• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhanced thermal conductivity and microwave dielectric properties by mesostructural design of multiphase nanocomposite

    2022-07-26 09:21:20LipingZhouPengXuFaxiangQin
    Namo Materials Science 2022年2期

    Liping Zhou,Peng Xu,Faxiang Qin

    Institute for Composites Science Innovation (InCSI),School of Materials Science and Engineering,Zhejiang University,38 Zheda Road,Hangzhou,310027,PR China

    Keywords:Immiscible blends Nanocomposite Microwave dielectric properties Thermal conductivity

    ABSTRACT Next-generation packaging materials are expected to have higher thermal conductivity,because the heat accumulated in high-performance electronic equipment should be removed to increase the service life of the equipment.At the same time,the dielectric loss of the material needs to be reduced to lessen signal delay and attenuation,especially for the applications under high frequency.In this work,we introduce nano-silicon carbide(SiC) and carbon nanotubes (CNTs) into the polystyrene (PS) and poly(methyl methacrylate) (PMMA) blends system.The design of two-way migration at the interface of CNTs and SiC nanoparticles is realized through the masterbatch method and processing technology control.As a result,the thermal conductivity is successfully increased up to 75%.Meanwhile,compared to the CNTs single-phase migration system,it effectively reduces the dielectric loss of the nanocomposite and optimizes the electrical insulation.This work has significant practical application value in the design of electronic device substrates and packaging materials,and provides an innovative methodology for the mesostructure design of multiphase nanocomposites.

    1.Introduction

    Recently,high integration and high power in modern electronic device fields lead to sharp reduction in products size and increasing power density [1–3].Therefore,the demand for high thermal conductivity of electronic packaging or substrate materials is gaining momentum to improve the stabilities and service life of the products [4,5].Moreover,with the advent of the era of 5G and higher frequency communications,there are also new requirements for the high-frequency dielectric properties of materials[6].Due to the excellent processability and mechanical properties,polymer matrix composites modified with thermally conductive nanofillers have attracted extensive attention [7–9].Adding carbon nanomaterials with extremely excellent thermal conductivity(such as carbon nanotubes and graphene,etc.) [10,11] can effectively reduce the filler loading.However,at the same time they will form conductive networks in the composite which will result in higher dielectric loss,signal delay and attenuation [12,13].Therefore,it is necessary to research and develop polymer nanocomposites that can coordinate and optimize the microwave dielectric loss,electrical insulation,and thermal conductivity.

    The construction of double percolation structure in co-continuous immiscible blends is considered to be an effective way to reduce the loading of fillers while retaining high electrical conductivity [14,15] or thermal conductivity [16,17].Chao et al.[18] built up PC/PA66/AlN/MWCNT quaternary nanocomposites to achieve a stable thermal conductive network via a sequential melt mixing technique where hybrid fillers are both selectively located in the PA66 phase.Owing to the intrinsic continuous structures,three-dimensional interconnected heat-conductive networks can increase the thermal conductivity of composites more effectively [1,19,20].In particular,in the co-continuous structure of immiscible polymer blends,a three-dimensional interface can be formed spontaneously[21,22].In our previous research,the localization of CNTs at the interface in PS/PMMA immiscible system has been achieved by controlling the processing technology and masterbatch method,which can significantly increase the dielectric constant of the composites [23].However,the dielectric loss increases at the same time.On this basis,we introduce another thermally conductive nanofiller (SiC) into the system.Based on the migration characteristics of nanoparticles in the immiscible polymer blends [24,25],we design a bridging structure of the two hybrid nanofillers at the interface.Through the synergistic effect of CNTs and SiC,the leakage conduction loss caused by CNTs is reduced.Meanwhile,the thermal conductivity of composites can be improved effectively.As such,this structure is very innovative in the design of multi-phase nanocomposites and it provides a new design idea for the optimization of multi-functional nanocomposites performance.

    Fig.1.Schematic diagram of the processing technology and the blocking of the conductive path and the promotion of the thermal path caused by the migration of nanofillers.

    2.Experimental

    2.1.Materials

    Polystyrene (PS) resin pellets with General-purpose type I and Polymethyl methacrylate(PMMA)pellets with high flow injection stage were received from Aladdin Shanghai (China).Pristine CNTs (purity:95%,outer diameter:<8 nm,inner diameter:2–5 nm,length:10–30 μm)were obtained from Chengdu Organic Chemicals Co.Ltd.,Chinese Academy of Sciences.

    2.2.Nanocomposites preparation

    The polymers were dried at 60°C for 24 h to remove moisture before use.For no migration system,the nanocomposites were prepared in a two-step process.Firstly,CNTs and PS or SiC and PMMA were mixed on Miniature High-performance Composite Material Mixing Molding System(HAAKE MiniLab II)at 200°C and 60 rpm for 5 min to obtain SCNTs and M-SiC masterbatches(here M stands for PMMA phase,S for PS phase).Secondly,the S-CNTs masterbatch was blended with PMMA or M -SiC at 200°C and 60 rpm for 2.5 min to obtain nanocomposites without migration of CNTs and SiC named as M/S-CNTs and M-SiC/SCNTs,respectively.The same processing technology was also applied to the migration system,here the masterbatches were M-CNTs and S–SiC.Then the M-CNTs masterbatch was blended with PS or S–SiC to prepare M-CNTs/S and M-CNTs/S–SiC which will avail nanofillers migration at the polymer-polymer interface.The concentration of CNTs in the nanocomposites is 1 vol%(CNTs1)or 2 vol%(CNTs2),and the loading of SiC is 1 vol%(SiC1)or 2 vol%(SiC2).The volume ratios of masterbatch were set at 50/50 to obtain co-continuous morphology of blends.

    2.3.Morphology characterization

    The cold field-emission scanning electron microscopy (FE-SEM,Hitachi S-4800) with accelerating voltage of 3 kV was employed to analyze the morphology of the samples.The samples were first fractured with liquid nitrogen treatment and then use formic acid solvent to dissolve PMMA phase to clearly distinguish the two-phase.

    TEM measurements were performed on a HT-7700 transmission electron microscopy operated at an acceleration voltage of 100 kV to analyze the localization and migration of the CNTs and SiC.The specimens were cut into films with a thickness of 50 nm by Ultra-thin frozen slicer(EMUC7)equipped with a glass knife.

    2.4.Dielectric measurements

    Dielectric measurements in the frequency range of 8.2–12.4 GHz were performed by vector network analyzer (R&S,ZNB20) and the complex permittivities were extracted from the S-parameters by Nicolson-Ross-Weir method.The cuboid shaped specimens(22.86×10.16×2 mm)compressed at 200°C were used.

    2.5.Electrical conductivity measurements

    Compression molded samples (20 mm×20 mm×1 mm) at 200°C were prepared for electrical conductivity measurements.DC electrical conductivities at room temperature were recorded using a CHI 660E electrochemical analyzer from CH Instruments by linear sweep voltammetry(LSV).

    2.6.Thermal conductivity measurements

    The thermal conductivity of the nanocomposites was measured on TPS 2500 S(Hot Disk Company,Sweden)The test method is the transient planar heat source method,which is suitable for measuring most materials.The sample (diameter 40 mm,thickness 4 mm) required for the measurement is obtained through the hot pressing process consistent with the above measurements.

    3.Results and discussions

    3.1.The morphologies of nanocomposites with different nanofillers localization

    In this work,we choose masterbatch method to realize the distribution control of nanofillers.The wetting coefficient has been calculated in our previous work[23].As is shown in Fig.1,the CNTs premix with PS phase to obtain masterbatch I (M -SiC),the SiC nanoparticles premix with PMMA phase to prepare masterbatch II (S-CNTs),and then masterbatch I and II simultaneously mix at a volume ratio of 50/50 to obtain M-SiC/S-CNTs(50/50)nanocomposite.

    Fig.2(a and b) are the TEM images of M-SiC1/S-CNTs1 (50/50) in which the relatively darker phase is the PS phase and the brighter phase is the PMMA phase,the black spherical particles are SiC nanoparticles and the round tubular ones are CNTs.It can be seen from Fig.2(a) that the nanocomposite forms a relatively complete co-continuous structure.Upon zooming in,one can observe that the SiC nanoparticles are largely distributed in the PMMA phase,while the CNTs are still located in the PS phase (Fig.2(b)).The results show that if the nanofillers are predistributed in the affinity phase through the masterbatch method,there will be no migration phenomenon.On the other hand,from the SEM images (Fig.2(c and d)),it can be seen that the interface after PMMA phase extraction is relatively smooth,and there are no protrusions of CNTs or SiC nanoparticles.It proves once again that they have not migrated to the interface.

    On the basis of no migration system,we further adjust the composition of the masterbatch,aiming to construct a two-way migration of CNTs and SiC at the polymer-polymer interface.We prepare masterbatch I for M-CNTs composite,and masterbatch II for S-CNTs composite.The two masterbatches blend again at a volume ratio of 50/50 to obtain MCNTs1/S–SiC1 (50/50) nanocomposite.Here,the nanofillers preferentially mix with the unfavorable phase respectively to induce their migration.From thermodynamic incentive,the nanofillers in the thermodynamic unfavorable phase tend to migrate to the equilibrium phase so as to achieve a relatively stable state with lower surface energy.Normally,the relative viscosity of the polymer melts also plays an important role in the location of nanofillers.However,this work selects polymer blend (PMMA/PS) with little difference in melt viscosity at mixing condition [23],so that the localization of nanofillers can be controlled from the thermodynamics perspective.It can be clearly observed from the TEM images(Fig.3(a and b))that through the control of the processing time,with this masterbatch component one can realize the design of CNTs and SiC located at the interface during the two-way migration process to a certain extent.Because the two nanofillers have a tendency to migrate,the flexible CNTs with a large aspect ratio will be bolted to the SiC nanoparticles and form bridges during the migration through the limited interface area.However,it cannot be ensured that all the CNTs and SiC can form such a structure at the interface.

    Fig.2.(a–b)TEM images of M-SiC1/S-CNTs1(50/50)nanocomposite with 1 vol%CNTs and 1 vol%SiC;the darker phase is the PS phase and the brighter phase is the PMMA phase;(c–d)SEM images of the M-SiC1/S-CNTs1(50/50)nanocomposite,where the PMMA phase is extracted with formic acid(the black holes in the images).

    Fig.3.(a–b) TEM images of M-CNTs1/S–SiC1(50/50)nanocomposite with 1 vol% CNTs and 1 vol% SiC;(c–d) SEM images of the M-CNTs1/S–SiC1(50/50) nanocomposite,the arrows in the figure indicate the CNTs and SiC distributed at the interface.

    Meanwhile,the SEM images also verify this structure.Fig.3(c)shows that the nanocomposite maintains co-continuous structure well.Examing the interface of M-SiC1/S-CNTs1(50/50)(Fig.2(d)),here,we can clearly observe that the interface is not smooth.There are SiC nanoparticles and CNTs protrusions on the interface after PMMA phase extraction (the circle marked in the Fig.3(d)).Some of the nanofillers distributed at the interface still partially adhere to the PS phase,so they will not fall off with the dissolution of PMMA phase,which is consistent with the results of TEM observation.It shows that the processing technology designed in this work can achieve the two-way migration effect and interface location of the two fillers.More characterization images are shown in Fig.S3.

    3.2.The effect of nano fillers distribution on electrical properties

    In our previous research,we found that CNTs located at the interface of the co-continuous morphology blend can enhance the micro-capacitor effect,which greatly increases the high frequency dielectric constant(ε′)of M-CNTs1/S composite.However,in order to meet the application requirements of electronic device substrate materials,it is still necessary to optimize the problem of high dielectric loss (ε′′).Therefore,we introduce SiC into the system and regulate the distribution of SiC and CNTs to research the effect on microwave dielectric properties.

    The complex dielectric frequency spectra of the nanocomposites with different nanofillers distribution in the frequency range of 8.2–12.4 GHz is shown in Fig.4(a and b).First of all,for no migration system (M/SCNTs1 and M-SiC1/S-CNTs1),it can be seen in Fig.2 and Fig.S1 that there is no migration of the added nanofillers.The CNTs are all located in the PS phase and the SiC nanoparticles still distribute in the PMMA phase.Compared with M/S-CNTs,the ε′value of M-SiC1/S-CNTs increases slightly,and the value of ε"has almost no change.They are located in different phase,so the effect of SiC is limited.For the migration system (M-CNTs1/S),the CNTs in M-CNTs1/S nanocomposite mainly concentrate at the interface (see Fig.S2) and a three-dimensional network of CNTs can be formed at the continuous polymer-polymer interface.On this basis,SiC is introduced and a two-way migration system is built.The bridges between CNTs and SiC nanoparticles appear at the interface where SiC nanoparticles will interrupt the conductive network of CNTs(Fig.1).As a result,the dielectric loss factor(tanδ)of MCNTs1/S–SiC1 drops sharply.The dielectric loss comes from the leakage conduction loss of CNTs.Compared with(M-CNTs)/PS,the dielectric loss has been reduced by more than 60%.At the same time,it can be seen in Fig.4(c)that the value ε′is also reduced because of the damage of microcapacitor structure but it is still higher than M-SiC1/S-CNTs1 (no migration).When we increase the content of SiC in the two-way migration system to 2 vol%(M-CNTs1/S–SiC2),as shown in Fig.4(d),the value of ε′increases obviously while the dielectric loss remains low.Therefore,the construction of two-way migration at the interface of CNTs and SiC can reduce the dielectric loss effectively.

    Fig.4.The complex dielectric spectra (8.2–12.4 GHz) of no migration and CNTs and SiC two-way migration nanocomposite:(a) real part;(b) imaginary part;(c–d)comparison of loss tangent (tanδ) and dielectric constant of nanocomposites with different content of nanofillers.

    Fig.5.(a) DC resistivity of the nanocomposites with two-way migration;(b) thermal conductivity of no migration/migration nanocomposite system relative to pristine polymer.

    3.3.The electrical resistivity and thermal conductivity of nanocomposites

    Fig.5(a)shows the DC resistivity of nanocomposites with migration.When the content of CNTs is 1 vol%,the DC resistivity of(M-CNTs1)/S is low(8.3×105Ω mm)due to the formation of the conductive network at the interface.In contrast,in the two-way migration system,the DC resistivity of M-CNTs/S–SiC1 can increase to 2.6 × 106Ω mm at a low loading of SiC(1 vol%).Moreover,when the content of SiC reaches 2 vol%,the resistivity of M-CNTs1/S–SiC2 is increased by two orders of magnitude(1.9×107Ω mm)compared to(M-CNTs1)/S.Hence,one can see that the electrical resistivity has been significantly improved.The schematic diagram in Fig.1 can offer more intuitive understanding of the effect of adding SiC nanoparticles on increasing electrical resistivity.Through the control of the processing technology,the CNTs and SiC are located at the interface and cross-linked with each other.Herein,the SiC nanoparticles act as an open circuit of the conductive path formed by the connected CNTs.Thus,the electrical insulation performance of the system can be effectively improved.

    Fig.5(b)shows the thermal conductivity of nanocomposites with no migration and two-way mutual migration of CNTs and SiC.It can be seen from the overall trend that the thermal conductivity of no migration system is lower than two-way migration system.From the above analyses,it is known that the migration process causes linking of the CNTs and SiC nanoparticles at the PS-PMMA interface.Unlike the electrical conductivity,the heat conduction in the composites mainly comes from phonon conduction,which requires the thermally conductive fillers to make effective contact and reduce the interface thermal resistance with the matrix.Therefore,building a three-dimensional network of the thermally conductive fillers in the composites is a better design approach.CNTs and SiC nanoparticles distributed at the continuous polymerpolymer interface synergistically increase thermal conductivity.Here,the CNTs serve as a thermal bridge between SiC nanoparticles(as shown in Fig.1)[26].Meanwhile,according to the volume exclusion effect(the interface phase occupies a small volume)[18],the thermal conductivity of the composite can be effectively improved at a lower filler loading.The thermal conductivity of the M-CNT1/S–SiC2 nanocomposites (in which the content of CNTs is 1 vol% and the content of SiC is 2 vol%) is 0.298 W/mK.Compared with the M/S (0.171 W/mK) it has been improved by 75%.

    Here we provide a method capitalizing on the difference in affinity to control the migration of two different nanofillers in immiscible systems with the following three conditions to be met:1)two kinds of nanofillers have different affinity for the two polymers in the blend.2)the viscosity of the polymer is not much different with each other:Viscosity affects the migration of nanoparticles from dynamics which dominate over thermodynamics in selective localization of nanofiller in polymer blends.If the viscosity ratio of the polymer phases is close to 1,then thermodynamics determines the final location of the nanofillers.3)the adjustment of processing technology and migration time makes the nanofillers distribute at the interface.With this approach,improvement of thermal conductivity as well as the optimization of electrical performance for nanocomposite can be realized.It should be noted that the contents of nanofillers (CNTs 1 vol%,SiC 1 or 2 vol%) are very low in the nanocomposites,so it has not reached a high thermal conductivity.However,the improvement rate of thermal conductivity under such low loading of nanofillers is very considerable.Our goal is to achieve coordinated optimization of multiple performance in immiscible system while maintaining the processability of the nanocomposite.Indeed,the thermal conductivity is not very high,but it certainly can be further optimized towards practical applications.

    4.Conclusions

    This work is based on the application requirements of electronic device substrates and packaging materials to improve the thermal conductivity,reduce dielectric loss and optimize electrical insulation of nanocomposites.In order to maintain the excellent processability of composite materials and reduce the content of fillers,CNTs are used as thermally conductive fillers.At the same time,SiC nanoparticles are introduced into the system to reduce the dielectric loss caused by CNTs.From the TEM images it can be observed that SiC nanoparticles have better affinity with PMMA phase,while CNTs tend to be preferentially distributed in the PS phase.Based on this characteristic,a system of twoway migration of two nanofillers at the interface has been successfully achieved.During the migration,part of the CNTs and SiC nanoparticles are cross-linked and bound at the interface.As a result,the SiC nanoparticles block the conductive path of CNTs which can greatly reduce the leakage conduction loss of the system and realize the structural design of high dielectric constant and low loss.At the same time,the electrical insulation of the nanocomposite is improved.In addition,The CNTs act as the heat transfer bridge of SiC nanoparticles to improve the phonon transmission efficiency,so that the thermal conductivity of nanocomposites can be increased by 75%.In summary,the system of two-way migration at the two-phase interface can successfully reduce dielectric loss and improve thermal conductivity which provides an innovative method for the mesostructural design of multiphase composite materials.Also,the low filling level retains the excellent processability of the composite material with uncomplicated processing technique.

    Declaration of competing interest

    The authors have no conflict of interest to declare.

    Acknowledgements

    This work is supported by ZJNSF No.LR20E010001 and National Key Research and Development Program of China No.2021YFE0100500 and Zhejiang Provincial Key Research and Development Program(2021C01004) and Chao Kuang Piu High Tech Development Fund 2020ZL012 and Aeronautical Science Foundation 2019ZF076002.

    Appendix A.Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.nanoms.2021.08.002.

    国产精品麻豆人妻色哟哟久久| 精品国产露脸久久av麻豆| 亚洲图色成人| 一级片'在线观看视频| 成人亚洲欧美一区二区av| 国产成人aa在线观看| 中文天堂在线官网| 国产女主播在线喷水免费视频网站| 日韩视频在线欧美| videos熟女内射| 亚洲美女搞黄在线观看| av国产精品久久久久影院| 欧美国产精品一级二级三级 | 成人美女网站在线观看视频| 国产精品99久久99久久久不卡 | 亚洲国产欧美人成| 欧美精品人与动牲交sv欧美| 国产成人精品福利久久| 91狼人影院| 日韩电影二区| 麻豆精品久久久久久蜜桃| 97热精品久久久久久| 男人爽女人下面视频在线观看| 黄色视频在线播放观看不卡| 免费在线观看成人毛片| 大片免费播放器 马上看| 免费播放大片免费观看视频在线观看| 久久女婷五月综合色啪小说| 国产毛片在线视频| 精品一区二区三卡| 久久国产精品男人的天堂亚洲 | 妹子高潮喷水视频| 婷婷色综合www| 成人影院久久| 搡女人真爽免费视频火全软件| 男女啪啪激烈高潮av片| 国产精品一区二区三区四区免费观看| 联通29元200g的流量卡| 中文在线观看免费www的网站| 亚洲av综合色区一区| 人妻少妇偷人精品九色| 久久97久久精品| 七月丁香在线播放| 自拍偷自拍亚洲精品老妇| 日本-黄色视频高清免费观看| 大陆偷拍与自拍| 人妻制服诱惑在线中文字幕| 欧美激情国产日韩精品一区| 国产av一区二区精品久久 | 日韩欧美一区视频在线观看 | 精品99又大又爽又粗少妇毛片| 亚洲精品成人av观看孕妇| 久久久色成人| 超碰av人人做人人爽久久| 一级片'在线观看视频| 亚洲怡红院男人天堂| 成人毛片60女人毛片免费| 麻豆成人av视频| 精品一品国产午夜福利视频| 性色av一级| 男人爽女人下面视频在线观看| 国产成人a∨麻豆精品| 亚洲内射少妇av| 2018国产大陆天天弄谢| 丰满人妻一区二区三区视频av| 九九久久精品国产亚洲av麻豆| 国产成人精品久久久久久| 十八禁网站网址无遮挡 | 黄色配什么色好看| 国产免费又黄又爽又色| av黄色大香蕉| 午夜精品国产一区二区电影| 尤物成人国产欧美一区二区三区| 建设人人有责人人尽责人人享有的 | 在线天堂最新版资源| 亚洲精华国产精华液的使用体验| 日日摸夜夜添夜夜添av毛片| 少妇的逼水好多| 久久久久久久国产电影| 狂野欧美激情性bbbbbb| 成人无遮挡网站| 久久99热这里只频精品6学生| 在线观看国产h片| 最近最新中文字幕免费大全7| 欧美bdsm另类| 日本午夜av视频| 亚洲美女黄色视频免费看| 日韩av在线免费看完整版不卡| 久久人妻熟女aⅴ| 国产伦在线观看视频一区| 新久久久久国产一级毛片| 韩国高清视频一区二区三区| 国产精品一区www在线观看| 国产精品99久久99久久久不卡 | 亚洲精品日韩在线中文字幕| 国产精品99久久久久久久久| 国产深夜福利视频在线观看| 亚洲av电影在线观看一区二区三区| 男女边吃奶边做爰视频| 亚洲av男天堂| 99热国产这里只有精品6| 日本与韩国留学比较| 国产乱人视频| 三级国产精品欧美在线观看| 日本黄大片高清| 欧美日韩综合久久久久久| 国产欧美亚洲国产| 国产av一区二区精品久久 | 国产成人精品福利久久| 不卡视频在线观看欧美| 成人午夜精彩视频在线观看| 另类亚洲欧美激情| av专区在线播放| 国产色婷婷99| 美女中出高潮动态图| 极品少妇高潮喷水抽搐| 国产 一区 欧美 日韩| 老女人水多毛片| 九九爱精品视频在线观看| 国产精品一二三区在线看| 简卡轻食公司| 国产精品国产三级国产av玫瑰| 国产精品无大码| 国产免费一级a男人的天堂| 一级毛片黄色毛片免费观看视频| 久久亚洲国产成人精品v| 91精品一卡2卡3卡4卡| 久久久精品免费免费高清| 国产精品人妻久久久久久| 97超碰精品成人国产| 国产淫语在线视频| 联通29元200g的流量卡| 国产成人精品一,二区| 国产色婷婷99| 精品视频人人做人人爽| 街头女战士在线观看网站| 国产成人精品久久久久久| 高清黄色对白视频在线免费看 | tube8黄色片| 久久国产精品男人的天堂亚洲 | 亚洲成人一二三区av| 一级av片app| 97精品久久久久久久久久精品| 国产成人aa在线观看| 国产 精品1| 国产精品一区www在线观看| av不卡在线播放| 最后的刺客免费高清国语| 少妇猛男粗大的猛烈进出视频| 日韩强制内射视频| 久久 成人 亚洲| 99久久精品国产国产毛片| 人妻少妇偷人精品九色| 狂野欧美激情性bbbbbb| 国产爽快片一区二区三区| 能在线免费看毛片的网站| 亚洲成人手机| 简卡轻食公司| 欧美日韩亚洲高清精品| 高清毛片免费看| 内地一区二区视频在线| 精品亚洲乱码少妇综合久久| 国产精品麻豆人妻色哟哟久久| 日韩欧美一区视频在线观看 | 国产乱人偷精品视频| 日本欧美视频一区| 欧美+日韩+精品| 成人亚洲精品一区在线观看 | 少妇人妻一区二区三区视频| 国产真实伦视频高清在线观看| 一级毛片 在线播放| 一级片'在线观看视频| 深爱激情五月婷婷| 美女内射精品一级片tv| 高清欧美精品videossex| 乱系列少妇在线播放| 熟女人妻精品中文字幕| 黄色视频在线播放观看不卡| 成人二区视频| 如何舔出高潮| 亚洲av不卡在线观看| 热re99久久精品国产66热6| 特大巨黑吊av在线直播| 极品教师在线视频| 午夜免费观看性视频| 欧美+日韩+精品| 精品国产露脸久久av麻豆| 婷婷色麻豆天堂久久| 亚洲精品日韩av片在线观看| 亚洲伊人久久精品综合| 亚洲自偷自拍三级| 一级二级三级毛片免费看| 午夜福利视频精品| 99久久精品国产国产毛片| 日韩一区二区三区影片| 欧美高清性xxxxhd video| 亚洲精品国产av蜜桃| 国产成人精品一,二区| 黄色配什么色好看| 制服丝袜香蕉在线| 街头女战士在线观看网站| 男女下面进入的视频免费午夜| 777米奇影视久久| 一级二级三级毛片免费看| 亚洲成人手机| 亚洲精品日本国产第一区| 香蕉精品网在线| 另类亚洲欧美激情| 99视频精品全部免费 在线| 国产精品成人在线| 又粗又硬又长又爽又黄的视频| 高清不卡的av网站| 国产片特级美女逼逼视频| 一级黄片播放器| 国产爽快片一区二区三区| 亚洲第一av免费看| 久久av网站| 一个人看视频在线观看www免费| 国产av精品麻豆| 高清黄色对白视频在线免费看 | 黑丝袜美女国产一区| 一级毛片黄色毛片免费观看视频| 91午夜精品亚洲一区二区三区| av国产免费在线观看| 日韩三级伦理在线观看| a级毛片免费高清观看在线播放| 国产精品女同一区二区软件| 天天躁日日操中文字幕| 亚洲人与动物交配视频| 国产亚洲一区二区精品| 尤物成人国产欧美一区二区三区| 在线亚洲精品国产二区图片欧美 | 日韩欧美 国产精品| 亚洲真实伦在线观看| 日本wwww免费看| 黑人猛操日本美女一级片| av国产久精品久网站免费入址| 男人和女人高潮做爰伦理| 建设人人有责人人尽责人人享有的 | 综合色丁香网| 日韩免费高清中文字幕av| 黄色视频在线播放观看不卡| 亚洲成人一二三区av| 直男gayav资源| 中文资源天堂在线| av.在线天堂| 一区在线观看完整版| 大片电影免费在线观看免费| av国产久精品久网站免费入址| 简卡轻食公司| 亚洲图色成人| 国产av一区二区精品久久 | 免费人妻精品一区二区三区视频| 日韩中字成人| 日韩av免费高清视频| 久久国产亚洲av麻豆专区| 在线免费观看不下载黄p国产| 欧美 日韩 精品 国产| 国产亚洲av片在线观看秒播厂| 免费大片黄手机在线观看| 哪个播放器可以免费观看大片| 国产精品人妻久久久影院| 久久99热这里只频精品6学生| 色婷婷久久久亚洲欧美| 尤物成人国产欧美一区二区三区| 97超碰精品成人国产| 99精国产麻豆久久婷婷| 免费人妻精品一区二区三区视频| 国产爽快片一区二区三区| 韩国av在线不卡| 狂野欧美激情性bbbbbb| 香蕉精品网在线| 人人妻人人看人人澡| 国产精品麻豆人妻色哟哟久久| 日韩在线高清观看一区二区三区| 精品视频人人做人人爽| 亚洲色图av天堂| 午夜福利在线在线| 免费不卡的大黄色大毛片视频在线观看| 国产高清国产精品国产三级 | 精品视频人人做人人爽| 伊人久久精品亚洲午夜| 男的添女的下面高潮视频| 日韩精品有码人妻一区| 有码 亚洲区| 日本一二三区视频观看| 美女视频免费永久观看网站| a级一级毛片免费在线观看| 你懂的网址亚洲精品在线观看| 少妇人妻一区二区三区视频| 国产男人的电影天堂91| av国产精品久久久久影院| 51国产日韩欧美| 精品人妻一区二区三区麻豆| 亚洲欧美成人精品一区二区| 身体一侧抽搐| 亚洲av成人精品一二三区| 国产高清国产精品国产三级 | h日本视频在线播放| av在线观看视频网站免费| 大码成人一级视频| 91精品国产国语对白视频| 国产视频内射| 久久久久久久久久久丰满| 日韩成人伦理影院| 午夜福利高清视频| 少妇人妻 视频| 偷拍熟女少妇极品色| 美女高潮的动态| 日本欧美视频一区| 国产探花极品一区二区| 久久人妻熟女aⅴ| 美女国产视频在线观看| 久久97久久精品| 国产中年淑女户外野战色| 精品人妻一区二区三区麻豆| 蜜桃在线观看..| 国产av码专区亚洲av| 国产极品天堂在线| 97在线视频观看| 99久国产av精品国产电影| 韩国高清视频一区二区三区| 日韩电影二区| 高清黄色对白视频在线免费看 | 久久精品国产自在天天线| 成人特级av手机在线观看| 亚洲欧美中文字幕日韩二区| 亚洲人成网站高清观看| 伦理电影大哥的女人| av免费观看日本| 欧美另类一区| 国产精品熟女久久久久浪| 亚洲不卡免费看| 色综合色国产| 日韩不卡一区二区三区视频在线| 搡老乐熟女国产| 久久精品夜色国产| 精品亚洲成国产av| 尾随美女入室| 亚洲精品久久久久久婷婷小说| 日本猛色少妇xxxxx猛交久久| 我要看黄色一级片免费的| 如何舔出高潮| 国产精品不卡视频一区二区| 99精国产麻豆久久婷婷| 精品久久久久久电影网| 国产精品女同一区二区软件| 亚洲精品第二区| 80岁老熟妇乱子伦牲交| 久久热精品热| 色哟哟·www| 国产人妻一区二区三区在| 男人添女人高潮全过程视频| 亚洲欧美精品自产自拍| 亚洲国产av新网站| 青青草视频在线视频观看| 亚洲国产色片| 亚洲不卡免费看| 97超碰精品成人国产| 黑丝袜美女国产一区| 黄片无遮挡物在线观看| 欧美精品国产亚洲| 大片免费播放器 马上看| 99热这里只有是精品在线观看| 免费少妇av软件| 女人久久www免费人成看片| 婷婷色麻豆天堂久久| 夫妻午夜视频| 日韩 亚洲 欧美在线| 国产欧美日韩精品一区二区| 免费av不卡在线播放| 黑人高潮一二区| 日本爱情动作片www.在线观看| 直男gayav资源| 成人免费观看视频高清| 一级a做视频免费观看| 中文字幕免费在线视频6| 夜夜看夜夜爽夜夜摸| 一级毛片电影观看| 内地一区二区视频在线| 欧美区成人在线视频| 黑人高潮一二区| 国内精品宾馆在线| 国产毛片在线视频| 日本av免费视频播放| 亚洲av电影在线观看一区二区三区| 蜜桃久久精品国产亚洲av| 色网站视频免费| 日韩中文字幕视频在线看片 | 成人亚洲精品一区在线观看 | 我要看日韩黄色一级片| 亚洲欧美一区二区三区国产| 九九爱精品视频在线观看| 成人亚洲欧美一区二区av| 99热网站在线观看| 乱系列少妇在线播放| 蜜桃在线观看..| 国产精品无大码| av国产精品久久久久影院| 欧美极品一区二区三区四区| 精品酒店卫生间| 精品一区二区免费观看| 成人无遮挡网站| 乱码一卡2卡4卡精品| 你懂的网址亚洲精品在线观看| 国产一区亚洲一区在线观看| 成人无遮挡网站| 国产日韩欧美在线精品| 国产永久视频网站| av一本久久久久| 日本黄色片子视频| 国产欧美亚洲国产| 亚洲伊人久久精品综合| 婷婷色综合www| 男人添女人高潮全过程视频| 午夜福利高清视频| 狂野欧美激情性xxxx在线观看| 色视频www国产| 伦精品一区二区三区| 美女主播在线视频| 美女福利国产在线 | 久久毛片免费看一区二区三区| 国产极品天堂在线| 久久久久久久精品精品| 中文字幕免费在线视频6| 国产高清不卡午夜福利| 国产欧美另类精品又又久久亚洲欧美| 午夜老司机福利剧场| 又黄又爽又刺激的免费视频.| 高清黄色对白视频在线免费看 | 最近最新中文字幕免费大全7| 成人无遮挡网站| 中文字幕久久专区| 亚洲精品视频女| 美女xxoo啪啪120秒动态图| 如何舔出高潮| 久久国产精品大桥未久av | 国产一区二区在线观看日韩| 能在线免费看毛片的网站| 成人美女网站在线观看视频| 国内少妇人妻偷人精品xxx网站| 国产精品一区二区在线不卡| 国产v大片淫在线免费观看| 九草在线视频观看| 亚洲av.av天堂| 久久久久精品性色| 国产精品国产av在线观看| 久久99精品国语久久久| 欧美zozozo另类| 一个人免费看片子| 精品人妻偷拍中文字幕| 日本av手机在线免费观看| 高清毛片免费看| 国产免费福利视频在线观看| 男女国产视频网站| 亚洲av不卡在线观看| 熟女电影av网| 精品一区在线观看国产| 如何舔出高潮| av.在线天堂| 狂野欧美激情性xxxx在线观看| 晚上一个人看的免费电影| 大陆偷拍与自拍| 国产精品三级大全| 91精品国产九色| 夜夜看夜夜爽夜夜摸| 日韩不卡一区二区三区视频在线| 久久精品久久精品一区二区三区| 乱码一卡2卡4卡精品| 欧美高清成人免费视频www| 精品国产乱码久久久久久小说| av在线老鸭窝| 欧美激情极品国产一区二区三区 | 91aial.com中文字幕在线观看| 黄色怎么调成土黄色| 精品人妻一区二区三区麻豆| 亚洲精品亚洲一区二区| 久久青草综合色| 国产免费又黄又爽又色| 国产一区二区三区av在线| 久久午夜福利片| 亚洲av中文字字幕乱码综合| 日韩不卡一区二区三区视频在线| 成年人午夜在线观看视频| 人妻一区二区av| 99久久中文字幕三级久久日本| 免费黄色在线免费观看| 亚洲经典国产精华液单| 国产精品免费大片| 热re99久久精品国产66热6| 国产一区二区三区综合在线观看 | 日韩大片免费观看网站| 2021少妇久久久久久久久久久| 国产午夜精品一二区理论片| 日韩中字成人| 精品人妻熟女av久视频| 亚洲欧美日韩东京热| 国产国拍精品亚洲av在线观看| 免费黄色在线免费观看| 九草在线视频观看| 国产亚洲91精品色在线| 韩国高清视频一区二区三区| 欧美区成人在线视频| 成人无遮挡网站| 国产熟女欧美一区二区| 欧美zozozo另类| 人妻一区二区av| 久久影院123| 中文字幕久久专区| 一本色道久久久久久精品综合| a 毛片基地| 99re6热这里在线精品视频| 日韩伦理黄色片| 男人爽女人下面视频在线观看| 人人妻人人爽人人添夜夜欢视频 | 国产精品久久久久久精品古装| 亚洲久久久国产精品| 丰满人妻一区二区三区视频av| 国产乱来视频区| 你懂的网址亚洲精品在线观看| 欧美国产精品一级二级三级 | 亚洲av男天堂| 少妇 在线观看| 精品国产一区二区三区久久久樱花 | 亚洲三级黄色毛片| h日本视频在线播放| 亚洲自偷自拍三级| 纯流量卡能插随身wifi吗| 国产亚洲5aaaaa淫片| 中文字幕精品免费在线观看视频 | 亚洲丝袜综合中文字幕| 日韩制服骚丝袜av| 亚洲av综合色区一区| 国产精品一区二区性色av| 亚洲高清免费不卡视频| 亚洲无线观看免费| 亚洲内射少妇av| 日日啪夜夜爽| 国产真实伦视频高清在线观看| 国产美女午夜福利| 国产av精品麻豆| 亚洲,一卡二卡三卡| 国产成人一区二区在线| 亚洲精品国产色婷婷电影| 久久久久久久久久久丰满| 哪个播放器可以免费观看大片| 亚洲精品第二区| 肉色欧美久久久久久久蜜桃| 久久 成人 亚洲| 国产成人一区二区在线| 久久久精品94久久精品| 国产成人a区在线观看| 自拍偷自拍亚洲精品老妇| 五月天丁香电影| 夫妻性生交免费视频一级片| 午夜免费鲁丝| 97超碰精品成人国产| 啦啦啦在线观看免费高清www| 亚洲精品乱码久久久v下载方式| 蜜臀久久99精品久久宅男| 高清欧美精品videossex| 一个人看的www免费观看视频| 久久综合国产亚洲精品| 人人妻人人看人人澡| 精品久久国产蜜桃| 久久国产精品男人的天堂亚洲 | 国内少妇人妻偷人精品xxx网站| 夜夜骑夜夜射夜夜干| 亚洲av二区三区四区| 啦啦啦中文免费视频观看日本| 国产精品人妻久久久久久| 多毛熟女@视频| 精品久久久噜噜| 国产成人免费观看mmmm| 久热久热在线精品观看| 欧美精品一区二区免费开放| 少妇 在线观看| 永久免费av网站大全| 1000部很黄的大片| 噜噜噜噜噜久久久久久91| 精品视频人人做人人爽| 亚洲精品色激情综合| 欧美极品一区二区三区四区| 在线观看免费日韩欧美大片 | 丰满人妻一区二区三区视频av| 啦啦啦啦在线视频资源| 亚洲精品久久久久久婷婷小说| 国产亚洲精品久久久com| 九九在线视频观看精品| av卡一久久| 精品酒店卫生间| 女人十人毛片免费观看3o分钟| 国产成人午夜福利电影在线观看| 国产大屁股一区二区在线视频| 国产精品秋霞免费鲁丝片| 免费看日本二区| 欧美日韩视频精品一区| 妹子高潮喷水视频| 亚洲真实伦在线观看| 亚洲欧美日韩另类电影网站 | 国产成人91sexporn| 欧美高清性xxxxhd video| 亚洲天堂av无毛| 干丝袜人妻中文字幕| 国产极品天堂在线| 久久久久国产精品人妻一区二区| 纵有疾风起免费观看全集完整版| 老司机影院成人| 亚洲av日韩在线播放| 中文乱码字字幕精品一区二区三区| 永久网站在线| 99久国产av精品国产电影| 网址你懂的国产日韩在线| 一区二区三区四区激情视频| 久久久久国产网址|