• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on the falling film flow and heat transfer characteristics of FLNG spiral wound heat exchanger under sea conditions

    2022-07-14 09:19:40ChongZhengSunLiangLiuYuXingLiJianLuZhu
    Petroleum Science 2022年3期

    Chong-Zheng Sun,Liang Liu,Yu-Xing Li,Jian-Lu Zhu

    College of Pipeline and Civil Engineering/Shandong Provincial Key Laboratory of Oil & Gas Storage and Transportation Safety/Qingdao Key Laboratory of Circle Sea Oil & Gas Storage and Transportation Technology,China University of Petroleum,Qingdao,Shandong,266580,China

    Keywords:

    ABSTRACT

    1.Introduction

    LNG(Liquefied Natural Gas)Floating Production Storage and Offloading unit is constructed for the natural gas production of offshore gas fields,especially for the deep-sea gas resources(Wang et al.,2016;Duan et al.,2016;Zhu et al.,2019;Sun et al.,2019).Spiral wound heat exchanger is the main cryogenic heat exchanger applied in the FLNG,due to its highly compact structure,high pressure endurance and good thermal compensation(Sun et al.,2019;Zheng et al.,2019;Wang et al.,2018;Wu et al.,2020).

    In the FLNG process,the refrigerant flows in the shell-side SWHE to cool the tube-side feed natural gas.The operation efficiency of SWHE depends on the flow and heat transfer performance,which has received a mount of attentions.Sharqawy et al.(2019)experimentally investigated the effect of flow configuration on the heat transfer and pressure drop performance of SWHE.Wang et al.(2018a,b)found that the staggered arrangement of spacing bar has a positive effect on the flow and heat transfer performance,according to the numerical results.Neeraas et al.,(2004a;2004b)experimentally measured the shell-side frictional pressure drop and heat transfer coefficients of LNG SWHE.Jian et al.(2020)experimentally studied the influence of inclination on the heat transfer performance of SWHE.The results indicated that the overall heat transfer coefficient decreases with increasing inclination angle.Hu et al.(2019)and Ding et al.(2018)conducted an experiment to investigate the influence of vapor quality,mass flux,heat flux,longitude tube pitch and radial tube pitch on the two-phase flow heat transfer of SWHE.Based on the experimental data,a heat transfer coefficient correlation considering the parameters above was developed.

    Falling film evaporation is a dominant heat transfer technology used for spiral wound heat exchanger.Many researchers have investigated the effects of different parameters on the falling film flow characteristics.Han et al.(2020)numerically studied the falling film thickness distribution around the curved egg-shaped tube bundle.Bock et al.(2019)conducted a falling film boiling experiment and found that the heat transfer coefficient increases with the increase of surface roughness and heat flux.Zhao et al.(2016,2017,2018a,2018b,2020)and Ji et al.(2016,2019)conducted experiments to study the falling film evaporation characteristics over the single tube and tube bundles.The results indicated that with the increasing Re,the falling film heat coefficient firstly keep stable and then drop sharply.Under the sea conditions,the liquid film around the heating tube of the FLNG SWHE will suffer maldistribution,which leads to the deterioration of heat transfer performance.Therefore,it is essential to investigate the falling film flow and heat transfer characteristics of SWHE under sea conditions.Han et al.(2019)established a numerical model to study the falling film thickness around tube bundle under title and sloshing conditions.The results show that the distribution of liquid film is strongly deteriorated under title condition.Yu et al.(2019)numerically studied the effects of sloshing forms and period on the heat transfer performance of SWHE under sloshing conditions.Ren et al.(2018)built a numerical model and found that the effects of pitching and heaving on heat transfer performance of SWHE is more obvious than rolling.Up to now,the falling film flow characteristics under sea conditions has only received sporadic attentions.It is necessary to conduct further researches to reveal the mechanism of the variation of the heat transfer performance of SWHE under sea conditions.

    In this work,the effect of sloshing forms,sloshing periods,sloshing angle,sloshing displacement and mass flow rate on the falling film flow and heat transfer characteristics of FLNG SWHE are studied through a cryogenic experimental device of FLNG process and a numerical model of falling film flow,and the geometric parameter is optimized under different conditions,which can be a guidance for promotion of the heat transfer performance of FLNG SWHE.

    2.Summary of cryogenic experimental investigation

    2.1.Establishment of cryogenic experimental equipment

    The cryogenic experimental device is based on the floating MR(mixed refrigerant)natural gas liquefaction process and shown in Fig.1,which includes the FLNG heat exchanger module,compression and gasification module.The FLNG heat exchanger module consists of spiral wound heat exchanger and sloshing platform.The mixed refrigerant is pressurized by compressor and cooled to approximately-40?C in the pre-cooling heat exchanger and approximately-120?C in the FLNG SWHE separately.After being throttled by the cryogenic valve(around-140?C),the mixed refrigerant flows back to the SWHE to cool the feed natural gas.The feed natural gas is also pressurized by compressor and cooled to around-40?C in the pre-cooling heat exchanger and around-120?C in FLNG SWHE,separately.Then feed natural gas flows back to the LNG tank.The cryogenic experimental device based on the floating MR(mixed refrigerant)natural gas liquefaction process can work economically with Mr/Mf(mass flow rate of refrigerant divided by mass flow rate of feed natural gas)of 4-6,which can be thought as middle Mr/Mf.The conditions are thought as low Mr/Mfwhen Mr/Mfis lower than 4 and are thought as large Mr/Mfwhen Mr/Mfis larger than 6.The FLNG SWHE is fixed on a sloshing platform and moves with the platform.The sloshing platform is controlled by the computer to study the influence of sea conditions with different angles(α),periods(T)and displacements(d)on FLNG SWHE.The experimental conditions are listed in Table 1.

    Table1 The experimental conditions.

    2.2.The effect of pitching and yawing conditions on the heat transfer performance of SWHE

    Based on the cryogenic experimental results,the effect of pitching motion on the liquid refrigerant temperature,gaseous refrigerant temperature and natural gas temperature of SWHE is shown in Fig.2.It can be seen that the pitching motion has little effect on the liquid refrigerant temperature of tube side,liquid refrigerant temperature of shell side and gaseous refrigerant temperature of shell side.But the fluctuation of natural gas temperature and gaseous refrigerant temperature of tube side is apparent.As shown in Fig.2a,under pitching conditions with α=3?and T=10 s,the natural gas temperature and the gaseous refrigerant temperature increase 0.2?C and 1.76?C,respectively,which indicates that it has a small negative impact on the heat transfer performance of SWHE.However,the variations of the natural gas temperature and the gaseous refrigerant temperature increase and start to rise in advance with the increase ofα.As shown in Fig.2c,the natural gas temperature and the gaseous refrigerant temperature increase after pitching at 600s and increase by 0.49?C and 3.42?C,respectively,withα=5?.Whenαincreases to 7?(Fig.2f),the natural gas temperature and the gaseous refrigerant temperature increase after pitching at 300 s and increase by 3.22?C and 7.42?C,respectively.The tube-side gaseous refrigerant is more easily influenced by the pitching conditions than natural gas,due to the larger flow rate of gaseous refrigerant.As shown in Fig.2b-e,when T is 6 s,10 s,15 s and 20 s,the natural gas temperature increase by 5.57?C,0.49?C,4.00?C and 5.67?C,respectively.It is found that too large T and too small T have negative effects on the heat transfer performance of SWHE.Too large T means the position with larger title angle lasts for a long time in a period.A large amount of refrigerant will flow to the inclined side,which leads to the excess cold energy in the inclined side and insufficient cold energy in the other side.Too small T means a large pitching velocity,which leads to a larger relative velocity between the refrigerant and tube wall.

    The effect of yawing motion on the liquid refrigerant temperature,gaseous refrigerant temperature and natural gas temperature of SWHE is illustrated in Fig.3.It can be seen from Fig.3a that the yawing motion withα=3?has little effect on SWHE.As shown in Fig.3b-e,the small fluctuation of natural gas temperature appears whenαincreases to 5?.From Fig.3f,atα=7?,the natural gas and gaseous refrigerant temperature increase by 3.32?C and 2.83?C,respectively.Compared to the pitching condition,the yawing condition has smaller effects on the heat transfer performance.That is because the SWHE rotates round the center axial under yawing conditions,resulting in relative movement between shell-side refrigerant and tube wall.However,due to the symmetry of the coiled tube of SWHE,the lacking of refrigerant on the tube surface will be supplied by the adjacent area,so the refrigerant-rich areas and refrigerant-poor areas will not present.

    Fig.3.Temperatures of spiral wound heat exchanger under yawing conditions.

    2.3.The effect of mass flow rate

    The effect of refrigerant and feed gas flow rate on the heat transfer performance of SWHE under pitching condition is shown in Fig.4.It can be seen from Fig.4a that with low Mr/Mf(3.233),the heat transfer performance of SWHE is greatly reduced under pitching condition.The tube-side gaseous refrigerant temperature and feed natural gas temperature increase by 2.54?C and 3.22?C,respectively.With middle Mr/Mf(4.651),the tube-side gaseous refrigerant temperature and feed natural gas temperature increase by 3.42?C and 0.49?C,respectively(Fig.4b).However,with large Mr/Mf(6.424),the heat transfer performance of the SWHE is improved under the pitching condition.The tube-side gaseous refrigerant temperature and feed natural gas temperature reduce by 1.17?C and 1.07?C,respectively(Fig.4c).

    In order to study the influence of Mr/Mfon the heat transfer performance of FLNG SWHE,the tube-side and shell-side heat transfer coefficients are calculated.The Chien formula(Chien and Tsai,2011)is applied to calculate the heat transfer coefficients of shell-side refrigerant pool boiling and falling film vaporization,which is expressed in Eqs.(1)and(2).When the shell-side mixed refrigerant is completely vaporized into a pure gas phase,the heat transfer coefficient calculation method is given as Eqs.(3)and(4).

    Fig.1.The cryogenic experimental device of floating natural gas liquefaction process.

    Where,S is boiling suppression factor,αcvis convection heat transfer coefficient,W/(m2??C),αnbis nucleate boiling heat transfer coefficient,W/(m2??C),αsis the shell-side heat transfer coefficient,W/(m2??C),We is Webb number,Bo is Boiling number,Pr is Prandtl number,λis thermal conductivity coefficient,W/(m2??C).

    The Bell formula(Bell and Ghaly,1973)is applied to calculate heat transfer coefficient of two-phase tube-side mixed refrigerant and feed natural gas,which is expressed in Eq.(5).A widely accepted correlation of formula is applied to calculate the singlephase tube-side heat transfer coefficient(Oka,1982),which is expressed in Eqs.(6)-(8).

    Where,αtis the tube-side heat transfer coefficient,W/(m2??C),αsis the shell-side heat transfer coefficient,W/(m2??C),αlis the thin-film tube-side heat transfer coefficient,W/(m2??C),αsvis the pure-gas tube-side heat transfer coefficient,W/(m2??C),qsvis the pure-gas heat flux,W,q is total heat flux,W,Diis the inner diameter,m,Dcis the winding diameter,m,Recis the critical Reynolds number.

    Based on the above calculation Eqs.(1)-(8),temperature and heat exchange profile along the tube length in the FLNG SWHE under pitching conditions are obtained and shown in Fig.5.It can be seen that when the tube side refrigerant and feed natural gas enter the SWHE,the temperature decreases rapidly,and the temperature drop rate slows down gradually along the tube length.It can be seen from Fig.5a that with low Mr/Mf,the shell-side refrigerant temperature increases from 180.98 K to 182.74 K,and the feed natural gas heat exchange decreases from 495.47 W to 458.59 W.With middle Mr/Mf,the shell-side refrigerant temperature increases by 0.17 K,and the heat exchange of natural gas maintain stable under heaving conditions(Fig.5b).With large Mr/Mf,the shell-side mixed refrigerant temperature decreases by 3.51 K,and the natural gas heat exchange increases by 36.55 W(Fig.5 c).

    Through the experimental data and heat transfer calculation results,it is found that the pitching motion reduces the heat transfer performance of SWHE with low Mr/Mf.Pitching motion has a little effect on the heat transfer performance of heat exchangers with middle Mr/Mf,and improves the heat transfer performance with large Mr/Mf.This is because with low Mr/Mf,the cooling capacity of the shell-side mixed refrigerant of the SWHE is fully utilized under static state.The pitching condition causes the uneven distribution of refrigerant cooling capacity.While with large Mr/Mf,the cooling capacity of the shell-side refrigerant is excessive under static state.The pitching condition will make the mixed refrigerant evenly distributed on the shell side,which improves the utilization rate of the refrigerant and strengthens the heat transfer effect of the SWHE.From the results of cryogenic experimental device,the flow rates of refrigerant and feed natural gas have a greater impact on the sloshing adaptability of FLNG SWHE.Therefore,when the mixed refrigerant flow rate of the FLNG mixed refrigerant liquefaction process is low,additional measures should be taken to improve the heat transfer performance of FLNG SWHE.

    2.4.The effect of compound sloshing conditions on the heat transfer performance of SWHE

    Under the compound sloshing conditions,the heat transfer performance of SWHE will be influenced by more than single sloshing movement.The effect of compound sloshing on the liquid refrigerant temperature,gaseous refrigerant temperature and natural gas temperature of SWHE is illustrated in Fig.6.It can be seen from Fig.6a and b that under compound pitching condition and surging condition with middle Mf,the variation of the natural gas temperature and gaseous refrigerant temperature of tube side can be ignored.As shown in Fig.6c and d,with the increase of Mf,the natural gas temperature and gaseous refrigerant temperature of tube side increase by 1.66?C and 0.29?C,1.07?C and 2.05?C,respectively.Fig.6e and f shows that the tube-side gaseous refrigerant temperature maintains stable,under compound pitching and surging condition with low Mf,or under compound pitching and heaving condition without Mf.The effect of mass flow rate on the heat transfer performance under compound sloshing condition is similar to that of single sloshing condition.However,the compound sloshing motion with low Mfhas a negative effect on heat transfer performance of SWHE,due to more complex motions than that of single sloshing motion.

    3.Summary of numerical investigation

    3.1.The physical model and grid model

    The numerical model of falling film flow is established and shown in Fig.7.There are five liquid inlets,whose radius is 170 mm and length is 1/10 of the circumference.The three liquid inlet in the middle is squares with a side length of 2 mm,and the two liquid inlet in the both side is half of the squares.The width of the model is 16 mm.

    The conservation equation can be written as follows:

    Where u is the velocity,m/s;p is the pressure,Pa;ρis the density,kg/m3;μis the dynamic viscosity,Pa?s.

    The inlet boundary condition is set as mass flow inlet boundary.The left and right boundary conditions are symmetry boundary.The coupled VOF(Volume of Fluid)and Level Set methods are chose to capture the gas-liquid interface.The Pressure-Implicit with Splitting of Operators(PISO)is applied in pressure-velocity coupling and the QUICK scheme is used for spatial discretization.

    3.2.The mesh independence and model verification

    The numerical model is meshed by structured grid and shown in Fig.7.The initial height of boundary layer grid near the tube wall is 0.015 mm.The time step is 1×10-5s.The comparison of the liquid circumferential film thickness with 17.8 million,27.8 million and 40.3 million grids is shown in Fig.8.It can be concluded that the deviation of the circumferential film thickness decreases with the increase of grid number,and the average deviation of the film thickness between grid number of 27.8 million and 40.3 million is 1.86%.Therefore,the grid number of 27.8 million is sufficient enough to ensure the mesh independence.

    Fig.7.The schematic diagram and meshing of falling film flow calculation model.

    A visualization experimental device with high-speed camera is constructed to obtain experimental results for the validation of the numerical model.The flow diagram of the experimental device is shown in Fig.9.The test fluid is pressurized by pump and measured by the flow meter.After that,the fluid flow through the test section and the falling film flow characteristics is recorded by the high speed camera.Then,the test fluid flow back to buffer tank and is pressurized again.Figs.10 and 11 show the qualitative comparisons of falling film flow patterns between simulation results and experimental observations under static condition.Tables 2 and 3 show the quantitative comparisons of the width of the liquid column.It can be seen that the simulation results are consistent with the experimental results in the top crest,bottom liquid belly and inter-tube flow characteristics,which verifies the correctness of the numerical model.

    3.3.Numerical results and discussion

    Fig.4.Temperatures of SWHE with different mass flow rates under pitching conditions.

    From the numerical simulation results,the liquid film spreading process under horizontal condition is shown in Fig.12.It can be seen that the tube wall is not covered by the liquid film at t=0s(Fig.12a).The liquid is injected uniformly from the inlet and the liquid mainly spreads along the gravity direction at t=0.01 s(Fig.12b).The liquid film spreads along the axial and circumferential direction in the first tube.There is little difference in the spreading velocity between the axial and circumferential liquid film at t=0.03 s(Fig.12c).At t=0.05 s,the liquid film mainly spreads along the circumferential direction(Fig.12d).At t=0.08 s,the liquid is completely spread in the first tube(Fig.12e).Then the liquid converges and drops onto the second tube.Because of the randomness of the liquid convergence process between the first and second tubes,the liquid film spreading forms of each part of the second tube are slightly different at the same time(Fig.12f and g).At 0.25 s,only a small amount of dry area appears on the second tube surface(Fig.12h).At 0.29 s,the liquid is completely spread on the second tube(Fig.12i).

    Based on the dynamic grid technology,a UDF program is written to import the numerical simulation model to study the influence of pitching condition on the falling film flow characteristics.Fig.13 shows the liquid film spreading process with the tilt angle of 6?.It can be seen that the tube wall is not covered by the liquid film at t=0 s(Fig.13a).The liquid is injected uniformly from the inlet and the liquid mainly spreads along the gravity direction at t=0.01 s(Fig.13b).The falling film spreading process in the first tube is similar to that under horizontal condition(Fig.13c and d).While the inter-tube liquid shifts,due to the axial component of gravity.It is easier for fluids to converge on the inclined side,while more drying areas appear on the other side(Fig.13f and g).As time goes on,the drying area remains stable(Fig.13h and i).

    With the tilt angle of 6?,the variation of falling film flow and its velocity distribution with the structure of tube diameter 8 mm and tube spacing 8 mm is shown in Fig.14.It is found that the flow process of the first root tube is similar to that of 4 mm tube spacing(Fig.14c and d).With the increase of tube spacing,the shape of columnar flow becomes more and more obvious.However,due to the influence of gravity,the liquid column shifts and is obliquely sprayed onto the second tube(Fig.14e and f).Different from the 4 mm spacing,the axial liquid film converges earlier during the dripping process of the liquid column between the left side of the 8 mm tube spacing(Fig.14g).The axial acceleration of gravity results in a thicker liquid film on the inclined side of the tube wall and a drying area on the other side of the tube wall(Fig.14h and i).

    With the tilt angle of 6?,the flow process and velocity distribution of falling film with the structure of tube outer diameter 12 mm and tube spacing 4 mm is shown in Fig.15.It can be seen that the variation of falling film flow with time in the outer diameter of the 12 mm tube of the first tube is similar to that of the outer diameter of the 8 mm tube(Fig.15c and d).At 0.10 s,the liquid film is completely spread out at the first canal of the outer diameter of the 12 mm tube(Fig.15e).Due to the long circumferential distance,the liquid film converges axially at the second tube,and then spreads in the circumferential direction(Fig.15f and g).Similar to the outer diameter of the 8 mm,a large dry area appears on the surface of the tube wall(Fig.15h and i).The ideal working state of the falling film flow process is that the liquid film uniformly covers the tube wall of SWHE.While the sea condition affect the spread of the liquid film along the axial direction,which decreases the heat transfer performance of FLNG SWHE.

    In order to obtain the falling film dry patch distribution,the homogeneous coordinate technique is used to restore the numerical simulation model of falling film flow under pitching condition to the horizontal state(Fig.16).A series of transformations can be represented by matrices.

    Tilt theαangle along the Z axis,which is shown in Eqs 13-16,

    Tilt theβangle along the Y axis,which is shown in Eqs 17-20,

    Fig.6.Temperatures of spiral wound heat exchanger under compound sloshing conditions.

    Tilt theγangle along the X axis,which is shown in Eqs 21-24,

    Fig.8.Mesh independence verification.

    The falling film dry patch distribution under pitching condition is calculated and given in Fig.17.The area of the dry patch is relatively stable when the circumferential angle is in the range of 0?-80?.The range of the dry patch increases,when the circumferential angle is greater than 80?.The falling film dry patch ratios under pitching condition are given in Table 4.It can be seen that the proportion of drying area of pipe diameter D=8 mm and pipe spacing S=8 mm is the smallest,when the tilt angle is 6?.While when the tilt angle is 9?,the proportion of drying area of D=8 mm and S=4 mm is the smallest.Therefore,when tilt angle is small,the pipe structure with outer diameter D=8 mm and pipe spacing S=8 mm is recommended.While when the tilt angle increases to 9?,the tube structure with outer diameter D=8 mm and pipe spacing S=4 mm is recommended to reduce the drying area of the pipe wall surface.

    Fig.17.The falling film dry patch distribution.

    Table4 The falling film dry patch ratio.

    4.Conclusion

    A cryogenic experimental device of FLNG process and a numerical model of falling film flow are constructed to study the effects of sea conditions on the falling film flow and heat transfer characteristics of FLNG SWHE.Following conclusions can be drawn.

    1.From the results of FLNG cryogenic experimental device,the pitching conditions have negative effects on the heat transfer performance of SWHE.The tube-side gaseous refrigerant is influenced by the pitching conditions more easily than that of natural gas.Under the pitching angle of 7?,the natural gas temperature and gaseous refrigerant temperature increase by 3.22?C and 7.42?C,respectively.Compared to the pitching condition,the yawing condition has smaller effects on the heat transfer performance.

    Fig.9.Process flow diagram of visualization experimental device of falling film flow.

    Fig.10.Comparison of falling film flow pattern simulation results with the experimental results(D=8 mm,S=4 mm).

    Fig.11.Comparison of falling film flow pattern simulation results with the experimental results(D=8 mm,S=8 mm).

    Table2 Comparison of liquid column width simulation results with the experimental results(D=8 mm,S=4 mm).

    Table3 Comparison of liquid column width simulation results with the experimental results(D=8 mm,S=8 mm).

    Fig.12.The variation of falling film flow process and velocity distribution(D=8 mm,S=4 mm).

    Fig.13.The variation of falling film flow process and velocity distribution with tilt angle of 6?(D=8 mm,S=4 mm).

    2.The flow rates of refrigerant and feed natural gas have a great impact on the sea adaptability of FLNG SWHE.With lower Mr/Mf,the heat exchange of feed natural gas decreases by 36.88 W under pitching conditions.When the mixed refrigerant flow rate of the FLNG mixed refrigerant liquefaction process is low,additional measures should be taken to improve the heat transfer performance of FLNG SWHE.

    Fig.14.The variation of falling film flow process and velocity distribution with tilt angle of 6?(D=8 mm,S=8 mm).

    Fig.15.The variation of falling film flow process and velocity distribution with tilt angle of 6?(D=12 mm,S=4 mm).

    3.A large area of dry patch appears on the surface of tube wall.When the tilt angle is small,the pipe structure with outer diameter D=8 mm and pipe spacing S=8 mm is recommended.While when the tilt angle increases to 9?,the tube structure with outer diameter D=8 mm and pipe spacing S=4 mm is recommended to reduce the drying area of the pipe wall surface under sea conditions.

    Fig.16.Axis transformation.

    Acknowledgements

    The present work is supported by the National Natural Science Foundation of China(U21B2085),the Natural Science Foundation of Shandong Province of China(ZR2021QE073),the China Postdoctoral Science Foundation(2021M703587),the Qingdao Postdoctoral Applied Research Project(qdyy20200096)and Fundamental Research Funds for the Central Universities(20CX06076A).

    国产精品av久久久久免费| 日韩大尺度精品在线看网址 | 午夜免费观看网址| 中文字幕另类日韩欧美亚洲嫩草| 性欧美人与动物交配| 在线播放国产精品三级| 久热爱精品视频在线9| 日韩欧美国产一区二区入口| 露出奶头的视频| av网站免费在线观看视频| 亚洲人成伊人成综合网2020| 淫妇啪啪啪对白视频| 精品少妇一区二区三区视频日本电影| 欧美日本亚洲视频在线播放| 女生性感内裤真人,穿戴方法视频| 青草久久国产| 最新美女视频免费是黄的| 亚洲午夜精品一区,二区,三区| 亚洲精品国产区一区二| 久久精品影院6| 男人的好看免费观看在线视频 | 日本撒尿小便嘘嘘汇集6| 成人18禁高潮啪啪吃奶动态图| 激情在线观看视频在线高清| 一区福利在线观看| 老鸭窝网址在线观看| 极品人妻少妇av视频| www.精华液| 日韩大尺度精品在线看网址 | 国产亚洲欧美在线一区二区| 日韩视频一区二区在线观看| 国产私拍福利视频在线观看| 亚洲熟妇中文字幕五十中出| 91精品三级在线观看| 亚洲中文av在线| 欧美日韩乱码在线| 久久久久国内视频| 国产成人av教育| 老司机福利观看| 久久久久久久久免费视频了| 美国免费a级毛片| av电影中文网址| 在线观看免费视频日本深夜| 自线自在国产av| avwww免费| 亚洲成av片中文字幕在线观看| 国产精品爽爽va在线观看网站 | 大香蕉久久成人网| 怎么达到女性高潮| 精品电影一区二区在线| 长腿黑丝高跟| av福利片在线| 美国免费a级毛片| 村上凉子中文字幕在线| 最近最新中文字幕大全免费视频| 国产高清videossex| 免费无遮挡裸体视频| 国产精品香港三级国产av潘金莲| 99riav亚洲国产免费| 欧美国产日韩亚洲一区| 国产一区二区三区视频了| 午夜福利,免费看| 久久久久九九精品影院| 中文字幕久久专区| 午夜免费成人在线视频| 99国产精品一区二区蜜桃av| 国产单亲对白刺激| 九色亚洲精品在线播放| 午夜福利,免费看| 久久中文字幕人妻熟女| 久久久久国产一级毛片高清牌| 亚洲av片天天在线观看| 91字幕亚洲| 久久人妻熟女aⅴ| 18禁黄网站禁片午夜丰满| 久久 成人 亚洲| 亚洲精品中文字幕在线视频| 国产亚洲欧美在线一区二区| 国产熟女午夜一区二区三区| 热re99久久国产66热| 国产精品国产高清国产av| 人人妻,人人澡人人爽秒播| 在线免费观看的www视频| 桃红色精品国产亚洲av| 国产aⅴ精品一区二区三区波| 在线观看免费视频日本深夜| 黄片小视频在线播放| 给我免费播放毛片高清在线观看| 色尼玛亚洲综合影院| 女人爽到高潮嗷嗷叫在线视频| 亚洲少妇的诱惑av| 91精品三级在线观看| 在线观看日韩欧美| 久久久久久久久免费视频了| 精品人妻1区二区| 一二三四社区在线视频社区8| 国产三级黄色录像| 久99久视频精品免费| 正在播放国产对白刺激| 伊人久久大香线蕉亚洲五| 十八禁网站免费在线| 一区在线观看完整版| 日本三级黄在线观看| 国产亚洲精品一区二区www| 搡老岳熟女国产| 亚洲人成77777在线视频| 亚洲欧美激情综合另类| 脱女人内裤的视频| 麻豆久久精品国产亚洲av| 啦啦啦 在线观看视频| 给我免费播放毛片高清在线观看| 91九色精品人成在线观看| 国产精品综合久久久久久久免费 | x7x7x7水蜜桃| 久久青草综合色| 91字幕亚洲| 欧美日本中文国产一区发布| 日本vs欧美在线观看视频| 午夜福利影视在线免费观看| 国产蜜桃级精品一区二区三区| www.www免费av| 国内精品久久久久精免费| 亚洲 国产 在线| 黑丝袜美女国产一区| 女人精品久久久久毛片| 久久国产精品影院| 日韩欧美三级三区| 日本撒尿小便嘘嘘汇集6| 在线十欧美十亚洲十日本专区| 在线观看免费视频网站a站| 亚洲精华国产精华精| 精品第一国产精品| 99国产极品粉嫩在线观看| 亚洲男人天堂网一区| 在线观看免费午夜福利视频| 看黄色毛片网站| 女性被躁到高潮视频| 在线永久观看黄色视频| 黑丝袜美女国产一区| 日本撒尿小便嘘嘘汇集6| 欧美日韩瑟瑟在线播放| 欧美黄色片欧美黄色片| 99riav亚洲国产免费| tocl精华| 两人在一起打扑克的视频| 国产成人啪精品午夜网站| 看免费av毛片| 亚洲 国产 在线| 亚洲av日韩精品久久久久久密| 一区在线观看完整版| 免费在线观看日本一区| 亚洲美女黄片视频| 亚洲av第一区精品v没综合| www.精华液| 手机成人av网站| 99精品欧美一区二区三区四区| 亚洲精品久久国产高清桃花| 日日爽夜夜爽网站| av天堂在线播放| 黄频高清免费视频| 级片在线观看| 欧美日韩黄片免| 午夜福利免费观看在线| 欧美中文日本在线观看视频| 国产精品亚洲一级av第二区| 一进一出好大好爽视频| 男人操女人黄网站| 国产成人免费无遮挡视频| 一边摸一边抽搐一进一出视频| 搡老岳熟女国产| а√天堂www在线а√下载| 精品欧美一区二区三区在线| 999精品在线视频| 天堂√8在线中文| 日本vs欧美在线观看视频| 看片在线看免费视频| 国产又爽黄色视频| 99国产精品一区二区蜜桃av| 一区二区三区国产精品乱码| 久久国产乱子伦精品免费另类| 电影成人av| 精品久久久久久成人av| 黑人巨大精品欧美一区二区蜜桃| 午夜亚洲福利在线播放| 久久青草综合色| 亚洲三区欧美一区| 国产av在哪里看| 国产亚洲欧美在线一区二区| av天堂久久9| 日韩精品中文字幕看吧| 中文字幕人妻丝袜一区二区| 97超级碰碰碰精品色视频在线观看| 老司机在亚洲福利影院| 他把我摸到了高潮在线观看| 亚洲人成伊人成综合网2020| 午夜激情av网站| 国产精品二区激情视频| 99精品久久久久人妻精品| 又黄又粗又硬又大视频| 亚洲,欧美精品.| 波多野结衣一区麻豆| 我的亚洲天堂| 老熟妇乱子伦视频在线观看| av有码第一页| 国产精品美女特级片免费视频播放器 | 午夜成年电影在线免费观看| 亚洲国产高清在线一区二区三 | 国产午夜精品久久久久久| 欧美黄色淫秽网站| 9191精品国产免费久久| 免费在线观看完整版高清| 91国产中文字幕| 国产精品 欧美亚洲| 欧美+亚洲+日韩+国产| 亚洲九九香蕉| 中文字幕久久专区| 搡老岳熟女国产| 真人一进一出gif抽搐免费| 国产1区2区3区精品| 99国产极品粉嫩在线观看| 久久精品国产亚洲av高清一级| 啦啦啦观看免费观看视频高清 | 中出人妻视频一区二区| 国产精品国产高清国产av| 村上凉子中文字幕在线| 又大又爽又粗| 国产精品乱码一区二三区的特点 | 夜夜躁狠狠躁天天躁| 18禁观看日本| 十八禁人妻一区二区| 窝窝影院91人妻| 在线观看免费视频网站a站| 高清毛片免费观看视频网站| 色婷婷久久久亚洲欧美| 亚洲熟妇中文字幕五十中出| 国产片内射在线| 亚洲国产欧美日韩在线播放| 十八禁网站免费在线| 美女扒开内裤让男人捅视频| 亚洲欧美日韩另类电影网站| 狠狠狠狠99中文字幕| 色综合欧美亚洲国产小说| 免费在线观看影片大全网站| 一夜夜www| 脱女人内裤的视频| av中文乱码字幕在线| а√天堂www在线а√下载| 中文字幕最新亚洲高清| 波多野结衣av一区二区av| 亚洲av熟女| 淫妇啪啪啪对白视频| 女人高潮潮喷娇喘18禁视频| 性色av乱码一区二区三区2| 啦啦啦观看免费观看视频高清 | 桃色一区二区三区在线观看| 又紧又爽又黄一区二区| 欧美日韩亚洲综合一区二区三区_| 九色国产91popny在线| 亚洲 国产 在线| 日韩大码丰满熟妇| 91在线观看av| 男女床上黄色一级片免费看| 国产欧美日韩一区二区精品| 老熟妇乱子伦视频在线观看| 岛国视频午夜一区免费看| 精品国产一区二区久久| 侵犯人妻中文字幕一二三四区| 黄色视频不卡| 国产片内射在线| 欧美av亚洲av综合av国产av| 老鸭窝网址在线观看| 国产亚洲精品一区二区www| 亚洲精品在线美女| 免费人成视频x8x8入口观看| 午夜免费鲁丝| 丰满的人妻完整版| 午夜精品久久久久久毛片777| 午夜日韩欧美国产| 女性生殖器流出的白浆| 欧美成人免费av一区二区三区| 男人舔女人的私密视频| 母亲3免费完整高清在线观看| 午夜日韩欧美国产| 美女午夜性视频免费| 国产亚洲精品久久久久5区| 亚洲精品国产色婷婷电影| 日韩成人在线观看一区二区三区| 视频在线观看一区二区三区| 日韩国内少妇激情av| 国产91精品成人一区二区三区| www国产在线视频色| 亚洲成人免费电影在线观看| 国产成人精品久久二区二区91| 校园春色视频在线观看| 国产99白浆流出| 国产成人精品在线电影| 黑人欧美特级aaaaaa片| 久久狼人影院| 18禁黄网站禁片午夜丰满| 99国产精品一区二区三区| 久久精品国产亚洲av香蕉五月| 日韩一卡2卡3卡4卡2021年| 激情视频va一区二区三区| 亚洲性夜色夜夜综合| 成人欧美大片| 中文字幕人成人乱码亚洲影| 亚洲免费av在线视频| 亚洲人成网站在线播放欧美日韩| 最近最新免费中文字幕在线| 精品久久久精品久久久| 90打野战视频偷拍视频| 国产人伦9x9x在线观看| 午夜免费观看网址| 操美女的视频在线观看| 久久欧美精品欧美久久欧美| 亚洲人成77777在线视频| 免费久久久久久久精品成人欧美视频| 亚洲国产精品sss在线观看| 91国产中文字幕| 777久久人妻少妇嫩草av网站| 19禁男女啪啪无遮挡网站| 亚洲在线自拍视频| 久久婷婷人人爽人人干人人爱 | 动漫黄色视频在线观看| 亚洲精品久久国产高清桃花| 久久精品亚洲精品国产色婷小说| 国产亚洲精品久久久久5区| 夜夜躁狠狠躁天天躁| 国产av一区二区精品久久| 久久精品91无色码中文字幕| 亚洲专区国产一区二区| 精品免费久久久久久久清纯| 亚洲国产精品合色在线| 亚洲成av片中文字幕在线观看| 久久影院123| 波多野结衣高清无吗| 两性夫妻黄色片| 两性午夜刺激爽爽歪歪视频在线观看 | 可以在线观看毛片的网站| 欧美在线黄色| 成人三级做爰电影| www.自偷自拍.com| 别揉我奶头~嗯~啊~动态视频| 丝袜美足系列| 亚洲人成77777在线视频| 亚洲天堂国产精品一区在线| 午夜福利欧美成人| 极品人妻少妇av视频| 嫩草影视91久久| 这个男人来自地球电影免费观看| 变态另类成人亚洲欧美熟女 | 亚洲专区字幕在线| 亚洲精品国产精品久久久不卡| 高潮久久久久久久久久久不卡| 亚洲第一av免费看| 亚洲男人的天堂狠狠| 欧美+亚洲+日韩+国产| 国产成人影院久久av| 757午夜福利合集在线观看| 99热只有精品国产| 丝袜美足系列| 日韩视频一区二区在线观看| 亚洲午夜理论影院| 亚洲精品粉嫩美女一区| 亚洲中文日韩欧美视频| 国产成年人精品一区二区| 亚洲天堂国产精品一区在线| 一区福利在线观看| 欧美中文综合在线视频| 亚洲伊人色综图| 国产成人精品久久二区二区91| 美女扒开内裤让男人捅视频| 久久人人精品亚洲av| 最新在线观看一区二区三区| 亚洲全国av大片| 国产极品粉嫩免费观看在线| 国产一区二区三区视频了| 后天国语完整版免费观看| 天天一区二区日本电影三级 | 中文字幕色久视频| 神马国产精品三级电影在线观看 | 国产又色又爽无遮挡免费看| 色av中文字幕| 国产精品久久久av美女十八| 亚洲avbb在线观看| 巨乳人妻的诱惑在线观看| 成人三级做爰电影| 成人三级黄色视频| 午夜成年电影在线免费观看| 精品国产一区二区三区四区第35| 三级毛片av免费| 亚洲精品在线观看二区| 久99久视频精品免费| 一区二区三区激情视频| 国产伦人伦偷精品视频| 9191精品国产免费久久| 女生性感内裤真人,穿戴方法视频| 亚洲欧美激情综合另类| 色在线成人网| 在线av久久热| av中文乱码字幕在线| 久久久国产成人精品二区| 男人舔女人的私密视频| 亚洲人成电影免费在线| 少妇熟女aⅴ在线视频| 18禁美女被吸乳视频| 91在线观看av| 一个人免费在线观看的高清视频| xxx96com| 欧美激情极品国产一区二区三区| 日韩大尺度精品在线看网址 | 天堂影院成人在线观看| 日韩 欧美 亚洲 中文字幕| 国内精品久久久久久久电影| 久久国产乱子伦精品免费另类| 18禁黄网站禁片午夜丰满| 色哟哟哟哟哟哟| 午夜精品久久久久久毛片777| 夜夜看夜夜爽夜夜摸| 一级片免费观看大全| 国产免费男女视频| 18禁美女被吸乳视频| 在线观看舔阴道视频| 国产黄a三级三级三级人| 午夜日韩欧美国产| 亚洲中文av在线| 黄片播放在线免费| 久久天堂一区二区三区四区| 久久久久精品国产欧美久久久| 精品国产一区二区三区四区第35| 欧美大码av| 亚洲精品久久成人aⅴ小说| 成年女人毛片免费观看观看9| 女人被躁到高潮嗷嗷叫费观| 亚洲欧美激情综合另类| 久久人妻福利社区极品人妻图片| 午夜福利欧美成人| 国产精品精品国产色婷婷| 国产97色在线日韩免费| av免费在线观看网站| 天堂√8在线中文| 大码成人一级视频| 中文亚洲av片在线观看爽| 久久精品影院6| 一区在线观看完整版| 精品久久久精品久久久| 国产蜜桃级精品一区二区三区| 精品熟女少妇八av免费久了| 精品国产乱子伦一区二区三区| 乱人伦中国视频| 电影成人av| 丁香六月欧美| 午夜福利18| 又大又爽又粗| 女人爽到高潮嗷嗷叫在线视频| 亚洲视频免费观看视频| 精品欧美一区二区三区在线| 成人三级黄色视频| 99久久综合精品五月天人人| 人人妻人人澡欧美一区二区 | 香蕉久久夜色| 久久中文字幕一级| 777久久人妻少妇嫩草av网站| 99国产精品一区二区蜜桃av| 欧美激情久久久久久爽电影 | 又黄又爽又免费观看的视频| 两个人视频免费观看高清| 老司机深夜福利视频在线观看| 高清黄色对白视频在线免费看| 欧美国产精品va在线观看不卡| 欧美日韩亚洲综合一区二区三区_| 9191精品国产免费久久| 亚洲黑人精品在线| 两性午夜刺激爽爽歪歪视频在线观看 | 黄色毛片三级朝国网站| 国产一区二区三区综合在线观看| 一本综合久久免费| 极品教师在线免费播放| 国产1区2区3区精品| 一二三四社区在线视频社区8| 亚洲国产日韩欧美精品在线观看 | 亚洲熟女毛片儿| 禁无遮挡网站| 色哟哟哟哟哟哟| 两个人视频免费观看高清| 黄网站色视频无遮挡免费观看| 亚洲人成电影观看| 国产99白浆流出| 操美女的视频在线观看| 男女午夜视频在线观看| 可以免费在线观看a视频的电影网站| 精品国产美女av久久久久小说| 多毛熟女@视频| 在线观看一区二区三区| 可以免费在线观看a视频的电影网站| 97人妻精品一区二区三区麻豆 | 亚洲成国产人片在线观看| 男人舔女人下体高潮全视频| 亚洲国产精品久久男人天堂| 变态另类丝袜制服| 亚洲av片天天在线观看| 国产精品av久久久久免费| 少妇 在线观看| 免费看十八禁软件| 亚洲成人免费电影在线观看| 高清毛片免费观看视频网站| 婷婷精品国产亚洲av在线| 日本撒尿小便嘘嘘汇集6| 午夜免费成人在线视频| 欧洲精品卡2卡3卡4卡5卡区| 久久天堂一区二区三区四区| 精品第一国产精品| 淫秽高清视频在线观看| 亚洲一区二区三区不卡视频| 51午夜福利影视在线观看| 精品一区二区三区视频在线观看免费| 如日韩欧美国产精品一区二区三区| 精品国产亚洲在线| 欧美黄色淫秽网站| 美女大奶头视频| 人妻久久中文字幕网| 亚洲熟妇中文字幕五十中出| 真人做人爱边吃奶动态| 国产欧美日韩一区二区三| 欧美另类亚洲清纯唯美| 婷婷六月久久综合丁香| 亚洲精品国产色婷婷电影| 深夜精品福利| 熟妇人妻久久中文字幕3abv| 国产高清有码在线观看视频 | 俄罗斯特黄特色一大片| 国产激情欧美一区二区| 大型av网站在线播放| 免费无遮挡裸体视频| 日韩大码丰满熟妇| 女人高潮潮喷娇喘18禁视频| 亚洲第一欧美日韩一区二区三区| 国产xxxxx性猛交| 看免费av毛片| 国产精品香港三级国产av潘金莲| 国产aⅴ精品一区二区三区波| 亚洲视频免费观看视频| 精品国内亚洲2022精品成人| 久久久久久国产a免费观看| 天天一区二区日本电影三级 | 女人爽到高潮嗷嗷叫在线视频| 一二三四社区在线视频社区8| www日本在线高清视频| 日韩av在线大香蕉| 亚洲五月色婷婷综合| 美女 人体艺术 gogo| 精品人妻1区二区| 欧美成人免费av一区二区三区| 变态另类丝袜制服| 亚洲国产日韩欧美精品在线观看 | 91精品三级在线观看| 黄色丝袜av网址大全| 黄色视频,在线免费观看| 欧美国产精品va在线观看不卡| 中文字幕另类日韩欧美亚洲嫩草| 日本黄色视频三级网站网址| av福利片在线| 亚洲精品一区av在线观看| 中文字幕最新亚洲高清| АⅤ资源中文在线天堂| 亚洲色图综合在线观看| 啪啪无遮挡十八禁网站| 成人特级黄色片久久久久久久| 国产欧美日韩一区二区精品| 男女午夜视频在线观看| 91老司机精品| 淫秽高清视频在线观看| 日本黄色视频三级网站网址| 大码成人一级视频| 久久久久久国产a免费观看| 一级黄色大片毛片| aaaaa片日本免费| 91麻豆精品激情在线观看国产| av电影中文网址| 波多野结衣一区麻豆| 男女下面进入的视频免费午夜 | 国产亚洲精品一区二区www| 99国产精品一区二区蜜桃av| 亚洲av成人不卡在线观看播放网| tocl精华| 美女大奶头视频| 免费一级毛片在线播放高清视频 | 制服人妻中文乱码| 久久中文看片网| 在线十欧美十亚洲十日本专区| 亚洲人成电影免费在线| 亚洲成人精品中文字幕电影| 99精品在免费线老司机午夜| 天堂√8在线中文| 国产精品98久久久久久宅男小说| 欧美色视频一区免费| 久热这里只有精品99| 精品国内亚洲2022精品成人| 最近最新免费中文字幕在线| 黄色 视频免费看| 色尼玛亚洲综合影院| 欧美激情高清一区二区三区| 黑人巨大精品欧美一区二区mp4| 女人精品久久久久毛片| 两个人免费观看高清视频| 国产亚洲精品av在线| 亚洲五月天丁香| 日韩成人在线观看一区二区三区| 国产人伦9x9x在线观看| 久久精品国产亚洲av高清一级| 亚洲欧美激情在线| 国产亚洲欧美精品永久| 老汉色∧v一级毛片| 高清在线国产一区| 欧美黑人欧美精品刺激|