Rvar.Figure 5 shows the Rvarevolving with E (top panel) and its LS periodogram (bottom panel). An obvious periodicity (0.014/E ?244 days) in the Rvarcan be found in the LS periodogram.

    Figure 3.Top and middle panels show the out-of-eclipse flux residuals for Q0-17 and Q4,respectively.Bottom panel displays the ACF(black)of all the out-of-eclipse residuals and the fitted ACF (red) using the uSHO equation.

    Figure 4. sLSP of the out-of-eclipse residuals. The normalized amplitudes are represented by color as a function of time and period.

    Table 4 The rms and Best-fitting Parameters of ACF

    5. Discussion

    Figure 5.Top:Black points represent the variability range Rvar in every orbital cycle E for KIC 6525196 and black lines signify the max and mean of Rvar for the Sun,respectively. Bottom: The LS periodogram of the variability range Rvar.

    Figure 6.Thelog (Pc yc Porb )vs.log (1 Porb)for short-period EBs with activity cycle using data given in Table 13 of Pi et al.(2019).Different colors represent different spectral types. CV means cataclysmic variables. The black solid line is a linear fit.

    6. Summary

    The Kepler photometric and LAMOST and HIDES spectroscopic analyses reveal that KIC 6525196 is a triple-lined system consisting of a close EB with a distant low-mass tertiary body and both components (Aa+Ab) in the close binary are solar-like stars. In addition, there is no conflict between the small mutual inclination (im) and no signs of tertiary eclipses.

    The analysis of out-of-eclipse residuals suggests that there perhaps exists two dominant active regions on opposite hemispheres. Since Aa+Ab have similar properties, both components could be the source of starspot activity. The rotation periods of the active regions are close to the orbital period of the binary.The decay timescale and mean size of the active region are ~32 days and 0.002 mag respectively.Compared with the Sun, the activity level is significantly stronger. A possible short spot activity cycle of ~244 days is detected from the out-of-eclipse light variation.

    Acknowledgments

    The Guoshoujing Telescope (the Large Sky Area Multi-Object Fiber Spectroscopic Telescope,LAMOST)is a National Major Scientific Project built by the Chinese Academy of Sciences. Funding for the project has been provided by the National Development and Reform Commission. LAMOST is operated and managed by the National Astronomical Observatories,Chinese Academy of Sciences.This paper includes data collected by the Kepler mission.We acknowledge support from the National Natural Science Foundation of China (NSFC,Grant Nos. 11833002, 12090040, 12090042 and 11973053),support from the Sichuan Youth Science and Technology Innovation Research Team(Grant No.21CXTD0038),and the Innovation Team Funds of China West Normal University(Grant No. KCXTD2022-6).

    ORCID iDs

    Yang Pan https://orcid.org/0000-0001-8637-5492

    免费观看无遮挡的男女| 侵犯人妻中文字幕一二三四区| 亚洲综合色惰| 男女下面插进去视频免费观看| 久久精品aⅴ一区二区三区四区 | 精品一区二区三卡| 天天躁日日躁夜夜躁夜夜| 亚洲一级一片aⅴ在线观看| 亚洲一码二码三码区别大吗| 亚洲av在线观看美女高潮| 免费在线观看视频国产中文字幕亚洲 | 久久这里有精品视频免费| 女性被躁到高潮视频| 国产精品免费大片| 精品人妻在线不人妻| 欧美日韩精品网址| 国产 一区精品| 欧美日韩精品网址| 午夜av观看不卡| 尾随美女入室| 超碰97精品在线观看| 嫩草影院入口| 成人国语在线视频| 午夜福利视频精品| 欧美+日韩+精品| 嫩草影院入口| 日韩大片免费观看网站| 女人久久www免费人成看片| 美女国产高潮福利片在线看| 亚洲综合色惰| 久久精品国产亚洲av高清一级| 在线观看一区二区三区激情| 一区二区三区乱码不卡18| 26uuu在线亚洲综合色| 午夜福利在线免费观看网站| 国产成人aa在线观看| 如日韩欧美国产精品一区二区三区| 国产精品二区激情视频| 美女中出高潮动态图| 色播在线永久视频| 一本—道久久a久久精品蜜桃钙片| 欧美亚洲 丝袜 人妻 在线| 看免费成人av毛片| 老女人水多毛片| 日本欧美国产在线视频| 久久影院123| 最黄视频免费看| 熟女电影av网| 日本欧美视频一区| 欧美精品亚洲一区二区| 亚洲国产精品一区三区| 搡女人真爽免费视频火全软件| 久久99一区二区三区| 在线精品无人区一区二区三| 亚洲精品一区蜜桃| 在线观看www视频免费| av女优亚洲男人天堂| 嫩草影院入口| 在线观看免费高清a一片| 伦理电影免费视频| www.熟女人妻精品国产| 久久久久人妻精品一区果冻| 亚洲,一卡二卡三卡| 国产精品欧美亚洲77777| 午夜激情久久久久久久| 欧美国产精品一级二级三级| 日韩三级伦理在线观看| 精品久久蜜臀av无| 久久久久视频综合| 看免费成人av毛片| 黑人巨大精品欧美一区二区蜜桃| 曰老女人黄片| 亚洲精品国产av成人精品| 国精品久久久久久国模美| 国产日韩一区二区三区精品不卡| av一本久久久久| 中文字幕最新亚洲高清| 欧美精品国产亚洲| 日韩中文字幕视频在线看片| 亚洲欧洲国产日韩| 欧美人与性动交α欧美精品济南到 | 又黄又粗又硬又大视频| 黑人欧美特级aaaaaa片| 午夜久久久在线观看| 免费观看a级毛片全部| 男女啪啪激烈高潮av片| 国产av精品麻豆| 精品少妇黑人巨大在线播放| 国产成人午夜福利电影在线观看| 国产精品麻豆人妻色哟哟久久| 日本91视频免费播放| 如何舔出高潮| 免费黄色在线免费观看| 欧美人与性动交α欧美软件| 在线观看免费高清a一片| 久久综合国产亚洲精品| 色视频在线一区二区三区| 一级毛片 在线播放| 欧美bdsm另类| 人成视频在线观看免费观看| 国产有黄有色有爽视频| 久久女婷五月综合色啪小说| 在线精品无人区一区二区三| 亚洲精品一二三| h视频一区二区三区| 午夜免费男女啪啪视频观看| 欧美97在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 美女视频免费永久观看网站| 久久久久久免费高清国产稀缺| 秋霞在线观看毛片| 日韩 亚洲 欧美在线| 亚洲av免费高清在线观看| 99九九在线精品视频| av国产精品久久久久影院| 青春草亚洲视频在线观看| 国产在视频线精品| 亚洲国产色片| av电影中文网址| 色播在线永久视频| 国产免费视频播放在线视频| 看免费av毛片| 成人影院久久| 一级毛片电影观看| 高清av免费在线| 亚洲综合色惰| 久久久精品国产亚洲av高清涩受| 国产成人91sexporn| 久久久久精品久久久久真实原创| 国产 一区精品| 熟女电影av网| 国产精品二区激情视频| 欧美日本中文国产一区发布| 99re6热这里在线精品视频| 免费看不卡的av| 两个人免费观看高清视频| 考比视频在线观看| 日韩欧美一区视频在线观看| 亚洲国产毛片av蜜桃av| 在线观看一区二区三区激情| 两个人免费观看高清视频| 日韩一区二区视频免费看| 一区福利在线观看| 秋霞伦理黄片| 日韩精品免费视频一区二区三区| 国产免费又黄又爽又色| 国产又爽黄色视频| videos熟女内射| 丝袜喷水一区| 国产亚洲精品第一综合不卡| av在线老鸭窝| 亚洲欧美成人精品一区二区| 色婷婷久久久亚洲欧美| 欧美人与性动交α欧美软件| 97精品久久久久久久久久精品| av在线app专区| 亚洲成av片中文字幕在线观看 | 男人操女人黄网站| 男女高潮啪啪啪动态图| 2021少妇久久久久久久久久久| 亚洲图色成人| 伦精品一区二区三区| 亚洲欧美成人精品一区二区| 成年动漫av网址| 青春草视频在线免费观看| 久久精品aⅴ一区二区三区四区 | 精品人妻熟女毛片av久久网站| 午夜福利乱码中文字幕| 国产又色又爽无遮挡免| 午夜福利一区二区在线看| 成年动漫av网址| 日韩欧美一区视频在线观看| 国产成人精品一,二区| 天天躁狠狠躁夜夜躁狠狠躁| 欧美精品高潮呻吟av久久| 精品一区二区三卡| 80岁老熟妇乱子伦牲交| 亚洲精华国产精华液的使用体验| 另类亚洲欧美激情| 亚洲成av片中文字幕在线观看 | 欧美精品人与动牲交sv欧美| 寂寞人妻少妇视频99o| 国产女主播在线喷水免费视频网站| 成年美女黄网站色视频大全免费| 大话2 男鬼变身卡| 成人毛片a级毛片在线播放| 欧美日韩一区二区视频在线观看视频在线| 亚洲av电影在线进入| 免费在线观看完整版高清| 国产精品国产av在线观看| 亚洲在久久综合| 制服诱惑二区| 一边亲一边摸免费视频| www日本在线高清视频| 久久久a久久爽久久v久久| 亚洲久久久国产精品| 久久久亚洲精品成人影院| 中国三级夫妇交换| 青青草视频在线视频观看| 一本久久精品| 韩国高清视频一区二区三区| 午夜影院在线不卡| 亚洲伊人色综图| 亚洲三级黄色毛片| 男女无遮挡免费网站观看| 国产毛片在线视频| 免费高清在线观看日韩| h视频一区二区三区| 免费大片黄手机在线观看| 久久女婷五月综合色啪小说| 亚洲中文av在线| 亚洲视频免费观看视频| 久久精品熟女亚洲av麻豆精品| 一级爰片在线观看| 日韩欧美一区视频在线观看| 欧美+日韩+精品| 人人妻人人澡人人爽人人夜夜| 最近中文字幕2019免费版| 久久女婷五月综合色啪小说| 肉色欧美久久久久久久蜜桃| a级毛片在线看网站| 国产精品亚洲av一区麻豆 | 免费高清在线观看视频在线观看| 欧美日韩精品成人综合77777| 日韩三级伦理在线观看| 91久久精品国产一区二区三区| 男女边吃奶边做爰视频| 久久精品久久精品一区二区三区| 日本欧美国产在线视频| 在线免费观看不下载黄p国产| 激情视频va一区二区三区| 男人舔女人的私密视频| 精品亚洲成a人片在线观看| 午夜精品国产一区二区电影| 国产色婷婷99| 亚洲成av片中文字幕在线观看 | 一级片免费观看大全| 一区在线观看完整版| 国产亚洲午夜精品一区二区久久| av卡一久久| 久久久精品区二区三区| 亚洲第一av免费看| 捣出白浆h1v1| 午夜福利网站1000一区二区三区| 精品国产乱码久久久久久小说| 中文精品一卡2卡3卡4更新| 制服人妻中文乱码| 一本大道久久a久久精品| 久久人人97超碰香蕉20202| 激情视频va一区二区三区| 一区福利在线观看| 亚洲中文av在线| 伊人亚洲综合成人网| 久久久亚洲精品成人影院| 欧美日韩视频精品一区| av免费在线看不卡| 99久久精品国产国产毛片| 久久久久久免费高清国产稀缺| 久热这里只有精品99| 熟女电影av网| 少妇被粗大猛烈的视频| 国产精品三级大全| 亚洲精品av麻豆狂野| 777久久人妻少妇嫩草av网站| 九九爱精品视频在线观看| 日韩电影二区| 伦理电影大哥的女人| 亚洲精品aⅴ在线观看| 可以免费在线观看a视频的电影网站 | 亚洲第一av免费看| 亚洲精品美女久久久久99蜜臀 | 一区二区三区乱码不卡18| 热re99久久精品国产66热6| h视频一区二区三区| 亚洲av电影在线进入| av在线观看视频网站免费| 桃花免费在线播放| 亚洲精品国产色婷婷电影| 国产免费一区二区三区四区乱码| 在线免费观看不下载黄p国产| 丝袜喷水一区| 国产精品不卡视频一区二区| 亚洲,欧美精品.| 狠狠婷婷综合久久久久久88av| 免费人妻精品一区二区三区视频| 亚洲国产av新网站| 校园人妻丝袜中文字幕| 成人二区视频| 国产精品香港三级国产av潘金莲 | 欧美少妇被猛烈插入视频| 丰满少妇做爰视频| 亚洲三区欧美一区| 老女人水多毛片| av视频免费观看在线观看| 香蕉丝袜av| 日韩人妻精品一区2区三区| 一区二区三区精品91| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲色图综合在线观看| 夜夜骑夜夜射夜夜干| 天天躁夜夜躁狠狠躁躁| 在线观看免费视频网站a站| 国产精品一区二区在线观看99| 视频在线观看一区二区三区| 又大又黄又爽视频免费| 丰满乱子伦码专区| 日韩欧美精品免费久久| 韩国av在线不卡| 一区福利在线观看| 久久精品国产亚洲av涩爱| 欧美日韩视频精品一区| 午夜久久久在线观看| 热99国产精品久久久久久7| 亚洲美女搞黄在线观看| 亚洲国产精品999| 亚洲欧美精品自产自拍| 国产一区二区三区av在线| 午夜激情久久久久久久| 一二三四中文在线观看免费高清| 曰老女人黄片| 新久久久久国产一级毛片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 九草在线视频观看| 亚洲一码二码三码区别大吗| 爱豆传媒免费全集在线观看| 少妇猛男粗大的猛烈进出视频| 最近的中文字幕免费完整| 丁香六月天网| 伦理电影大哥的女人| 免费人妻精品一区二区三区视频| av又黄又爽大尺度在线免费看| 欧美日韩国产mv在线观看视频| 亚洲欧美日韩另类电影网站| 久久久久久久大尺度免费视频| 精品亚洲成a人片在线观看| 久久毛片免费看一区二区三区| 久久国产精品大桥未久av| 在线观看免费日韩欧美大片| 成人影院久久| 色婷婷久久久亚洲欧美| 女人高潮潮喷娇喘18禁视频| 1024香蕉在线观看| 熟女电影av网| 成人手机av| av网站在线播放免费| 少妇猛男粗大的猛烈进出视频| 秋霞在线观看毛片| 美女中出高潮动态图| 久久人妻熟女aⅴ| 男人操女人黄网站| 欧美精品av麻豆av| 日本欧美国产在线视频| 极品少妇高潮喷水抽搐| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 欧美日本中文国产一区发布| 精品福利永久在线观看| 少妇的丰满在线观看| 看免费av毛片| 不卡av一区二区三区| 婷婷色av中文字幕| 欧美+日韩+精品| 欧美精品一区二区免费开放| 久久韩国三级中文字幕| 老女人水多毛片| 亚洲成色77777| 欧美日韩精品成人综合77777| 日本午夜av视频| 日本猛色少妇xxxxx猛交久久| 我要看黄色一级片免费的| 久久久久久久国产电影| 深夜精品福利| 欧美亚洲 丝袜 人妻 在线| www.熟女人妻精品国产| 亚洲综合精品二区| 欧美精品高潮呻吟av久久| 国产高清不卡午夜福利| 成人国产av品久久久| 在线观看免费高清a一片| www.自偷自拍.com| 性高湖久久久久久久久免费观看| 日本wwww免费看| 午夜福利影视在线免费观看| 精品国产一区二区三区四区第35| 国产成人精品久久二区二区91 | 欧美精品人与动牲交sv欧美| 2018国产大陆天天弄谢| 一级a爱视频在线免费观看| 18+在线观看网站| 日韩人妻精品一区2区三区| 免费高清在线观看日韩| 少妇被粗大猛烈的视频| 精品久久久久久电影网| 亚洲 欧美一区二区三区| 国产亚洲一区二区精品| 你懂的网址亚洲精品在线观看| 亚洲av电影在线观看一区二区三区| 女人高潮潮喷娇喘18禁视频| 中文字幕另类日韩欧美亚洲嫩草| 国产精品女同一区二区软件| 久久久久久免费高清国产稀缺| 亚洲成色77777| 26uuu在线亚洲综合色| 欧美另类一区| 熟妇人妻不卡中文字幕| 国产精品二区激情视频| 国产成人91sexporn| 欧美 亚洲 国产 日韩一| 1024香蕉在线观看| 免费播放大片免费观看视频在线观看| xxxhd国产人妻xxx| 婷婷色av中文字幕| 久久久久国产网址| 一级片'在线观看视频| 老司机亚洲免费影院| 80岁老熟妇乱子伦牲交| 老鸭窝网址在线观看| 国产精品秋霞免费鲁丝片| 亚洲色图综合在线观看| av不卡在线播放| 少妇精品久久久久久久| a级毛片在线看网站| 一区二区三区乱码不卡18| 久久精品国产a三级三级三级| 成年美女黄网站色视频大全免费| 一本色道久久久久久精品综合| 最近2019中文字幕mv第一页| 亚洲久久久国产精品| 极品人妻少妇av视频| 午夜91福利影院| 在线亚洲精品国产二区图片欧美| 免费看不卡的av| av在线观看视频网站免费| 久久ye,这里只有精品| 精品国产超薄肉色丝袜足j| 精品一区二区三卡| 免费高清在线观看视频在线观看| 色吧在线观看| 国产1区2区3区精品| 女人被躁到高潮嗷嗷叫费观| 男女午夜视频在线观看| 母亲3免费完整高清在线观看 | 又粗又硬又长又爽又黄的视频| 精品卡一卡二卡四卡免费| 亚洲国产色片| 日韩电影二区| 亚洲精品视频女| 色哟哟·www| 99九九在线精品视频| 国产综合精华液| 国语对白做爰xxxⅹ性视频网站| 赤兔流量卡办理| 亚洲欧洲国产日韩| 九色亚洲精品在线播放| 亚洲,欧美精品.| 只有这里有精品99| 久久国产亚洲av麻豆专区| 99久久人妻综合| 中文字幕另类日韩欧美亚洲嫩草| 午夜免费鲁丝| 伊人久久国产一区二区| 亚洲欧美精品自产自拍| 多毛熟女@视频| 国产白丝娇喘喷水9色精品| 男女啪啪激烈高潮av片| 国产人伦9x9x在线观看 | 91成人精品电影| 久久久久久久久久人人人人人人| 七月丁香在线播放| 咕卡用的链子| 一区福利在线观看| av片东京热男人的天堂| 久久人人爽人人片av| 狠狠婷婷综合久久久久久88av| 午夜激情久久久久久久| 女的被弄到高潮叫床怎么办| 人人妻人人澡人人爽人人夜夜| av福利片在线| 亚洲av免费高清在线观看| 少妇被粗大的猛进出69影院| 一级片免费观看大全| 91在线精品国自产拍蜜月| 天天躁狠狠躁夜夜躁狠狠躁| av福利片在线| 91精品伊人久久大香线蕉| 精品国产一区二区三区四区第35| 日日撸夜夜添| 日韩中文字幕欧美一区二区 | 又粗又硬又长又爽又黄的视频| 久久久久久人妻| 日产精品乱码卡一卡2卡三| 午夜激情久久久久久久| 国产欧美日韩一区二区三区在线| 肉色欧美久久久久久久蜜桃| 毛片一级片免费看久久久久| 亚洲国产看品久久| 性少妇av在线| 国产精品国产三级国产专区5o| 久久99一区二区三区| 丰满乱子伦码专区| 亚洲第一av免费看| 男人操女人黄网站| 亚洲精品日本国产第一区| 午夜免费男女啪啪视频观看| 天天操日日干夜夜撸| www.熟女人妻精品国产| 免费黄网站久久成人精品| 亚洲人成电影观看| 97在线视频观看| 亚洲国产精品成人久久小说| 成人免费观看视频高清| 熟女少妇亚洲综合色aaa.| 亚洲精品第二区| 伊人亚洲综合成人网| 青青草视频在线视频观看| 国产野战对白在线观看| 又大又黄又爽视频免费| 亚洲精品日本国产第一区| 国产免费现黄频在线看| 亚洲av福利一区| 久久久精品区二区三区| 母亲3免费完整高清在线观看 | 亚洲伊人久久精品综合| 欧美日韩av久久| 黄色一级大片看看| 国产精品人妻久久久影院| 韩国高清视频一区二区三区| 男女啪啪激烈高潮av片| 超碰成人久久| www.av在线官网国产| 成人影院久久| 亚洲国产毛片av蜜桃av| 99热国产这里只有精品6| 99久久精品国产国产毛片| 久久毛片免费看一区二区三区| 一本色道久久久久久精品综合| 丝袜在线中文字幕| 亚洲一区二区三区欧美精品| 看免费av毛片| 久久婷婷青草| 99久久中文字幕三级久久日本| 国语对白做爰xxxⅹ性视频网站| 国产成人午夜福利电影在线观看| 日本wwww免费看| 免费日韩欧美在线观看| 色94色欧美一区二区| 各种免费的搞黄视频| 97在线人人人人妻| 亚洲色图 男人天堂 中文字幕| 九色亚洲精品在线播放| 成人免费观看视频高清| 亚洲精品久久午夜乱码| 美女午夜性视频免费| 精品久久久久久电影网| 最近2019中文字幕mv第一页| 你懂的网址亚洲精品在线观看| 精品第一国产精品| tube8黄色片| 极品人妻少妇av视频| 曰老女人黄片| 精品酒店卫生间| 成人国产av品久久久| 久久鲁丝午夜福利片| 又粗又硬又长又爽又黄的视频| 国产精品蜜桃在线观看| 在线观看免费日韩欧美大片| 在现免费观看毛片| 最近中文字幕2019免费版| 在线观看国产h片| 老女人水多毛片| 亚洲伊人久久精品综合| 如何舔出高潮| 91aial.com中文字幕在线观看| 亚洲欧美一区二区三区国产| 国产精品 国内视频| 亚洲,一卡二卡三卡| 自线自在国产av| 中文字幕人妻熟女乱码| 一级黄片播放器| 亚洲国产精品一区二区三区在线| 国产极品粉嫩免费观看在线| 国产精品久久久久久精品电影小说| 大话2 男鬼变身卡| 亚洲欧美清纯卡通| 欧美日韩综合久久久久久| 午夜老司机福利剧场| a级片在线免费高清观看视频| 欧美日韩精品成人综合77777| 一边摸一边做爽爽视频免费| 免费女性裸体啪啪无遮挡网站| 一二三四中文在线观看免费高清| 美女午夜性视频免费| 极品人妻少妇av视频| videos熟女内射| 波多野结衣一区麻豆| 亚洲三区欧美一区| 人成视频在线观看免费观看| 女性被躁到高潮视频| 人人妻人人澡人人爽人人夜夜| 中国国产av一级| 亚洲人成网站在线观看播放| 中文字幕色久视频| 欧美精品高潮呻吟av久久| 成人国产麻豆网| 丝瓜视频免费看黄片| 制服诱惑二区| 如何舔出高潮| 日韩av在线免费看完整版不卡| 最近2019中文字幕mv第一页| 在线天堂最新版资源| 国产免费视频播放在线视频| 亚洲,欧美精品.| av网站在线播放免费| 国产亚洲av片在线观看秒播厂| 亚洲精品自拍成人| 9热在线视频观看99|