• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Revisiting the Mass–Size Relation of Structures in Molecular Clouds

    2022-08-01 01:47:30YuchenXingandKepingQiu

    Yuchen Xing and Keping Qiu

    1 School of Astronomy and Space Science, Nanjing University, Nanjing 210023, China; kpqiu@nju.edu.cn

    2 Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, Nanjing 210023, China

    Received 2022 March 8; revised 2022 May 6; accepted 2022 May 12; published 2022 June 14

    Abstract We revisit the mass–size relation of molecular cloud structures based on the column density map of the Cygnus-X molecular cloud complex. We extract 135 column density peaks in Cygnus-X and analyze the column density distributions around these peaks. The averaged column density profiles, N(R), around all the peaks can be well fitted with broken power-laws,which are described by an inner power-law index n,outer power-law index m,and the radius RTP and column density NTP at the transition point. We then explore the M–R relation with different samples of cloud structures by varying the N(R) parameters and the column density threshold, N0, which determines the boundary of a cloud structure. We find that only when N0 has a wide range of values, the M–R relation may largely probe the density distribution,and the fitted power-law index of the M–R relation is related to the power-law index of N(R).On the contrary,with a constant N0,the M–R relation has no direct connection with the density distribution; in this case,the fitted power-law index of the M–R relation is equal to 2(when N0 ≥NTP and n has a narrow range of values), larger than 2 (when N0 ≥NTP and n has a wide range of values), or slightly less than 2 (when N0

    Key words: methods: analytical – methods: data analysis – ISM: clouds – ISM: structure

    1. Introduction

    The density distribution reflects the physical state of a molecular cloud thus is important for understanding star formation. However, both volume and column density distributions are difficult to obtain in large quantities directly.Dust extinctions in optical and near-infrared bands can be used to derive H2distribution at high resolution but cannot probe dense regions (Lada et al. 1994; Lombardi & Alves 2001).Although dust continuum and molecular lines at millimeter and submillimeter wavelengths are free of this problem, they are limited by the low resolution of single-dish radio telescopes and the small dynamic range of interferometers(Kellermann&Moran 2001). Moreover, obtaining the density distributions of a large number of sources across orders of magnitude in density and size is always time-consuming regardless of the observation method used.For decades,the mass–size relation between different structures (hereafter, the M–R relation) has been an important way to explore the density distribution of molecular gas.

    An early result of the M–R relation comes from Larson(1981).The famous Larson third law indicated that the density—size relation at 0.1–100 pc is n(H2)∝L?1.10, corresponding to M ∝R1.9. The relation was considered to represent a density distribution of ρ ∝R?1, implying that the structures that they used in obtaining the M–R relation have approximately the same averaged column density.Since then,there have been a number of observational studies deriving a variety of M–R relations from M ∝R1.4to M ∝R3.0, which have been interpreted as ρ ∝R?αdistributions with α=0 ?1.6. The M ∝R2relation is the most commonly seen relation and has been observed in all scales from 10?2pc to 102pc(Larson 1981;Schneider&Brooks 2004;Lada& Dame 2020; Mannfors et al. 2021), while the other indexes are mainly observed at 10?2?101pc(Roman-Duval et al.2010;Traficante et al. 2018; Urquhart et al. 2018; Massi et al. 2019;Lin et al. 2019).

    However, how reliable or accurate the M–R relations are probing the density distributions is still a matter of debate.Observational biases, including the sensitivity limit (Kegel 1989; Schneider & Brooks 2004) and the column density selection effects for certain tracers (Scalo 1990; Ballesteros-Paredes & Mac Low 2002), as well as the source extraction methodologies (Kegel 1989;Schneider &Brooks 2004;Heyer et al. 2009), can all play a role in the derived M–R relations,and thus affect the inferred density distributions. In the 2000s,dust continuum surveys brought new opportunities to understand the M–R relation(Enoch et al.2006;Pirogov et al.2007).The advent of the Herschel observatory (Pilbratt et al. 2010)made it possible to map simultaneously extended and compact dust continuum emissions at multi-wavelengths in the farinfrared to submillimeter window. Consequently, the column density profiles (hereafter, N(R) profiles) of dense molecular cloud structures can be derived at moderate angular resolutions(Arzoumanian et al. 2011; Kauffmann et al. 2010; Schneider et al. 2013). The N(R) profiles are found to have different indexes at different scales and their corresponding M(R)profiles may be inconsistent with the M–R relation (Pirogov 2009; Lombardi et al. 2010; Kauffmann et al. 2010;Beaumont et al.2012).Lombardi et al.(2010);Beaumont et al.(2012), and Ballesteros-Paredes et al. (2012) pointed out that measuring the M–R relations based on observations in general implies an effective column density threshold, which in turn would naturally lead to an M ∝R2relation for typical column density probability distribution functions (N-PDFs), such as log-normal (Lombardi et al. 2010; Beaumont et al. 2012),power-law (Ballesteros-Paredes et al. 2012) or log-normal +power-law(Ballesteros-Paredes et al.2012)N-PDFs.However,there has been no study that links real observational M(R)profiles with M–R relations through mathematical calculations.

    In this paper,using the Cygnus-X column density map from Cao et al. (2019), we obtain N(R) profiles of 135 dense structures at 0.1?10 pc. It enables us to derive M–R relations from real density profiles,thus deepening the understanding of the M–R relations,density distributions,and the physical states behind them. We present the obtained N(R) profiles and their parameter distributions in Section 2. In Section 3, we study effects of the N(R)profiles and column density threshold N0on the M–R relation. We further discuss the significance of the N(R) profile and the M–R relation from a more realistic perspective in Section 4. The results are summarized in Section 5.

    2. N(R) Profiles of Cygnus-X

    Cygnus-X is one of the most massive giant molecular clouds in our Galaxy (Motte et al. 2018), and shows rich star formation activities evidenced by numerous H II regions, OB associations, dense molecular gas clumps and cores (Wendker et al. 1991; Uyan?ker et al. 2001; Motte et al. 2007; Cao et al.2019; Wang et al. 2022). It is located at a distance of 1.4 kpc from the Sun (Rygl et al. 2012). Using getsources(Men’Shchikov et al. 2012), Cao et al. (2019) applied SED fittings to the 160, 250, 350, and 500 μm dust continuum images from Herschel, and obtained the temperature map and the column density map of Cygnus-X. The resolution of the column density map was set by the SED fitting of the smallest spatial scale component using the 160 and 250 μm data,and is 18 4 determined by the 250 μm images, corresponding to 0.1 pc at the distance of 1.4 kpc.Using the column density map,Y.Xing et al. (2022, in preparation) obtained the N-PDF of the complex, which shows a log-normal + power-law shape. The turbulence-dominated log-normal component and the gravitydominated power-law component are delimited by a transitional column density at 1.86×1022cm?2(Xing et al.2022,in preparation). We selected all column density peaks above 1.86×1022cm?2for the extraction of density profiles. To avoid the influence of structures that cannot be described by radial density profiles, we check the morphology of every structure within a density threshold of 1.86×1022cm?2, and exclude those with aspect ratios larger than 2. In this way, we eventually obtained 135 peaks which are shown in Figure 1.We divide the area around each column density peak into 24 sectors with the same angular size (i.e., 15°). For each sector,we calculate the distance of each pixel to the column density peak and average all pixels with the same distance to obtain a sectorized radial N(R) profile. Thus for each column density peak we have 24 N(R) profiles extracted from 10 pc down to the resolution at 0.1 pc. We then discard any sectorized profiles that show a column density rise of more than 6.46×1021cm?2, which is the peaking column density of the log-normal part in Cygnus-X’s N-PDF,with the increasing radius to bypass the contamination from nearby sources. We average the remaining sectorized N(R)profiles to obtain a final N(R) profile for each column density peak. The obtained N(R)profiles are shown in Figure 2. In the sections below, to distinguish from the structures used in the M–R relation, we call these 135 structures extending outward from the column density peaks to about 10 pc the 135 Cygnus-X clumps. Note that they are not “clumps” in the usual definition, and have no strict boundaries.

    The N(R) profiles are apparently steep in the inner part and flat in the outer part,with the break points roughly around 1 pc(see Figure 2). We then fit the N(R) profiles with a broken power-law distribution as described by

    Figure 1.The column density map of Cygnus-X in[cm?2].(a)Yellow circles denote the 1 pc radius around the 135 peaks.White contours outline the regions with column densities higher than 5.0×1021 cm?2.Orange contours outline the regions with column densities higher than 1.86×1022 cm?2.(b)A zoom-in image of the area outlined by the white rectangle in panel (a), to better display the morphology of the column density distribution around the selected density peaks.

    Figure 2. Radial N(R) profiles of the 135 clumps at R=0.1 ?10 pc. The corresponding broken power-law fittings are shown in dashed lines.

    3. From N(R) Profiles to M–R Relations

    3.1. Obtaining the M–R Relation

    By integrating the broken power-law N(R) profile, we can obtain the M(R) profile as

    The well known M–R relation is obtained by intercepting a group of M(R)profiles with some column density threshold N0.In real observations, N0is determined by either observational limits,such as the detection limit which is typically a few times the noise level,or by the selection effect of a source extraction algorithm(e.g.,Kegel 1989;Scalo 1990;Ballesteros-Paredes&Mac Low 2002). With the column density threshold N0determined, the mass M and radius R in an M–R relation are defined as

    Figure 3.Parameters derived by performing broken power-law fittings to the 135 Cygnus-X clumps.Orange and blue dashed lines show the 1σ(68%)and 2σ(95%)distribution intervals,respectively.(a)The distribution of the inner power-law index n.(b)The distribution of the outer power-law index m.(c)The distribution of the transitional column density NTP. (d) The distribution of RTP, the radius at the transitional point.

    Thus the mass and radius of a structure in an M–R relation are determined by both the four N(R) parameters and the column density threshold N0. Further, combining Equation (3) and Equation (4), the M–R relation can be given by

    From Equation(5),the M–R relation at N0≥NTPis apparently a function of R2, and is simplified to M ∝R2if all the clumps have the same inner power-law index n and are trimmed at a constant N0.Otherwise,the M–R relation deviates from M ∝R2at a degree depending both on the density profile N(R) and the threshold density N0. We explore the M–R relation in detail in the following subsection.

    3.2. Effects of the N(R) Parameters and N0

    Figure 4.Gray lines show a set of M(R)profiles equivalent to column density profiles that have n=0.63, m=0.11, andσNRTP= 1. Blue and orange dots mark the data points obtained by intercepting those M(R) profiles with N0=2.5×1022 cm?2 and N0=8.0×1021 cm?2, respectively. The data points are used to fit the M–R relations (solid lines). Blue and orange dashed lines indicate M(R) profiles corresponding to constant column densities of 2.5×1022 cm?2 and 8.0×1021 cm?2, respectively.

    Figure 5.Same as Figure 4,but for m=0.11,σNRTP= 0,n evenly distributed from 0 to 1.2, and N0=2.5×1022 cm?2 and N0=5.0×1022 cm?2.

    Figure 6. Same as Figure 5, but forσNRTP= 0.5in panel (a) andσNRTP= 1.0 in panel (b).

    Figure 8.M–R relations derived from the M(R)profiles of the 135 Cygnus-X clumps,which are intercepted with different choices of N0 as indicated below each panel.Other symbols are the same as those shown in Figures 4–7.

    Now we can summarize the effects of the N(R) parameters and the column density threshold N0on the M–R relation as follows: (1) constant N(R) profile power-law index and constant N0give rise to an M ∝R2tendency; (2) the N(R)power-law index with a wide range steepens the M–R relation;(3) NTPand RTPwith wide ranges to some extent weaken the steepening effect due to the variation of the N(R) power-law index; (4) N0with a wide range tend to wash out the M ∝R2relation and get the M–R relation approaching the averaged density profile of the sample sources; (5) at N

    3.3. The M–R Relation of the 135 Cygnus-X Clumps

    Using the 135 Cygnus-X clumps, we look into the M–R relations from a more realistic perspective. The N(R)parameters of the 135 clumps are described in Section 2. By fixing N0at a certain value, or allowing it to vary within a range,we obtain six samples of the clumps.We then fit the M–R relations with power-law models. Only structures within 0.1–10 pc are included in the fitting. The results are shown in Figure 8.

    Cases 1–3 have their N0fixed at a certain value. We adopt N0=7.9×1021cm?2in Case 1. This N0is lower than NTPof most clumps,and the obtained structures mainly fall at 1–10 pc.The M–R relation is similar to that shown in orange in Figure 4:the constant N0favors an M ∝R2relation, while N0

    Figure 9. The M–R indexes (left) and the M–R fitting results’ correlation coefficients (right) of the 135 clumps. The column density threshold N0 is defined by log10 ( N0)=log10 (N0,mean)±log10 (N0,half range). The numbers correspond to the cases in Figure 8. White contours show M–R indexes of 2.

    In Cases 4–6, N0of each structure is randomly generated within a range in logarithmic space.Most structures obtained in Case 4 have radii falling in the range of 1–10 pc.The N0range of 1021.9±0.2cm?2is wide enough to cover the column densities of most clumps below NTP. With the wide N0range,the M–R relation can potentially probe the density profiles in the N

    We further obtain the M–R indexes in Figure 9. By simply varying the mean and range of N0,M–R relations with indexes from 1.4 to 2.4 are obtained from the 135 clumps. When N0is fixed at a certain value, we obtain M–R relations with indexes of 1.8–2.4. The M–R relations with N0<1022.1cm?2have indexes around 1.8–1.9.At higher N0,we obtain M–R relations with indexes of 2–2.4. When N0has a sufficiently wide range,the M–R index is always smaller than 2 and decreases with the increase of N0. These indexes manifest the density profiles at the corresponding scales.The decreasing trend comes from the difference between the mean shapes of the two parts of the M(R) profiles, i.e., M(R)∝R1.89for R>RTPand M(R)∝R1.37for R ≤RTP. When N0varies within a range but the range is smaller,the M–R index will be between the two cases where N0is fixed and has a wide range.

    4. Discussion

    In Section 2,we obtained the column density profiles of 135 clumps in Cygnus-X.Their main features are:1)the profiles all show broken power-law shapes at 0.1 ?10 pc, 2) the parameters of each clump’s profile are different, 3) the transition points of the profiles are around 0.8 pc and 1022cm?2, suggesting density profiles of ρ ∝R?1.63in the inner part and ρ ∝R?1.11in the outer part. These two parts of density profiles are consistent with the circumstances of freefall collapse (ρ ∝R?α, with α=1.5 ?2.0) and turbulence dominated nature (α ≈1.0), respectively. They are also comparable to the log-normal + power-law N-PDF of Cygnus-X. The N-PDF of Cygnus-X has its power-law index at 2.33 (Xing et al. 2022, in preparation), corresponding to a density profile of ρ ∝R?1.86.The transitional column density between the lognormal and power-law parts is at 1.86×1022cm?2. These values are slightly different from the parameters of our density profiles,which is because the power-law index of an N-PDF is more affected by the densest sources, and the transitional column density is related to the proportion of high and low density components. These all suggest that the broken powerlaw column density profiles imply a gravity-dominated dense core + turbulence-dominated diffuse cloud, and the transition point at 0.8 pc and 1022cm?2acts as the division of the two components.

    In Section 3 we show how the N(R)profiles and N0affect the shape of the M–R relation. From the observational point of view, N0is often determined by the detection limit or set by a threshold in some source extraction method (Kegel 1989;Scalo 1990; Ballesteros-Paredes & Mac Low 2002), and it is likely to be constant. In such a situation the M–R relation may show the well-known M ∝R2scaling law (Lombardi et al.2010; Ballesteros-Paredes et al. 2012), provided N0≥NTPand the power-law index n is nearly constant; the M–R power-law indexes may be slightly less than 2 if N0is lower than NTP(Figure 8.1); the M–R relation may also appear to be steeper than M ∝R2,as seen in some other studies(Roman-Duval et al.2010;Kainulainen et al.2011),when N0≥NTPand the powerlaw index n varies from source to source.

    When many molecular cloud structures are included in an analysis(Larson 1981;Urquhart et al.2014,2018),N0is likely to have a wide distribution, if the cloud structures under investigation were obtained from different observations or extracted from highly varying backgrounds.In these cases,the derived M–R relations may to some extent manifest the density profiles of the cloud structures. But caution should be taken in converting the observed M–R relation to a density profile if the observations significantly suffered from short dynamical ranges(e.g., Scalo 1990; Ballesteros-Paredes & Mac Low 2002;Schneider & Brooks 2004). For molecular cloud structures in Cygnus-X, a M ∝R1.9relation is expected to be obtained with an observational study capable of trimming the structures at large and varying radii (e.g., at R>1 pc and N<1022cm?2),as a consequence of a tight distribution of the power-law indexes for the density profiles in the outer parts (i.e.,ρ ∝R?1.1, see Section 2). Shallower relations can be found at smaller scales and higher densities. They correspond to ρ ∝R?αdensity distributions with α clearly larger than 1.

    Applying different source extraction or identification algorithms to the same molecular cloud, different structures(Schneider & Brooks 2004; Li et al. 2020) and M–R relations(Schneider&Brooks 2004)can be obtained.Without knowing the impact on N0of the source extraction process,it is difficult to make convincing interpretations of the M–R relations. For example, ρ ∝R?1profiles and a constant N0can both result in M ∝R2relations. Stronger line-of-sight contamination for larger cloud structures (Ballesteros-Paredes et al. 2019), an approximately constant volume density for all the cloud structures under investigation (Lada et al. 2008; Li &Zhang 2020), and variation from source to source in the power-law index of the N(R) profiles can all lead to M–R relations steeper than M ∝R2, but only when N0is constant or falls in a narrow range can a steep M–R relation come from the difference in the N(R) index. Therefore, before interpreting an M–R relation, one is suggested to carefully check how the cloud structures in the sample are derived and then to determine if a constant N0, or instead a varying N0, is implicitly being used; only in the latter case, the observed M–R relation could be useful in constraining the averaged density profile of the cloud structures under investigation.From another perspective,an observational experiment optimized for converting an M–R relation to a density profile would require high resolution and high sensitivity to reasonably resolve each source and allow an estimate of the source flux and size free of sensitivity limitation(e.g., estimation based on the peak intensity and FWHM size by 2D Gaussian fitting to the source brightness distribution).By this way one equivalently has N0varying from source to source. High resolution also helps to minimize potential lineof-sight contamination, while high sensitivity observations of optically thin tracers are desirable to increase the dynamical range.

    Can M–R relations help to determine whether the cloud structures are in virial equilibrium? Due to the lack of velocity information, M–R relations cannot be directly linked to the virial state. However, having the linewidth—size relation of σv∝R0.5satisfied (Larson 1981; Myers et al. 1983; Solomon et al. 1987; Falgarone et al. 2009), the M ∝R2relation is suggested to imply that the cloud structures are in virial equilibrium (Larson 1981; Solomon et al. 1987). However, as we discussed above, the M ∝R2relation does not necessarily mean a density profile of ρ ∝R?1, and thus cannot be a straightforward indicator of virial equilibrium. When the M ∝R2relation is verified to imply ρ ∝R?1, and if the structures also follow σv∝R0.5, the gravitational to kinetic energy ratio is a constant, and means virial equilibrium if that constant is about 2 (Myers and Goodman 1988; Ballesteros-Paredes 2006).

    5. Summary

    Using the column density map from Cao et al. (2019), we obtain N(R) profiles of 135 dense structures in Cygnus-X. At 0.1–10 pc, all the structures have broken power-law N(R)profiles, suggesting their dense core + diffuse cloud nature.With the transition at approximately 0.8 pc and 1022cm?2, the N(R) profiles have a power-law index of 0.63±0.59 at small radii, and 0.11±0.20 at large radii.

    We explore the M–R relation using the broken power-law N(R) profiles. Both the N(R) profiles and the column density threshold N0determine the shape of the M–R relation: for N0>NTP, we find (1) constant N(R) power-law index and N0lead to M ∝R2, (2) the N(R) index with a wide range steepens the M–R relation, (3)NTPand RTPwith wider ranges make the data points in the M–R plot spread out along loci following M ∝R2, (4) N0with a wide range tend to make the M–R relation follow M(R) profiles. For N0

    From the observational perspective, the column density threshold N0in extracting cloud structures plays a crucial role in shaping the M–R relation. With a constant N0, the M–R relation cannot be a probe of the density profile.Its M–R index can be slightly less than 2 (when N0

    Acknowledgments

    This work was supported by the National Key R&D Program of China No.2017YFA0402600.We acknowledge the support from the National Natural Science Foundation of China(NSFC) through grants U1731237, 11473011, 11590781 and 11629302.

    国产不卡av网站在线观看| 成人国产av品久久久| 国产男人的电影天堂91| 天天躁日日躁夜夜躁夜夜| 在线观看www视频免费| 美女午夜性视频免费| 亚洲av电影在线进入| 青草久久国产| 久久久精品94久久精品| a级毛片黄视频| 日本91视频免费播放| 性高湖久久久久久久久免费观看| 18禁黄网站禁片午夜丰满| 久久久久久久久免费视频了| 韩国高清视频一区二区三区| 99re6热这里在线精品视频| 黄频高清免费视频| 国产97色在线日韩免费| 免费在线观看视频国产中文字幕亚洲 | 午夜福利在线免费观看网站| 成年人黄色毛片网站| 欧美另类一区| 国产日韩欧美视频二区| 91麻豆精品激情在线观看国产 | 99精品久久久久人妻精品| 欧美日韩国产mv在线观看视频| 午夜老司机福利片| 国产熟女午夜一区二区三区| 视频区图区小说| 精品国产一区二区久久| 亚洲国产av新网站| 色婷婷av一区二区三区视频| 18禁黄网站禁片午夜丰满| 国产激情久久老熟女| 91老司机精品| 午夜91福利影院| 成人国产一区最新在线观看| 亚洲九九香蕉| 女人精品久久久久毛片| 欧美国产精品va在线观看不卡| 91成人精品电影| 精品久久久久久久毛片微露脸 | 精品国产国语对白av| 伊人久久大香线蕉亚洲五| www.av在线官网国产| 国产熟女午夜一区二区三区| 王馨瑶露胸无遮挡在线观看| www.自偷自拍.com| 久久精品人人爽人人爽视色| 一本色道久久久久久精品综合| 女人爽到高潮嗷嗷叫在线视频| 人人妻,人人澡人人爽秒播| 视频区欧美日本亚洲| 国产国语露脸激情在线看| 日日夜夜操网爽| 国产日韩欧美视频二区| 国产在线免费精品| 老司机午夜十八禁免费视频| 99国产精品一区二区三区| 久久久国产欧美日韩av| av网站免费在线观看视频| 国产男女内射视频| 水蜜桃什么品种好| 日韩欧美一区二区三区在线观看 | 日韩电影二区| 欧美亚洲 丝袜 人妻 在线| 制服人妻中文乱码| 成人av一区二区三区在线看 | 亚洲精品国产av成人精品| 十八禁高潮呻吟视频| 久久中文字幕一级| 日本vs欧美在线观看视频| 精品国产国语对白av| 女人高潮潮喷娇喘18禁视频| 大型av网站在线播放| 亚洲avbb在线观看| 日韩中文字幕欧美一区二区| 99精品欧美一区二区三区四区| 国产色视频综合| 黄片播放在线免费| bbb黄色大片| 制服人妻中文乱码| 国产无遮挡羞羞视频在线观看| www.999成人在线观看| 免费人妻精品一区二区三区视频| 国产成人免费无遮挡视频| 91字幕亚洲| 午夜福利免费观看在线| 老司机福利观看| a级毛片黄视频| 少妇被粗大的猛进出69影院| 汤姆久久久久久久影院中文字幕| 国产1区2区3区精品| 天天躁夜夜躁狠狠躁躁| 亚洲欧美一区二区三区黑人| www.精华液| 精品少妇一区二区三区视频日本电影| 欧美老熟妇乱子伦牲交| 午夜精品久久久久久毛片777| 日日摸夜夜添夜夜添小说| 好男人电影高清在线观看| 久久国产精品大桥未久av| 久久久久久亚洲精品国产蜜桃av| 一级a爱视频在线免费观看| 国产精品国产av在线观看| 亚洲人成电影观看| 成年av动漫网址| 成人亚洲精品一区在线观看| 亚洲国产中文字幕在线视频| 悠悠久久av| 性高湖久久久久久久久免费观看| 亚洲精品国产一区二区精华液| av免费在线观看网站| 欧美老熟妇乱子伦牲交| 免费不卡黄色视频| 五月天丁香电影| 日韩欧美一区视频在线观看| 汤姆久久久久久久影院中文字幕| 黄色怎么调成土黄色| 天天躁夜夜躁狠狠躁躁| 亚洲国产精品一区二区三区在线| 黄色a级毛片大全视频| 成年av动漫网址| 国内毛片毛片毛片毛片毛片| 久久ye,这里只有精品| 久久久精品区二区三区| 国产一区二区激情短视频 | 日韩欧美一区视频在线观看| 两性夫妻黄色片| 精品高清国产在线一区| 日韩精品免费视频一区二区三区| 欧美日韩福利视频一区二区| 下体分泌物呈黄色| 亚洲精品粉嫩美女一区| 777米奇影视久久| 久久国产精品影院| 美女高潮到喷水免费观看| 两人在一起打扑克的视频| 成年人午夜在线观看视频| 国产欧美日韩一区二区三 | 777久久人妻少妇嫩草av网站| 亚洲视频免费观看视频| 日本vs欧美在线观看视频| 手机成人av网站| 精品乱码久久久久久99久播| 十分钟在线观看高清视频www| 曰老女人黄片| 99re6热这里在线精品视频| 亚洲伊人久久精品综合| 天堂俺去俺来也www色官网| 欧美激情极品国产一区二区三区| 两性夫妻黄色片| 91大片在线观看| 99国产精品一区二区三区| 国产一级毛片在线| 久热这里只有精品99| 亚洲国产精品一区二区三区在线| 久久性视频一级片| 极品人妻少妇av视频| 脱女人内裤的视频| 精品少妇一区二区三区视频日本电影| 国产日韩欧美在线精品| 成人亚洲精品一区在线观看| 国产av又大| 丰满人妻熟妇乱又伦精品不卡| 午夜福利影视在线免费观看| 亚洲精品国产av蜜桃| 18禁国产床啪视频网站| 亚洲av日韩在线播放| 日韩制服骚丝袜av| 免费一级毛片在线播放高清视频 | 日韩一区二区三区影片| 性高湖久久久久久久久免费观看| 久久久久精品国产欧美久久久 | 亚洲精品自拍成人| 啦啦啦视频在线资源免费观看| 国产亚洲av片在线观看秒播厂| 亚洲精品自拍成人| 欧美少妇被猛烈插入视频| 91精品国产国语对白视频| 黄网站色视频无遮挡免费观看| 1024香蕉在线观看| 成人国语在线视频| 精品少妇一区二区三区视频日本电影| 久久国产精品大桥未久av| 亚洲国产中文字幕在线视频| 国产欧美日韩一区二区三区在线| 久久天躁狠狠躁夜夜2o2o| 啦啦啦在线免费观看视频4| 丁香六月天网| 最黄视频免费看| 欧美人与性动交α欧美软件| 亚洲精品国产精品久久久不卡| 亚洲第一欧美日韩一区二区三区 | 三上悠亚av全集在线观看| 狠狠婷婷综合久久久久久88av| 久久ye,这里只有精品| 韩国精品一区二区三区| 国产精品成人在线| 岛国在线观看网站| 色94色欧美一区二区| 法律面前人人平等表现在哪些方面 | 日韩欧美免费精品| 久久99热这里只频精品6学生| 亚洲成人免费av在线播放| 免费看十八禁软件| 免费日韩欧美在线观看| 精品人妻熟女毛片av久久网站| 国产97色在线日韩免费| 三上悠亚av全集在线观看| 交换朋友夫妻互换小说| 色播在线永久视频| av视频免费观看在线观看| 国产成人av教育| 九色亚洲精品在线播放| 亚洲性夜色夜夜综合| 男女高潮啪啪啪动态图| av在线老鸭窝| 久久九九热精品免费| 午夜福利影视在线免费观看| 岛国毛片在线播放| 国产一区二区 视频在线| 丝袜喷水一区| 嫁个100分男人电影在线观看| a 毛片基地| av线在线观看网站| 少妇被粗大的猛进出69影院| 亚洲精华国产精华精| 亚洲国产中文字幕在线视频| 嫩草影视91久久| 久久免费观看电影| 欧美乱码精品一区二区三区| 亚洲久久久国产精品| 一本—道久久a久久精品蜜桃钙片| 亚洲欧美日韩另类电影网站| 日韩欧美免费精品| 在线观看免费高清a一片| 无遮挡黄片免费观看| 在线观看免费日韩欧美大片| 五月天丁香电影| 日韩,欧美,国产一区二区三区| 可以免费在线观看a视频的电影网站| 天堂俺去俺来也www色官网| 国产有黄有色有爽视频| av国产精品久久久久影院| 美女午夜性视频免费| 别揉我奶头~嗯~啊~动态视频 | 午夜福利免费观看在线| 青青草视频在线视频观看| 国产精品久久久av美女十八| 国产国语露脸激情在线看| 欧美精品亚洲一区二区| 少妇裸体淫交视频免费看高清 | 国产真人三级小视频在线观看| 如日韩欧美国产精品一区二区三区| 老司机深夜福利视频在线观看 | 亚洲va日本ⅴa欧美va伊人久久 | 亚洲欧美日韩高清在线视频 | 国产精品久久久久久人妻精品电影 | 一级毛片精品| 亚洲av美国av| 亚洲av日韩在线播放| 欧美在线一区亚洲| 欧美午夜高清在线| 在线天堂中文资源库| cao死你这个sao货| 亚洲国产中文字幕在线视频| 亚洲欧美精品综合一区二区三区| 久久久国产欧美日韩av| 亚洲欧美一区二区三区黑人| 中文字幕色久视频| 美女国产高潮福利片在线看| 天天躁夜夜躁狠狠躁躁| 日韩电影二区| 十八禁网站网址无遮挡| 夫妻午夜视频| 日本欧美视频一区| 操美女的视频在线观看| www.自偷自拍.com| 欧美日韩福利视频一区二区| 999久久久精品免费观看国产| 在线看a的网站| 久久 成人 亚洲| 蜜桃在线观看..| 狂野欧美激情性xxxx| 久久久久久久大尺度免费视频| 最近最新中文字幕大全免费视频| 一区二区三区乱码不卡18| 久久久久精品人妻al黑| 国产精品一区二区免费欧美 | 操美女的视频在线观看| 韩国精品一区二区三区| 欧美日韩福利视频一区二区| 每晚都被弄得嗷嗷叫到高潮| 免费看十八禁软件| 国产精品1区2区在线观看. | 午夜免费观看性视频| 日本撒尿小便嘘嘘汇集6| 999久久久精品免费观看国产| 亚洲av欧美aⅴ国产| 美国免费a级毛片| 亚洲国产日韩一区二区| 久久人人爽av亚洲精品天堂| 他把我摸到了高潮在线观看 | 老司机影院成人| 欧美日韩中文字幕国产精品一区二区三区 | 青春草亚洲视频在线观看| 国产日韩欧美在线精品| 各种免费的搞黄视频| www.自偷自拍.com| 国产国语露脸激情在线看| 动漫黄色视频在线观看| 桃红色精品国产亚洲av| 亚洲欧美日韩另类电影网站| 1024视频免费在线观看| 国产精品99久久99久久久不卡| 中文字幕另类日韩欧美亚洲嫩草| 淫妇啪啪啪对白视频 | 亚洲精品乱久久久久久| 精品亚洲成a人片在线观看| 99香蕉大伊视频| 天堂俺去俺来也www色官网| 母亲3免费完整高清在线观看| 老司机影院毛片| 久久久久久久精品精品| av视频免费观看在线观看| 大码成人一级视频| 国产成人系列免费观看| 女人精品久久久久毛片| 丁香六月天网| 成人国语在线视频| 少妇精品久久久久久久| 狂野欧美激情性xxxx| 午夜免费成人在线视频| 亚洲国产av影院在线观看| 丰满饥渴人妻一区二区三| 一级,二级,三级黄色视频| 国产精品熟女久久久久浪| 大陆偷拍与自拍| 中文字幕高清在线视频| 国产免费现黄频在线看| 亚洲成人手机| 久久精品人人爽人人爽视色| 亚洲国产欧美网| 岛国毛片在线播放| 午夜福利视频精品| 亚洲av电影在线进入| 91精品国产国语对白视频| 一二三四社区在线视频社区8| 最新在线观看一区二区三区| 精品高清国产在线一区| 99国产极品粉嫩在线观看| 国产一区二区激情短视频 | 亚洲精品国产精品久久久不卡| 久久综合国产亚洲精品| 日韩制服丝袜自拍偷拍| h视频一区二区三区| 精品少妇一区二区三区视频日本电影| 久久人人97超碰香蕉20202| 国产真人三级小视频在线观看| 91精品三级在线观看| 别揉我奶头~嗯~啊~动态视频 | 午夜福利视频在线观看免费| 肉色欧美久久久久久久蜜桃| 国产男女内射视频| 国产主播在线观看一区二区| 国产精品欧美亚洲77777| 久久国产精品男人的天堂亚洲| 成人国产av品久久久| av视频免费观看在线观看| 免费久久久久久久精品成人欧美视频| 成年动漫av网址| 在线av久久热| 国产成人系列免费观看| 欧美日韩亚洲国产一区二区在线观看 | 大码成人一级视频| 日韩电影二区| 高清在线国产一区| 国产伦理片在线播放av一区| 50天的宝宝边吃奶边哭怎么回事| 捣出白浆h1v1| 美女福利国产在线| 国产精品自产拍在线观看55亚洲 | 久久久久久久精品精品| 大香蕉久久网| 欧美日韩国产mv在线观看视频| 国产一区二区三区在线臀色熟女 | 国产精品 国内视频| av免费在线观看网站| 最近最新免费中文字幕在线| 黄网站色视频无遮挡免费观看| 欧美日韩成人在线一区二区| 999久久久精品免费观看国产| 制服诱惑二区| 伊人久久大香线蕉亚洲五| 日本wwww免费看| 男人舔女人的私密视频| 99热网站在线观看| 日韩视频在线欧美| 国产精品免费大片| 亚洲成人国产一区在线观看| 午夜免费鲁丝| 少妇被粗大的猛进出69影院| 精品久久蜜臀av无| 日韩 欧美 亚洲 中文字幕| 老司机午夜十八禁免费视频| 12—13女人毛片做爰片一| 日韩大码丰满熟妇| 12—13女人毛片做爰片一| 亚洲人成电影免费在线| 精品亚洲乱码少妇综合久久| 久久久久视频综合| 两个人免费观看高清视频| 黄色片一级片一级黄色片| 99国产精品一区二区三区| 亚洲欧美日韩高清在线视频 | 91精品伊人久久大香线蕉| 亚洲成人国产一区在线观看| 性少妇av在线| 一区二区三区激情视频| 久久精品国产亚洲av高清一级| av在线播放精品| 精品视频人人做人人爽| 首页视频小说图片口味搜索| 欧美日韩黄片免| 高清黄色对白视频在线免费看| 亚洲色图综合在线观看| 国产精品久久久人人做人人爽| 在线av久久热| 999久久久国产精品视频| 一级,二级,三级黄色视频| 高清视频免费观看一区二区| 国产97色在线日韩免费| 女人被躁到高潮嗷嗷叫费观| 午夜福利在线观看吧| 夜夜骑夜夜射夜夜干| 欧美日韩中文字幕国产精品一区二区三区 | 在线亚洲精品国产二区图片欧美| 欧美精品人与动牲交sv欧美| 我要看黄色一级片免费的| 人人妻人人爽人人添夜夜欢视频| 最新在线观看一区二区三区| 水蜜桃什么品种好| 国产一区二区三区综合在线观看| 女人精品久久久久毛片| 久久久久网色| www.999成人在线观看| 欧美激情久久久久久爽电影 | 99国产精品一区二区三区| 99国产精品一区二区蜜桃av | 老司机亚洲免费影院| 久久免费观看电影| 悠悠久久av| 日本撒尿小便嘘嘘汇集6| 久久国产精品男人的天堂亚洲| 高清在线国产一区| www.av在线官网国产| 精品久久久精品久久久| 亚洲av欧美aⅴ国产| 性色av一级| 视频区图区小说| 欧美精品高潮呻吟av久久| 欧美另类一区| 亚洲精品国产精品久久久不卡| 一本久久精品| 亚洲精品日韩在线中文字幕| 18禁观看日本| 成人三级做爰电影| 亚洲男人天堂网一区| 中文字幕高清在线视频| cao死你这个sao货| 999精品在线视频| 99久久精品国产亚洲精品| 在线观看一区二区三区激情| 久久ye,这里只有精品| 欧美激情极品国产一区二区三区| 欧美性长视频在线观看| 桃红色精品国产亚洲av| 日本五十路高清| 欧美中文综合在线视频| 欧美日本中文国产一区发布| 不卡av一区二区三区| 18在线观看网站| 三上悠亚av全集在线观看| 成年女人毛片免费观看观看9 | 丰满饥渴人妻一区二区三| 人人妻人人澡人人看| 欧美精品高潮呻吟av久久| 搡老乐熟女国产| 五月开心婷婷网| www日本在线高清视频| 日韩大码丰满熟妇| 亚洲精品一区蜜桃| √禁漫天堂资源中文www| 日本黄色日本黄色录像| 国产精品久久久久成人av| 亚洲人成电影观看| 午夜免费成人在线视频| 男女国产视频网站| 成人亚洲精品一区在线观看| a 毛片基地| 69精品国产乱码久久久| 国产又爽黄色视频| 人人妻人人添人人爽欧美一区卜| 国产有黄有色有爽视频| 国产日韩欧美视频二区| 免费不卡黄色视频| 1024香蕉在线观看| 欧美日韩国产mv在线观看视频| 最近最新免费中文字幕在线| 久久人人97超碰香蕉20202| 高清av免费在线| 亚洲国产精品999| 亚洲精品久久午夜乱码| 国产精品二区激情视频| 亚洲成国产人片在线观看| 国产片内射在线| 啦啦啦免费观看视频1| 自拍欧美九色日韩亚洲蝌蚪91| 伊人久久大香线蕉亚洲五| 亚洲人成电影免费在线| 亚洲精品中文字幕在线视频| 极品人妻少妇av视频| 欧美变态另类bdsm刘玥| 91精品伊人久久大香线蕉| 伊人亚洲综合成人网| 午夜精品国产一区二区电影| 欧美中文综合在线视频| 视频区欧美日本亚洲| 黄色视频在线播放观看不卡| 18禁黄网站禁片午夜丰满| 午夜福利乱码中文字幕| 中文字幕高清在线视频| 中国美女看黄片| 人人妻,人人澡人人爽秒播| 久久久久精品国产欧美久久久 | 亚洲成国产人片在线观看| 免费在线观看完整版高清| 午夜福利影视在线免费观看| 两性夫妻黄色片| 午夜影院在线不卡| av国产精品久久久久影院| 69av精品久久久久久 | 久久精品人人爽人人爽视色| 少妇 在线观看| 日韩一卡2卡3卡4卡2021年| 国产又色又爽无遮挡免| 女人爽到高潮嗷嗷叫在线视频| 亚洲五月婷婷丁香| 在线观看人妻少妇| 人人妻人人添人人爽欧美一区卜| 最近最新中文字幕大全免费视频| 中文字幕制服av| 国产激情久久老熟女| 欧美日韩中文字幕国产精品一区二区三区 | 久久国产亚洲av麻豆专区| 一级片免费观看大全| 亚洲专区中文字幕在线| av一本久久久久| 黑丝袜美女国产一区| 国产精品一二三区在线看| 少妇的丰满在线观看| 99国产精品免费福利视频| 五月天丁香电影| 日本一区二区免费在线视频| 他把我摸到了高潮在线观看 | 亚洲欧美色中文字幕在线| 脱女人内裤的视频| 亚洲国产欧美一区二区综合| 嫩草影视91久久| 中文字幕最新亚洲高清| 日韩欧美免费精品| 悠悠久久av| 国产精品欧美亚洲77777| 黑丝袜美女国产一区| 精品国产超薄肉色丝袜足j| 亚洲第一欧美日韩一区二区三区 | 久久99一区二区三区| 天天躁夜夜躁狠狠躁躁| av天堂久久9| 成年美女黄网站色视频大全免费| 亚洲精品中文字幕在线视频| 午夜久久久在线观看| 黑丝袜美女国产一区| 999久久久精品免费观看国产| av网站在线播放免费| 欧美日韩中文字幕国产精品一区二区三区 | 一本综合久久免费| 久9热在线精品视频| 考比视频在线观看| 亚洲欧美清纯卡通| 最黄视频免费看| 久久久欧美国产精品| 国产亚洲精品一区二区www | 亚洲人成电影观看| 天天影视国产精品| 99国产精品99久久久久| 亚洲精品久久久久久婷婷小说| 国产精品久久久av美女十八| 国产成人免费无遮挡视频| 国产成人影院久久av| 国产xxxxx性猛交| 丝袜美足系列| 欧美精品一区二区免费开放| 午夜福利乱码中文字幕| 国产亚洲精品一区二区www | 在线观看免费日韩欧美大片| 日韩 欧美 亚洲 中文字幕| 精品卡一卡二卡四卡免费| 制服诱惑二区| 午夜福利一区二区在线看| 高清欧美精品videossex| 日本一区二区免费在线视频| 亚洲第一青青草原| 在线 av 中文字幕|