• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Alterations of autophagic and innate immune responses by the Crohn’s disease-associated ATG16L1 mutation

    2022-07-30 10:03:12OkaiWatanabeMinagaKamataHonjoKudo
    World Journal of Gastroenterology 2022年26期

    Okai N, Watanabe T, Minaga K, Kamata K, Honjo H, Kudo M

    Abstract Crohn’s disease (CD) is driven by the loss of tolerance to intestinal microbiota and excessive production of pro-inflammatory cytokines. These pro-inflammatory cytokines are produced by macrophages and dendritic cells (DCs) upon sensing the intestinal microbiota by the pattern recognition receptors (PRRs). Impaired activation of PRR-mediated signaling pathways is associated with chronic gastrointestinal inflammation, as shown by the fact that loss-of-function mutations in the nucleotide-binding oligomerization domain 2 gene increase the risk of CD development. Autophagy is an intracellular degradation process,during which cytoplasmic nutrients and intracellular pathogens are digested.Given that impaired reaction to intestinal microbiota alters signaling pathways mediated by PRRs, it is likely that dysfunction of the autophagic machinery is involved in the development of CD. Indeed, the loss-of-function mutation T300A in the autophagy related 16 like 1 (ATG16L1) protein, a critical regulator of autophagy, increases susceptibility to CD. Recent studies have provided evidence that ATG16L1 is involved not only in autophagy, but also in PRR-mediated signaling pathways. ATG16L1 negatively regulates pro-inflammatory cytokine responses of macrophages and DCs after these cells sense the intestinal microbiota by PRRs. Here, we discuss the molecular mechanisms underlying the development of CD in the T300A ATG16L1 mutation by focusing on PRR-mediated signaling pathways.

    Key Words: ATG16L1; Crohn's disease; Autophagy; Innate immunity; Cytokine; Pattern recognition receptors

    lNTRODUCTlON

    Pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-12, and IL-23,underlie the immunopathogenesis of Crohn’s disease (CD), as evidenced by the clinical efficacy of targeting these cytokines for the treatment of patients[1,2]. These colitogenic cytokines are produced by macrophages and dendritic cells (DCs) upon sensing the intestinal microbiota by the pattern recognition receptors (PRRs), which are classified into Toll-like receptors (TLRs), nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), and retinoic acid-inducible gene I (RIG-I)-like receptors(RLRs)[3-6]. Thus, excessive pro-inflammatory cytokine responses caused by PRR activation play critical roles in the development of CD. This notion is fully supported by the identification of loss-of-function mutations inNOD2as one of the strongest risk factors for CD. NOD2 is an intracellular PRR that senses muramyl dipeptide (MDP) derived from bacterial cell wall components and negatively regulates TLRmediated pro-inflammatory cytokine responses[5,6].

    Autophagy refers to the process during which cytoplasmic components and intracellular pathogens are delivered to the lysosome for degradation in the form of double-membrane-bound autophagosomes[7]. The autophagy related 16 like 1 (ATG16L1) protein plays an indispensable role in the initiation and completion of the autophagic process. In addition to its role in autophagy, ATG16L1 has been shown to be involved in PRR-mediated innate immunity. ATG16L1 negatively regulates pro-inflammatory and type I interferon (IFN-I) responses mediated by TLRs, NLRs, and RLRs[8]. More importantly, the lossof-function mutation T300A inATG16L1has been identified as a risk factor for CD in parallel with mutations inNOD2[6]. In this minireview article, we summarize the molecular mechanisms by which the T300A mutation inATG16L1predisposes the host to CD development by focusing on the regulatory role of ATG16L1 in PRR-mediated signaling pathways.

    lNDUCTlON OF AUTOPHAGY BY ATG16L1

    ATG16L1 is an indispensable molecule for autophagic responses (Table 1). The autophagy process includes vesicle nucleation, vesicle elongation, vesicle completion, fusion with lysosome, degradation,and recycling[9]. Autophagy dysfunction is associated with neurodegenerative diseases, microbial infections, and aging[7]. Although autophagy has been identified as the primary cell response to the lack of nutrients, recent studies have highlighted the importance of autophagy in microbial infection and immune responses[9]. The autophagy process is negatively regulated by growth factors, which activate the mechanistic target of rapamycin (mTOR) and the phosphoinositide 3-kinase (PI3K)-AKT pathways[7,9]. On the contrary, nutrient starvation or rapamycin treatment promotes the autophagic process through the inhibition of mTOR. Thus, the PI3K-AKT-mTOR pathway negatively regulates autophagic process. On the molecular level, mTOR activation controls the initiation of autophagy by suppressing the activation of the primary initiation complex of autophagy, called Unc-51 Like autophagy activating kinase 1 (ULK1) complex, composed of ULK1/2, ATG101, ATG13, and RB1CC1/FIP200[9]. The formed ULK1 complex translocates to the site of the second complex, called the PI3K complex[9]. The latter PI3K complex recruits a number of ATG proteins to promote elongation and expansion of the autophagosome.

    Two ubiquitin-like conjugation systems, the ATG5-ATG12-ATG16L1 conjugation system and the microtubule-associated protein 1 Light chain 3 (LC3) conjugation system, play important roles in the elongation and expansion of the autophagosome[7,9]. The conjugation of the membrane lipid phosphatidylethanolamine with the soluble form of LC3 and formation of the ATG5-ATG12-ATG16L1 complex is necessary for the maturation of autophagosomes[7,9,10]. Matured autophagosomes are fused with lysosomes for the degradation of cellular materials. Vesicles containing ATG16L1 are necessary formembrane trafficking and autophagosome formation[7,9,10]. Thus, ATG16L1 is an essential protein for the induction and completion of autophagic responses.

    Table 1 Physiological functions of autophagy related 16 like 1

    ATG16L1 AND lNNATE lMMUNlTY

    ATG16L1 has been shown to attenuate proinflammatory cytokine responses in innate immunity(Table 1)[8]. RLRs, including RIG-I and melanoma differentiation-associated gene 5 (MDA5), are sensors for RNA viruses[3]. IFN-I, which is produced after viral RNA is sensed by RLRs, plays a protective role in host defense[3]. Mouse embryonic fibroblasts deficient in ATG5 displayed enhanced production of IFN-I after exposure to vesicular stomatitis virus due to enhanced activation of IFN regulatory factor 3[11]. Enhanced production of IFN-I is associated with reduced viral load[11]. ATG16L1 is involved in the regulation of IFN-I mediated by RLRs. Two mitochondrial proteins, NLRX1 and its binding partner,Tu translation elongation factor, interact with ATG5, ATG12, and ATG16L1, and suppress RLR-induced IFN-I production and thereby promoting autophagy[12]. In addition, ATG16L1 has been shown to regulate IFN-I production by interacting with TLR3 and TLR4[13]. Samieet al[13] have provided evidence that macrophages deficient in ATG16L1 produced large amounts of IFN-I after stimulation with TLR3 and TLR4 Ligands (Figure 1). Mechanistically, the loss of ATG16L1 resulted in the accumulation of the toll-IL-1 receptor domain-containing adaptor inducing IFN-β protein (TRIF), leading to the excessive activation of TLR3- and TLR4-mediated signaling pathways. Interestingly, macrophages isolated from individuals bearing the CD-associated ATG16L1 T300A variant also exhibited enhanced IFN-I production upon stimulation with TLR3 and TLR4 Ligands[13]. Thus, ATG16L1 functions as a negative regulator of IFN-I production induced by TLR activation. Excessive activation of IFN-I signaling caused by ATG16L1 deficiency may protect against microbial infection. In fact, ATG16L1 hypomorphic mice displayed enhanced IFN-I signaling upon challenge withCitrobacter rodentium,which conferred protection from enteric pathogen infection[14]. This protection was mediated by mitochondrial antiviral signaling (MAVS) and stimulator of interferon genes (STING) proteins, because mice with hypomorphic ATG16L1 expression and deficient in MAVS or STING were not protected from theC.rodentiuminfection. Similarly, the clearance ofSalmonella typhimuriumfrom the intestine was augmented in mice with myeloid cell-specific ATG16L1 deficiency in an IFN-I-dependent manner[13].IL-22 is a barrier protective cytokine that stimulates antimicrobial responses in the intestine[15]. IL-22 induces STING-dependent IFN-I signaling, which is augmented in the absence of ATG16L1[15]. Such enhanced IFN-I signaling promotes TNF-α production, leading to ileal inflammation, suggesting that ATG16L1 deficiency mediates pro-inflammatory TNF-α responses through cooperative interaction between IL-22 and IFN-I[15]. Taken together, these studies suggest that ATG16L1 dampens IFN-I production mediated by RLRs and TLRs. In turn, the lack of negative regulation of IFN-I signaling owing to the absence of ATG16L1 or the presence of ATG16L1 T300A variant mediates protection from microbial infection in the gastrointestinal tract in an IFN-I-dependent manner.

    In addition to attenuating IFN-I production, ATG16L1 also suppresses IL-1β production by macrophages[16,17]. Macrophages expressing ATG16L1 that lacks the coiled-coil domain produced large amounts of IL-1β upon stimulation with lipopolysaccharide (LPS) (Figure 1)[17]. Pro-IL-1β is processed into the mature form of IL-1β by caspase-1[18]. Accumulation of TRIF is involved in enhanced IFN-I production in the absence ofATG16L1or presence of theATG16L1T300A mutation[13]. Similarly,TRIF-dependent activation of caspase-1 leads to increased production of IL-1β in macrophages lacking ATG16L1[17]. In a murine model of urinary tract infection, ATG16L1 deficiency promoted clearance of uropathogenicEscherichia colithrough excessive production of IL-1β[19]. Thus, ATG16L1 negatively regulates pro-inflammatory pathways mediated not only by IFN-I, but also by IL-1β.

    Regulatory T cells (Tregs) expressing forkhead box P3 (FOXP3) are a specialized T cell population that is indispensable for the establishment and maintenance of immunological self-tolerance[20].Impaired activation of Tregs leads to the development of autoimmune disorders.Bacteroides fragilis(B.fragilis) has been considered to stimulate beneficial immunoregulatory functions through induction of Tregs[21]. Chuet al[22] provided evidence that ATG16L1 expressed in DCs was required for the induction of Tregs expressing FOXP3 upon exposure to outer membrane vesicles (OMVs) ofB. fragilis.Oral administration of OMVs fromB. fragilisprotected wild-type mice from experimental colitis[22],and this effect was accompanied by increased proportions of Tregs expressing FOXP3 and IL-10. Such protective effect of oral administration of OMVs was not seen in mice with DC-specific ATG16L1 deficiency. Thus, ATG16L1 is involved in the maintenance of immune homeostasis through induction of Tregs expressing FOXP3.

    Mutations inNOD2are the strongest risk factor for the development of CD[5,6]. MDP, a bacterial component derived from intestinal bacteria, is a prototypical NOD2 ligand[23,24]. Activation of NOD2 by MDP induces autophagy in macrophages, DCs, and fibroblasts, but not in cells harboring CDassociatedNOD2mutations[25]. Physical interaction between NOD2 and ATG16L1 is induced by the stimulation with MDP[25,26]. Thus, MDP activation of NOD2 mediates bactericidal effects in an ATG16L1-dependent manner, and the presence of CD-associatedNOD2mutations promotes overgrowth of intestinal bacteria, leading to excessive production of pro-inflammatory cytokines.

    Receptor-interacting serine/threonine-protein kinase 2 (RIPK2) is a signaling molecule downstream of NOD2 and TLRs[23,24]. It remains unclear whether ATG16L1 binds to RIPK2 after activation of NOD2. In this regard, we confirmed that ATG16L1 binds to the kinase domain of RIPK2 in overexpression studies[26,27]. In human DCs, ATG16L1 interacted with RIPK2 after the stimulation with MDP and this interaction suppressed NF-κB-dependent proinflammatory responses mediated by TLRs[26,27]. Transfection of intactATG16L1, but not ofATG16L1with the T300A mutation, reduced TLR2-mediated NF-κB activation in human embryonic kidney cells. In the physiological setting, NF-κB activation, as assessed by the degradation of IκBα and expression of phospho-IκBα, was markedly suppressed in human DCs stimulated with TLR2 and NOD2 ligands as compared to the effect of stimulation with a TLR2 ligand alone[26,27]. Furthermore, knockdown ofATG16L1by its specific siRNA increased IL-6 and IL-12p40 production by human DCs upon exposure to TLR2 and NOD2 ligands as compared to the levels of those cytokines in cells transfected with control siRNA[26,27].These studies strongly suggest that ATG16L1 functions as a negative regulator of TLR2-mediated proinflammatory cytokine responses (Figure 1).

    NF-κB activation mediated by TLRs and NOD2 is tightly regulated by Lys (K63)- linked polyubiquitination of RIPK2[23,24,27,28]. As for the molecular mechanisms accounting for the suppression of TLR2-mediated NF-κB activation and pro-inflammatory cytokine production, ATG16L1 has been shown to inhibit polyubiquitination of RIPK2[26,28]. NOD2 activation by MDP also inhibited polyubiquitination of RIPK2 through the induction of interferon regulatory factor 4 (IRF4)[23,24]. Overexpression studies revealed that ATG16L1 and IRF4 act cooperatively to suppress K63-linked polyubiquitination of RIPK2[27]. Given that physical interaction between RIPK2 and IRF4 or ATG16L1 is induced after NOD2 activation by MDP, it is likely that NOD2 downregulates TLR-mediated proinflammatory cytokine responses through binding of ATG16L1 and IRF4 to RIPK2. This idea is fully supported by the fact that RIPK2 expression level is markedly elevated in the colonic mucosa of patients with CD and ulcerative colitis (UC), and it corelates with the levels of pro-inflammatory cytokines, such as TNF-α and IL-6[29].Furthermore, the percentages of lamina propria DCs expressing ATG16L1 and IRF4 in the colon inversely correlate with the expression levels of TNF-α and IL-6[27]. Collectively, these studies support the idea that ATG16L1 acts in concert with NOD2 to suppress excessive pro-inflammatory cytokine responses mediated by TLRs and thereby maintains intestinal homeostasis.

    ATG16L1 AND CD

    The polymorphism Thr300Ala (or T300A) in the coding region of theATG16L1gene confers increased risk for the development of CD[6,10,16]. This polymorphism is a loss-of-function mutation, which affects the induction of autophagy against invading bacteria and is associated with gut bacterial overgrowth and pro-inflammatory cytokine responses[6,10,16]. Recent studies have successfully elucidated some of the molecular mechanisms accounting for the development of CD in the presence of the ATG16L1 T300A variant. Given that ATG16L1 is constitutively expressed in epithelial cells,especially Paneth cells and myeloid cells, these studies have highlighted the importance of ATG16L1-mediated signaling pathways in innate immune cells for the immunopathogenesis of CD[17,25,28,30,31].

    Paneth cells are localized at the base of the crypts in the ileum, and they contribute to the maintenance of intestinal homeostasis through the secretion of antimicrobial peptides (AMPs) and inhibition of intestinal bacterial overgrowth[32]. Mice with hypomorphic expression of ATG16L1 and ATG16L1 T300A-knockin (KI) mice exhibit increased proportions of Paneth cells with abnormal phenotypes, as assessed by lysozyme localization and granule morphology[30-32]. Moreover, Paneth cells from patients with CD carrying ATG16L1 T300A have unusual granule morphology and accumulation of AMPs, with both having been observed also in mice deficient in ATG16L1 or expressing ATG16L1 T300A[32]. Furthermore, defective function of Paneth cells in the absence of ATG16L1 or the presence of theATG16L1T300A mutation led to higher susceptibility to TNF-α-mediated necroptosis and accumulation of the endoplasmic reticulum stress sensor IRE1a, indicating that necroptosis and endoplasmic reticulum stress are involved in the pathogenesis of CD[33]. Thus, the ileal mucosa of patients and mice bearing ATG16L1 T300A is characterized by the defective function of Paneth cells,which results in the overgrowth of intestinal bacteria. This notion is supported by the fact that CD patients bearing theATG16L1T300A mutation display impaired clearance of pathogenic bacteria in the ileal mucosa[34]. It is well established that CD occurs as a result of the interplay between genetic susceptibility and environmental factors. Cigarette smoking is a risk factor for developing CD[35].Interestingly, cigarette smoking has been suggested to amplify effects of theATG16L1T300A mutation,triggering Paneth cell defects, thereby causing chronic intestinal inflammation[31].

    Pro-inflammatory cytokine responses play an important role in the development of CD[1]. TheATG16L1T300A mutation has been shown to enhance pro-inflammatory cytokine responses in the intestine. Mice lacking ATG16L1 in hematopoietic cells were susceptible to dextran sodium sulfate(DSS)-induced colitis[17]. Aggravated DSS-induced colitis in mice lacking ATG16L1 was alleviated by blocking IL-1β-mediated signaling pathways[17]. Furthermore, macrophages lacking ATG16L1 produced more IL-1β upon stimulation with LPS[17]. As for the molecular mechanisms accounting for enhanced production of IL-1β in the absence of ATG16L1, Saitohet al[17] showed that ATG16L1 deficiency resulted in increased production of this cytokine through the TRIF-dependent activation of caspase-1. Thus, ATG16L1 deficiency predisposed mice to DSS-induced colitis by activating IL-1βmediated signaling pathways. In line with these data obtained in mice lacking ATG16L1 in hematopoietic cells, ATG16L1 T300A-KI mice displayed enhanced production of IL-1β upon exposure to LPS[16]. These studies, which utilized ATG16L1-deficient and ATG16L1 T300A-KI mice, support the idea that intact ATG16L1-medaited signaling pathways limit pro-inflammatory cytokine responses triggered by activation of TLRs. In this regard, we and others have reported that ATG16L1 negatively regulates pro-inflammatory cytokine responses mediated by RIPK2, a downstream signaling molecule of TLRs and NLRs[27,28]. Binding of ATG16L1 to the kinase domain of RIPK2 inhibits polyubiquitination of RIPK2, followed by suppression of NF-κB activation[27,28]. These studies strongly suggest that ATG16L1 activation maintains intestinal homeostasis and attenuates reactions against microbiota by inhibiting TLR-mediated pro-inflammatory cytokine responses in macrophages and DCs. Strong support for this idea also comes from the observations that colonic pro-inflammatory cytokine expression inversely correlates with the percentage of CD11c+DCs expressing ATG16L1 in patients with CD and that induction of remission is accompanied by accumulation of CD11c+DCs expressing ATG16L1 in the gastrointestinal tract of patients with CD[27].

    ATG16L1 negatively regulates IFN-I responses mediated by RLRs and TLRs[11-14]. Isolated macrophages from patients with CD bearing theATG16L1T300A mutation produced more IFN-I upon stimulation with TLR3 and TLR4 ligands than macrophages from patients with intact ATG16L1[13,36].Excessive production of IFN-I is involved in the immunopathogenesis of CD and UC. Expression levels of the IFN-stimulated genes was shown to be higher in the inflamed colonic mucosa of patients with CD or UC than in healthy controls[13]. Moreover, expression levels of IFN-stimulated genes rapidly declined in response to infliximab treatment. Although the presence of theATG16L1T300A variant is associated with colitogenic IFN-I responses, the enhanced production of IFN-I may improve survival of patients with colorectal cancer[36].

    Similar to the molecular mechanisms of chronic inflammation in the presence of CD-associated mutations inNOD2,theATG16L1T300A mutation promotes the development of CD by causing impaired production of AMPs in Paneth cells and excessive secretion of TLR-mediated pro-inflammatory cytokines by macrophages and DCs. MDP activation of NOD2 induces robust production of AMPs from Paneth cells, thereby preventing bacterial overgrowth in the intestine[5]. Paneth cells deficient in NOD2 or bearing CD-associatedNOD2mutations fail to produce AMPs[5]. With regard to the pro-inflammatory cytokine responses, activation of intact NOD2 by MDP negatively regulates the production of TLR-mediated pro-inflammatory cytokines through the induction of IRF4[23,24]. In the absence of intactNOD2or the presence of CD-associatedNOD2mutations, pro-inflammatory cytokine responses by DCs are markedly enhanced upon exposure to TLR ligands derived from the intestinal microbiota[5]. Thus, impaired function of Paneth cells and excessive pro-inflammatory cytokine responses by TLRs underlie the immunopathogenesis of CD in the presence ofATG16L1andNOD2mutations.

    CONCLUSlON

    The autophagic protein ATG16L1 plays an indispensable role in the maintenance of intestinal homeostasis. TheATG16L1T300A mutation confers an increased risk for the development of CD as it is associated with increased bacterial burden and excessive pro-inflammatory cytokine responses in the gastrointestinal tract. Elucidation of the molecular mechanisms by which theATG16L1T300A variant leads to the development of CD has provided new insights into the immunopathogenesis of CD induced by impaired induction of autophagy.

    ACKNOWLEDGEMENTS

    We appreciate Ms. Yukiko Ueno for her secretarial support.

    FOOTNOTES

    Author contributions:Okai N and Watanabe T drafted the manuscript; Watanabe T, Minaga K, Kamata K, Honjo H,and Kudo M revised the manuscript; OKai N, Watanabe T, Minaga K, Kamata K, Honjo H and Kudo M have read and approved the final manuscript.

    Conflict-of-interest statement:The authors declare that they have no conflicts of interest to disclose.

    Open-Access:This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BYNC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is noncommercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

    Country/Territory of origin:Japan

    ORClD number:Natsuki Okai 0000-0002-3167-4927; Tomohiro Watanabe 0000-0001-7781-6305; Kosuke Minaga 0000-0001-5407-7925; Ken Kamata 0000-0003-1568-0769; Hajime Honjo 0000-0002-0888-3384; Masatoshi Kudo 0000-0002-4102-3474.

    Corresponding Author's Membership in Professional Societies:The Japanese Society of Gastroenterology, No. 34410.

    S-Editor:Ma YJ

    L-Editor:A

    P-Editor:Ma YJ

    亚洲中文字幕日韩| 给我免费播放毛片高清在线观看| 十八禁人妻一区二区| 欧美一级毛片孕妇| 久久精品亚洲精品国产色婷小说| 国产高清视频在线播放一区| 国产成年人精品一区二区| 母亲3免费完整高清在线观看| 日本一区二区免费在线视频| 亚洲精品av麻豆狂野| 女同久久另类99精品国产91| 巨乳人妻的诱惑在线观看| 亚洲久久久国产精品| 中亚洲国语对白在线视频| 成人国语在线视频| 久久国产亚洲av麻豆专区| 身体一侧抽搐| 女生性感内裤真人,穿戴方法视频| 久久精品91无色码中文字幕| 精品午夜福利视频在线观看一区| 欧美激情久久久久久爽电影 | 欧美成狂野欧美在线观看| 日本在线视频免费播放| 美女国产高潮福利片在线看| 精品人妻在线不人妻| 亚洲av熟女| 欧美黄色淫秽网站| 在线十欧美十亚洲十日本专区| 国产男靠女视频免费网站| 琪琪午夜伦伦电影理论片6080| 亚洲精品国产精品久久久不卡| 国产精品爽爽va在线观看网站 | e午夜精品久久久久久久| 欧美最黄视频在线播放免费| 伊人久久大香线蕉亚洲五| 中文字幕人妻丝袜一区二区| 午夜免费激情av| 丰满人妻熟妇乱又伦精品不卡| 欧美精品啪啪一区二区三区| 巨乳人妻的诱惑在线观看| 男女之事视频高清在线观看| 熟女少妇亚洲综合色aaa.| www日本在线高清视频| 亚洲自拍偷在线| 亚洲人成77777在线视频| 国产精品美女特级片免费视频播放器 | 老司机在亚洲福利影院| 97碰自拍视频| 欧美日韩亚洲综合一区二区三区_| 精品无人区乱码1区二区| 黄色毛片三级朝国网站| 日韩精品青青久久久久久| 成人18禁高潮啪啪吃奶动态图| 手机成人av网站| 国产xxxxx性猛交| 日本免费a在线| 非洲黑人性xxxx精品又粗又长| 日日爽夜夜爽网站| 久久久久久人人人人人| 亚洲狠狠婷婷综合久久图片| www国产在线视频色| 91在线观看av| 99re在线观看精品视频| 亚洲aⅴ乱码一区二区在线播放 | 成人亚洲精品av一区二区| 一本大道久久a久久精品| 国产av在哪里看| 国产精品爽爽va在线观看网站 | 午夜久久久在线观看| 美女国产高潮福利片在线看| 韩国精品一区二区三区| 国产主播在线观看一区二区| 国产又爽黄色视频| 亚洲精品一区av在线观看| 韩国精品一区二区三区| 国产成人系列免费观看| 国产私拍福利视频在线观看| 国产亚洲欧美在线一区二区| 国产黄a三级三级三级人| 变态另类丝袜制服| 国产精品久久视频播放| 精品熟女少妇八av免费久了| 成人亚洲精品av一区二区| 一级毛片精品| 欧美激情久久久久久爽电影 | 波多野结衣一区麻豆| 桃色一区二区三区在线观看| 中文字幕av电影在线播放| 国产精品99久久99久久久不卡| 免费看a级黄色片| 波多野结衣av一区二区av| 久久久精品欧美日韩精品| 老司机午夜十八禁免费视频| 亚洲av五月六月丁香网| 亚洲成av片中文字幕在线观看| 午夜精品久久久久久毛片777| 免费在线观看日本一区| 一进一出抽搐gif免费好疼| 久久香蕉国产精品| 可以免费在线观看a视频的电影网站| 又黄又粗又硬又大视频| 久久天堂一区二区三区四区| 午夜精品在线福利| 精品卡一卡二卡四卡免费| 人人妻,人人澡人人爽秒播| 国产精品精品国产色婷婷| 久久久久久亚洲精品国产蜜桃av| 国产乱人伦免费视频| 午夜福利一区二区在线看| 1024视频免费在线观看| 怎么达到女性高潮| 午夜影院日韩av| 一夜夜www| 亚洲男人的天堂狠狠| 欧美精品亚洲一区二区| 久久精品影院6| 操出白浆在线播放| 91精品国产国语对白视频| 天天躁夜夜躁狠狠躁躁| av视频在线观看入口| 国产亚洲欧美精品永久| 国产精品一区二区精品视频观看| 天堂√8在线中文| 69精品国产乱码久久久| 国产免费男女视频| 久久婷婷人人爽人人干人人爱 | 日本免费一区二区三区高清不卡 | av免费在线观看网站| 午夜福利一区二区在线看| 亚洲色图 男人天堂 中文字幕| 国产1区2区3区精品| 欧美日本亚洲视频在线播放| 1024视频免费在线观看| 亚洲国产欧美网| 精品久久久久久,| 久久久久久久精品吃奶| 91老司机精品| 国产野战对白在线观看| 又大又爽又粗| 亚洲中文日韩欧美视频| 久久婷婷人人爽人人干人人爱 | 无遮挡黄片免费观看| 欧美成人性av电影在线观看| 国产成人av激情在线播放| 老熟妇仑乱视频hdxx| 国产精品精品国产色婷婷| 精品久久久久久成人av| 12—13女人毛片做爰片一| 一个人免费在线观看的高清视频| 午夜成年电影在线免费观看| 久久婷婷成人综合色麻豆| 嫩草影院精品99| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品98久久久久久宅男小说| 国产精品日韩av在线免费观看 | 宅男免费午夜| 精品无人区乱码1区二区| 久久久久国产精品人妻aⅴ院| 国产精品久久久久久精品电影 | 国产激情欧美一区二区| 中文字幕人成人乱码亚洲影| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品国产高清国产av| 国产精品免费一区二区三区在线| 久久香蕉激情| 久久久久国产精品人妻aⅴ院| 黄片小视频在线播放| 国产精品美女特级片免费视频播放器 | 久久婷婷人人爽人人干人人爱 | 午夜免费鲁丝| 久久久久久久久中文| 欧美绝顶高潮抽搐喷水| 国产蜜桃级精品一区二区三区| 纯流量卡能插随身wifi吗| 19禁男女啪啪无遮挡网站| 99国产极品粉嫩在线观看| 成人亚洲精品一区在线观看| 国产激情久久老熟女| 国产午夜福利久久久久久| 日韩视频一区二区在线观看| 制服人妻中文乱码| 亚洲美女黄片视频| 香蕉国产在线看| 国产伦一二天堂av在线观看| 中文字幕人妻丝袜一区二区| 亚洲男人的天堂狠狠| 久久婷婷成人综合色麻豆| 亚洲狠狠婷婷综合久久图片| 女人精品久久久久毛片| 淫妇啪啪啪对白视频| 欧美乱码精品一区二区三区| 自线自在国产av| 日日干狠狠操夜夜爽| 国产亚洲av嫩草精品影院| 久久九九热精品免费| 成熟少妇高潮喷水视频| 两性午夜刺激爽爽歪歪视频在线观看 | 国产午夜精品久久久久久| 久久性视频一级片| 亚洲国产中文字幕在线视频| 国产免费男女视频| 国产亚洲精品第一综合不卡| 成人亚洲精品一区在线观看| 国产精品美女特级片免费视频播放器 | 亚洲第一电影网av| 成人国产综合亚洲| 久久狼人影院| 午夜免费观看网址| 午夜免费成人在线视频| 国产欧美日韩一区二区三| 一区二区三区精品91| 国产高清videossex| 国产午夜福利久久久久久| 99精品欧美一区二区三区四区| 日韩视频一区二区在线观看| 国产单亲对白刺激| 欧美精品啪啪一区二区三区| 欧美黑人精品巨大| 久久天躁狠狠躁夜夜2o2o| 免费久久久久久久精品成人欧美视频| 中文字幕精品免费在线观看视频| 无遮挡黄片免费观看| 久久精品国产亚洲av高清一级| 狂野欧美激情性xxxx| 国产成+人综合+亚洲专区| 久久久久亚洲av毛片大全| 久久久国产精品麻豆| 一进一出抽搐动态| 亚洲中文日韩欧美视频| 久久欧美精品欧美久久欧美| 露出奶头的视频| 精品一区二区三区四区五区乱码| 中文字幕高清在线视频| 久久久久亚洲av毛片大全| 99国产精品免费福利视频| 无人区码免费观看不卡| 亚洲欧美激情在线| 日韩欧美免费精品| 看片在线看免费视频| 亚洲片人在线观看| 国产精品亚洲av一区麻豆| 日本黄色视频三级网站网址| 免费看美女性在线毛片视频| 黄色毛片三级朝国网站| 亚洲久久久国产精品| 成人三级做爰电影| 女人高潮潮喷娇喘18禁视频| 别揉我奶头~嗯~啊~动态视频| 激情在线观看视频在线高清| 女性生殖器流出的白浆| 人人澡人人妻人| 久久狼人影院| aaaaa片日本免费| 国产一级毛片七仙女欲春2 | 18禁黄网站禁片午夜丰满| av免费在线观看网站| 国产精品精品国产色婷婷| 国产在线精品亚洲第一网站| 色综合亚洲欧美另类图片| 国产97色在线日韩免费| 亚洲专区中文字幕在线| 成人手机av| 欧美精品啪啪一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 久久精品国产综合久久久| 他把我摸到了高潮在线观看| 成熟少妇高潮喷水视频| 人人妻,人人澡人人爽秒播| 欧美成狂野欧美在线观看| 9热在线视频观看99| 露出奶头的视频| 国产在线精品亚洲第一网站| 久久精品国产清高在天天线| 亚洲男人的天堂狠狠| 人人妻人人澡欧美一区二区 | 国产三级在线视频| 国产麻豆69| 亚洲精品在线美女| av视频在线观看入口| 99久久99久久久精品蜜桃| 老汉色av国产亚洲站长工具| 国产精品久久电影中文字幕| 亚洲国产精品sss在线观看| 可以在线观看的亚洲视频| 国产精品免费视频内射| а√天堂www在线а√下载| 在线国产一区二区在线| 亚洲av日韩精品久久久久久密| 黑人欧美特级aaaaaa片| 亚洲视频免费观看视频| 首页视频小说图片口味搜索| 午夜免费成人在线视频| 精品无人区乱码1区二区| 动漫黄色视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 伦理电影免费视频| 神马国产精品三级电影在线观看 | 麻豆av在线久日| 日日摸夜夜添夜夜添小说| 亚洲欧美日韩无卡精品| 如日韩欧美国产精品一区二区三区| 看免费av毛片| 亚洲美女黄片视频| 好男人在线观看高清免费视频 | 成人永久免费在线观看视频| 亚洲成人精品中文字幕电影| 大型av网站在线播放| 精品一区二区三区av网在线观看| 久久久久久久久免费视频了| 午夜福利欧美成人| 精品一区二区三区四区五区乱码| 欧美精品亚洲一区二区| 亚洲中文av在线| 99久久精品国产亚洲精品| 中文字幕久久专区| 免费看a级黄色片| 久久久国产精品麻豆| 午夜福利成人在线免费观看| 一边摸一边做爽爽视频免费| 久久久久久久午夜电影| 中出人妻视频一区二区| 中文亚洲av片在线观看爽| 国产一区二区在线av高清观看| 中文字幕色久视频| 久久香蕉精品热| 黑丝袜美女国产一区| 欧美一级毛片孕妇| 12—13女人毛片做爰片一| 国产一区二区三区在线臀色熟女| 欧美另类亚洲清纯唯美| 丝袜在线中文字幕| 日韩欧美免费精品| 两个人看的免费小视频| 亚洲美女黄片视频| 久久久久国内视频| 中文字幕高清在线视频| 一区二区日韩欧美中文字幕| 国产精品秋霞免费鲁丝片| 亚洲欧美日韩高清在线视频| 亚洲成人精品中文字幕电影| 欧美色视频一区免费| 熟妇人妻久久中文字幕3abv| 日韩欧美三级三区| 欧美人与性动交α欧美精品济南到| 一级毛片高清免费大全| av天堂在线播放| a级毛片在线看网站| 国产99久久九九免费精品| 国产高清视频在线播放一区| 两个人视频免费观看高清| 精品国产乱子伦一区二区三区| 国产亚洲精品第一综合不卡| 午夜免费激情av| 成人永久免费在线观看视频| 99精品欧美一区二区三区四区| 两人在一起打扑克的视频| 精品久久久精品久久久| 91精品三级在线观看| 大码成人一级视频| 亚洲 欧美 日韩 在线 免费| 女性生殖器流出的白浆| 亚洲第一电影网av| 亚洲少妇的诱惑av| 国产av又大| 亚洲国产精品合色在线| 国产黄a三级三级三级人| 国产精品久久电影中文字幕| 久久人人97超碰香蕉20202| 欧美在线一区亚洲| 看黄色毛片网站| 他把我摸到了高潮在线观看| 首页视频小说图片口味搜索| 精品电影一区二区在线| 99riav亚洲国产免费| 丁香六月欧美| 国产亚洲欧美在线一区二区| 国产亚洲精品av在线| 极品教师在线免费播放| 国产精品乱码一区二三区的特点 | 美女国产高潮福利片在线看| 精品久久久久久久毛片微露脸| svipshipincom国产片| 亚洲成人久久性| 亚洲一码二码三码区别大吗| 黄色a级毛片大全视频| 亚洲第一av免费看| 国产欧美日韩综合在线一区二区| 激情视频va一区二区三区| 欧美日韩亚洲综合一区二区三区_| xxx96com| 午夜影院日韩av| 亚洲人成电影免费在线| 在线十欧美十亚洲十日本专区| 人人妻人人爽人人添夜夜欢视频| 在线av久久热| 不卡一级毛片| 69av精品久久久久久| 精品卡一卡二卡四卡免费| 男女床上黄色一级片免费看| 自拍欧美九色日韩亚洲蝌蚪91| 伊人久久大香线蕉亚洲五| 十八禁人妻一区二区| 欧美日韩瑟瑟在线播放| 露出奶头的视频| 50天的宝宝边吃奶边哭怎么回事| 欧美在线黄色| 无人区码免费观看不卡| 国产一级毛片七仙女欲春2 | 亚洲中文字幕日韩| 午夜亚洲福利在线播放| 男男h啪啪无遮挡| 精品久久久久久久毛片微露脸| 搡老熟女国产l中国老女人| 大陆偷拍与自拍| 又黄又粗又硬又大视频| a级毛片在线看网站| 亚洲熟女毛片儿| 欧美色视频一区免费| 91字幕亚洲| 亚洲欧美激情综合另类| 久久国产精品男人的天堂亚洲| 国产成人啪精品午夜网站| 在线观看免费视频网站a站| 国产精品香港三级国产av潘金莲| 国产精品永久免费网站| 他把我摸到了高潮在线观看| 免费在线观看日本一区| av在线天堂中文字幕| 又黄又粗又硬又大视频| 最近最新免费中文字幕在线| 亚洲 欧美 日韩 在线 免费| 18禁黄网站禁片午夜丰满| 涩涩av久久男人的天堂| 法律面前人人平等表现在哪些方面| 久久精品国产亚洲av香蕉五月| 亚洲精品国产色婷婷电影| 亚洲,欧美精品.| 日日夜夜操网爽| 亚洲性夜色夜夜综合| 757午夜福利合集在线观看| 一级,二级,三级黄色视频| 妹子高潮喷水视频| 国产成人av教育| 欧美日本亚洲视频在线播放| 国产成人啪精品午夜网站| 在线免费观看的www视频| 欧美一级a爱片免费观看看 | 亚洲精品美女久久av网站| 久久久久久久久中文| 性色av乱码一区二区三区2| 国产精品一区二区精品视频观看| 欧美色视频一区免费| 亚洲精品在线观看二区| 亚洲国产中文字幕在线视频| 亚洲av成人av| 一本综合久久免费| av超薄肉色丝袜交足视频| 中文亚洲av片在线观看爽| 日韩有码中文字幕| 国产欧美日韩一区二区三区在线| 夜夜夜夜夜久久久久| 国产在线观看jvid| xxx96com| 天天添夜夜摸| 国产乱人伦免费视频| 如日韩欧美国产精品一区二区三区| 韩国精品一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 宅男免费午夜| 亚洲av片天天在线观看| 亚洲黑人精品在线| 亚洲国产欧美日韩在线播放| 国产亚洲欧美98| 久久香蕉国产精品| 熟妇人妻久久中文字幕3abv| 18禁裸乳无遮挡免费网站照片 | 婷婷精品国产亚洲av在线| 精品欧美一区二区三区在线| 88av欧美| 一本综合久久免费| 18禁裸乳无遮挡免费网站照片 | 久久狼人影院| 日韩大尺度精品在线看网址 | 欧美成人午夜精品| 国产成人av教育| 国产不卡一卡二| 夜夜躁狠狠躁天天躁| 色综合站精品国产| 国产1区2区3区精品| 美女高潮到喷水免费观看| 脱女人内裤的视频| 长腿黑丝高跟| 成人18禁高潮啪啪吃奶动态图| 国产精品久久久人人做人人爽| 一卡2卡三卡四卡精品乱码亚洲| 免费少妇av软件| 欧美丝袜亚洲另类 | 午夜老司机福利片| 久久精品aⅴ一区二区三区四区| 中文字幕久久专区| 亚洲欧美一区二区三区黑人| 黄网站色视频无遮挡免费观看| 三级毛片av免费| av欧美777| 欧美最黄视频在线播放免费| 久久精品国产亚洲av高清一级| 亚洲 欧美 日韩 在线 免费| 女人精品久久久久毛片| 宅男免费午夜| 香蕉久久夜色| 这个男人来自地球电影免费观看| 亚洲伊人色综图| 色尼玛亚洲综合影院| 久久久水蜜桃国产精品网| 亚洲va日本ⅴa欧美va伊人久久| 在线观看免费日韩欧美大片| 久久久国产欧美日韩av| 亚洲欧洲精品一区二区精品久久久| 琪琪午夜伦伦电影理论片6080| 亚洲午夜精品一区,二区,三区| 欧美人与性动交α欧美精品济南到| 亚洲国产毛片av蜜桃av| 亚洲情色 制服丝袜| 香蕉丝袜av| 国产亚洲av高清不卡| 黄色片一级片一级黄色片| 在线观看免费视频网站a站| 日日爽夜夜爽网站| 99国产精品一区二区蜜桃av| ponron亚洲| 欧美成人免费av一区二区三区| 亚洲成av片中文字幕在线观看| 无限看片的www在线观看| 91国产中文字幕| 村上凉子中文字幕在线| 欧美大码av| 国产精品av久久久久免费| 亚洲三区欧美一区| 国产成人欧美在线观看| 岛国视频午夜一区免费看| 欧美乱色亚洲激情| 禁无遮挡网站| 美女免费视频网站| 亚洲色图综合在线观看| 一个人观看的视频www高清免费观看 | 18禁国产床啪视频网站| 9191精品国产免费久久| 黄片大片在线免费观看| 午夜影院日韩av| 久久久久久久久免费视频了| 亚洲欧美一区二区三区黑人| 少妇粗大呻吟视频| 法律面前人人平等表现在哪些方面| 琪琪午夜伦伦电影理论片6080| 国产精品1区2区在线观看.| 亚洲人成伊人成综合网2020| 在线永久观看黄色视频| 91九色精品人成在线观看| 禁无遮挡网站| 巨乳人妻的诱惑在线观看| 可以在线观看毛片的网站| 欧美在线一区亚洲| 此物有八面人人有两片| 国产aⅴ精品一区二区三区波| 国产一区二区三区在线臀色熟女| 黄网站色视频无遮挡免费观看| 欧美中文日本在线观看视频| 99精品欧美一区二区三区四区| 欧美国产精品va在线观看不卡| 欧美日韩一级在线毛片| 久久亚洲精品不卡| 91在线观看av| 欧美成狂野欧美在线观看| 中文字幕人成人乱码亚洲影| 精品久久久久久久人妻蜜臀av | 欧美绝顶高潮抽搐喷水| 久9热在线精品视频| 国产高清激情床上av| 99久久99久久久精品蜜桃| 禁无遮挡网站| 国产真人三级小视频在线观看| 久久 成人 亚洲| 亚洲五月天丁香| 久久人人精品亚洲av| 91老司机精品| 亚洲黑人精品在线| 亚洲精品在线观看二区| 淫妇啪啪啪对白视频| 欧美在线一区亚洲| 午夜免费成人在线视频| 黄色a级毛片大全视频| 免费搜索国产男女视频| 亚洲精品一区av在线观看| 国内精品久久久久精免费| 老鸭窝网址在线观看| 最好的美女福利视频网| 日韩大尺度精品在线看网址 | 午夜精品国产一区二区电影| 日本在线视频免费播放| 欧美激情高清一区二区三区| 午夜视频精品福利| svipshipincom国产片| 91av网站免费观看| 老熟妇仑乱视频hdxx| 国产人伦9x9x在线观看| 中文字幕另类日韩欧美亚洲嫩草| 欧美一区二区精品小视频在线| svipshipincom国产片| 中文字幕另类日韩欧美亚洲嫩草| 老熟妇仑乱视频hdxx| 国产精品一区二区在线不卡| 狠狠狠狠99中文字幕| 免费在线观看影片大全网站| 在线播放国产精品三级| 极品教师在线免费播放|