• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Complex spherical-wave elastic inversion using amplitude and phase reflection information

    2022-07-14 09:18:38GuangSenChengXingYaoYinZhaoYunZongYaMingYang
    Petroleum Science 2022年3期

    Guang-Sen Cheng ,Xing-Yao Yin ,Zhao-Yun Zong ,*,Ya-Ming Yang

    a School of Geosciences,China University of Petroleum(East China),Qingdao,Shandong 266580,China

    b Pilot National Laboratory for Marine Science and Technology(Qingdao),Qingdao,Shandong 266580,China

    c Shandong Provincial Key Laboratory of Deep Oil and Gas,Qingdao,Shandong 266580,China

    Keywords:

    ABSTRACT

    1.Introduction

    Linear(Aki and Richards,1980;Shuey,1985;Goodway et al.,1997;Zong et al.,2015;Li et al.,2020),nonlinear(Wang,1999;Stovas and Ursin,2003;Yin et al.,2013b;Cheng et al.,2018;Liu et al.,2020;Zhou et al.,2020),and exact plane-wave reflection coefficients(Ursin and Tj?land,1996;Pan et al.,2017;Yin et al.,2018;Zhou et al.,2021)have taken a vital role in the reservoir prediction of pre-stack seismic exploration(Zong et al.,2012;Yin et al.2013a,2014;Li et al.2017,2020).The plane-wave reflection coefficient(PRC)is derived from the planar-wavefront assumption,which is an approximation of spherical-wave reflection coefficient(SRC)in far field.At the pre-critical incident angle,PRC is always real value and there is no phase shift.However,the critical angle is often reached in field data acquisition,such as in the case of strong properties contrast,salt body,carbonate rock and so on.At the critical and post-critical incident angles,PRC becomes inapplicable(O'Brien,1963).

    SRC can be expressed as the integral of PRC(Aki and Richards,1980;Haase,2004;Ursenbach et al.,2007;Skopintseva et al.,2011),which is more accurate than PRC to describe the seismic reflection wave excited by point source,especially at the critical and post-critical incident angles.Due to the attenuation of viscoelastic medium,the complex-valued PRC(Innanen,2011;Bird,2012;Zong et al.,2015)is also generated.No matter what the incident angle is,SRC is always a complex value,which includes the spherical-wave amplitude and phase reflection information.Compared with the conventional AVO inversion,phase variation with offset/angle(PVO/PVA)inversion mainly uses the phase-shift information of reflected seismic waves,which provides the potential of accurate density estimation(Zhu and McMechan,2012).However,the complexity of the calculation of SRC integral formula brings difficulties to practical application.The use of imaginary part of SRC further exacerbates this problem.How to make full use of the amplitude and phase information of complex-valued SRC has become an important subject.

    Complex seismic traces have been used to estimate seismic attributes(Barnes,2007),such as delineating thin lenses in seismic sections(Robertson and Nogami,1984).Complex seismic traces are also used for AVO inversion.Zong et al.(2015)utilized the complexvalued PRC to estimate P-and S-wave quality factors simultaneously.The frequency-dependent complex-valued SRC in acoustic media was also analyzed,and the spherical-wave AVO inversion of single-reflection was implemented in the synthetic data example(Li et al.,2017).Cheng et al.(2020)applied the SRC to the real seismic traces near borehole,but only the real part of seismic data is used.

    We first investigate the amplitude and phase characteristics of SRC,and obtain the complex-valued spherical-wave seismic traces by using a simple harmonic superposition model.It is assumed that geophone can only record the real part of complex seismic traces.To utilize the complex-valued SRC,a novel complex spherical-wave EI inversion approach is proposed and the elastic parameters are further extracted.Our inversion approach is split into two steps:the Bayesian framework is used to estimate the complex sphericalwave elastic impedance(EI)from seismic data with different frequency components and incident angles,and extracting elastic parameters from the complex-valued EI.EI is a generalization of acoustic impedance(AI)and was first put forward by Connolly(1999).Whitcombe(2002)further normalized the EI in terms of P-and S-wave velocities and density.Subsequently,EI is widely used for elastic parameters estimation and reservoir prediction(Ma,2003;Martins,2006;Yin et al.,2013a;Zong et al.,2013;Su et al.,2014;Chen et al.,2018;Cheng et al.,2019).In the complex spherical-wave EI inversion section,the Bayesian scheme(Buland and More,2003)is used to estimate the real and imaginary parts of complex-valued EI simultaneously.We consider that the prior probability obeys the Cauchy probability distribution and the likelihood function obeys the Gaussian probability distribution(Zong et al.,2017;Chen et al.,2018).To extract the elastic parameters,the complex spherical-wave EI equation is derived based on the SRC.The accuracy of the EI equation is basically consistent with that of the exact complex-valued SRC.The P-and S-wave velocities and density are further obtained by combining the complex EI equation and the inverted complex spherical-wave EI.Synthetic and field data examples show that our approach is valid,and the inversion results of complex spherical-wave EI and velocities are in good agreement with the corresponding true value.

    2.Spherical-wave forward modeling

    2.1.Amplitude and phase of complex spherical-wave reflection coefficient

    In our study,only the PP-wave reflection is considered.The exact three-parameter SRC(Cheng et al.,2020)that has compensated for the geometrical spreading can be written ascosθpi,where Rppis the exact three-parameter PRC(Yin et al.,2018),which is the function of P-wave velocity reflectivityS-wave velocity reflectivitydensity reflectivityand the P-wave incident angleθpi.The P-and S-wave velocities and density in the upper medium are denoted vp1,vs1andρ1,and in the lower medium are denoted vp2,vs2,andρ2.vp,vs,andρa(bǔ)re the corresponding average.ωis the angular frequency of harmonic wave.i is the imaginary unit and x is the integral variable.J0and J1are the zero-and first-order Bessel function.h and z are the vertical distances from the reflected interface to the source and geophone,respectively.r is the horizontal offset.To calculate the complicated integral equation(1),a powerful and stable algorithm,the adaptive Gauss-Kronrod quadrature(Shampine,2008),is used to solve the integrand function.In the synthetic data example,vp1is assumed to be known.In field data example,vp1can be obtained by tomographic velocity(Zhu and McMechan,2012).

    At the angular frequency ofωn,the SRC in equation(1)at different reflector depths can be expressed by a time-continuous function and written as

    where SRCR(t,ωn)and SRCI(t,ωn)are the real and imaginary parts of SRC(t,ωn),respectively.

    The elastic parameters of Model 1 are shown in Table 1(Haase,2004),which are used to calculate the complex-valued SRC(equation(1))at the frequency of 15 Hz and the reflected interface depth of 600 m.The PRC is given for comparison.Fig.1 displays the comparisons of amplitude and phase between SRC and PRC.The black and red solid curves denote the SRC and PRC,respectively.We observe that the amplitude and phase of PRC is discontinuous at the critical incident angle,and there is no phase change in PRC before the critical angle.Unlike the characteristics of PRC,the amplitude and phase of SRC are smooth around the critical angle,and there is always phase shifts of SRC at the critical,pre-and post-critical incident angles.Fig.2 displays the comparisons of real and imaginary parts of SRC(black solid line)and PRC(red solid line).From Fig.2 we can see that the imaginary part of PRC is always zero value at the pre-critical incident angles,and the amplitude and real part of SRC are basically consistent with PRC at the small pre-critical incident angles.However,the imaginary part of SRC cannot be ignored.

    Table1 Model 1.

    Fig.1.Comparisons of(a)amplitude and(b)phase between SRC(black solid curves)and PRC(red solid curves).

    Fig.2.Comparisons of(a)real and(b)imaginary parts of SRC(black solid curves)and PRC(red solid curves).

    2.2.Modeling the complex-valued spherical-wave synthetic seismogram

    To fully exploit the amplitude and phase reflection information,it is necessary to use the complex-valued SRC to construct the spherical-wave synthetic seismogram.Seismic wavelet can be decomposed into harmonic waves with different amplitudes,phases,and frequencies(Krebes,2019),which are usually described by complex exponentials and written as

    where|An|andφnare the amplitude and phase of harmonic wave.t is the time.ωmin≤ωn≤ωmax,andωmax-ωminis the bandwidth of seismic wavelet.The real part of equation(3)is

    which is the frequency component of the real part of wavelet and describes the physical properties of harmonic wave(Krebes,2019).The imaginary part of equation(3)is

    which is the frequency component of the imaginary part of wavelet.Since ei·θ=cosθ+i·sinθ,i=√————1,equation(3)can be written as

    We use the convolutional model(Robinson,1985)to convolute equation(6)with equation(2),the spherical-wave syntheticseismogram at the angular frequency ofωncan be obtained and expressed as

    Stratumvp,m/svs,m/sρ,kg/m3 Upper medium289812902.425 Lower medium285716662.275

    where asterisk denotes the convolution operation.Based on the superposition principle of wave,the synthetic seismogram of fullfrequency band is obtained by using the simple harmonic superposition model

    equation(8)is further written as

    where

    and

    Fig.3.Comparisons between equations(1)and(27)calculated by Model 2.(a)real and(c)imaginary parts of equation(1),(b)real and(d)imaginary parts of equation(27),(e)the relative error between(a)and(c),and(f)the relative error between(b)and(d).

    where H[·]denotes the Hilbert transform operator.From equation(10)and equation(11)we can see that the imaginary part of wavelet can be got from the real part based on Hilbert transform.Substituting equations(10)and(11)into dr(t),we can obtain

    Equation(9)describes the relation between the complex seismic data and SRC at the angular frequency ofωn,and its matrix form at the incident angleθpiis

    Fig.5.Comparisons between true values(red solid curves)and inverted complex spherical-wave EI(blue dotted curves)at different frequencies and incident angles without noise.Green curves denote the initial model constraints.

    Fig.6.Comparisons between true values(red solid curves)and inverted plane-wave EI(blue solid curves)at different frequencies and incident angles without noise.Green curves denote the initial model constraints.

    3.Elastic inversion of complex spherical wave

    3.1.Complex EI inversion with the Bayesian scheme

    Connolly(1999)initially proposed the relation between PRC and elastic impedance

    where EI1and EI2denote the elastic impedance in upper medium and lower medium,respectively.EI is the corresponding average andΔEI=EI2-EI1.The plane-wave elastic impedance is frequency independent.To make full use of the real and imaginary parts of complex seismic signal,we proposed the concept of spherical-wave elastic impedance,which is also expressed by EI in this paper

    where EIR and EII are the real and imaginary parts of the complex spherical-wave EI,respectively.Similarly,

    and

    whereΔln(EIR)=ln(EIR2)-ln(EIR1)andΔln(EII)=ln(EII2)-ln(EII1),ln(-)is the natural logarithm.The subscript 1 and 2 denote the medium 1 and medium 2,respectively.After integrating equations(16)and(17),we can further obtain

    and

    where t0and t are the start and end travel time of seismic data.To estimate the complex spherical-wave EI at the frequency component of fn(fn=)and the incident angle ofθpi,the forward solver dωn=WωnRωnis used.

    The complex spherical-wave EI inversion is implemented in a Bayesian framework(Buland and More,2003).The posterior probability density function p(Rωn|dωn)is

    Fig.7.Comparisons between true values(red solid curves)and inverted complex spherical-wave EI(blue dotted curves)at different frequencies and incident angles.Green curves denote the initial model constraints and the signal to noise ratios(S/N)is 5:1.

    Fig.8.Comparisons between true values(red solid curves)and inverted plane-wave EI(blue solid curves)at different frequencies and incident angles.Green curves denote the initial model constraints and the signal to noise ratios(SNR)is 5:1.

    Fig.9.Comparisons between true values(red solid curves)and inverted complex spherical-wave EI(blue solid curves)at different frequencies and incident angles.Green curves denote the initial model constraints and the signal to noise ratios(S/N)is 2:1.

    To improve the inversion resolution,the prior probability p(Rωn)is considered to obey the Cauchy probability distribution(Alemie and Sacchi,2011)and written as

    The likelihood function p(dωn|Rωn)obeys the Gaussian probability distribution and written as

    Maximizing the posterior distribution function(Zong et al.,2017),the objective function can be obtained and written as whereinitial model constraint of the real and imaginary parts of complex spherical-wave EI.λrandλirespectively are the corresponding constraint coefficients of the real and imaginary parts.The introduction of the initial model constraint can make the inversion results stable and without serious distortion.The larger the constraint coefficients are,the closer the inverted elastic impedance are to the initial model value.Iteratively Re-weighted Least Squares(Daubechies et al.,2010)is used to solve equation(24),the complex-valued spherical-wave EI of different frequencies are estimated from the observed seismic data(dω1,dω2???)at the corresponding frequency components.

    Fig.10.Comparisons between true values(red solid curves)and inverted plane-wave EI(blue solid curves)at different frequencies and incident angles.Green curves denote the initial model constraints and the signal to noise ratios(S/N)is 2:1.

    Fig.11.Comparisons of P-wave velocity,S-wave velocity,and density between the spherical-wave inversion results(black solid curves),plane-wave inversion results(blue solid curves),and true values(red solid curves)without noise.Green curves denote the initial model constraints.

    3.2.Elastic parameters extraction from spherical-wave EI with different frequencies

    The complex EI is estimated firstly,and then the elastic parameters can be further extracted from the complex EI.The complex EI equations are derived based on equations(16)and(17)and written as

    Fig.12.Comparisons of P-wave velocity,S-wave velocity,and density between the spherical-wave inversion results(black solid curves),plane-wave inversion results(blue solid curves),and true values(red solid curves)in the case of noise.Green curves denote the initial model constraints and the SNR is 5.

    Equations(25)and(26)establish the relation between the complex spherical-wave EI andθpi,andωn,which are utilized to estimate the elastic parameters(P-and S-wave velocities,and density)from the inverted complex spherical-wave EI.To verify the accuracy of equations(25)and(26),Model 2(Goodway et al.,1997)and Model 3(Ostrander,1984)as shown in Table 2 and Table 3 are used.A novel SRC is derived and expressed as

    Table3 Model 3.

    We implement the comparisons between equations(1)and(27)at different frequencies and incident angles using Model 2 and Model 3,as shown in Figs.3 and 4 respectively.Fig.3(a)and(b)displays the real and imaginary parts of exact SRC(equation(1))using Model 2.The real(Fig.3(c))and imaginary(Fig.3(d))parts of novel SRC(equation(27))are given for comparison.The relative error of real and imaginary parts between equations(1)and(27)are displayed in Fig.3(e)and(f),respectively.Fig.4 displays the accuracy comparisons using Model 3.From Figs.3 and 4 we can see that the novel SRC is in good agreement with the exact SRC.

    The inverted complex spherical-wave EI with different frequency components and incident angles are preserved as the observed datasets(EIobs)to extract the elastic parameter vector m,Given a model vector m,the spherical-wave EI at different frequencies and incident angles can be obtained and expressed as EImod.With equations(25)and(26),the parameterextraction objective function can be constructed and expressed as

    Fig.13.Comparisons of P-wave velocity,S-wave velocity,and density between the spherical-wave inversion results(black solid curves),plane-wave inversion results(blue solid curves),and true values(red solid curves)in the case of noise.Green curves denote the initial model constraints and the SNR is 2.

    Fig.14.Workflow of complex spherical-wave elastic inversion for P-and S-wave velocities and density based on the complex spherical-wave elastic impedance.

    4.Synthetic data examples

    A well log is utilized to test the feasibility and stability of our inversion approach.Given f1=10 Hz,f2=20 Hz and f3=30 Hz,the corresponding SRC can be computed using equation(1).Given the real and imaginary parts of Ricker wavelets with the dominant frequencies of 10 Hz,20 Hz,and 30 Hz,the corresponding complexvalued spherical-wave synthetic seismograms can be obtained.The Gaussian random noises are also added into the synthetic seismograms to test the stability of the complex spherical-wave inversion approach.The signal to noise ratios(S/N)are 5:1 and 2:1.The complex-valued spherical-wave synthetic seismograms with the incident angle ranges of 8?-16?,17?-25?and 26?-34?are respectively stacked to obtain the small-angle,middle-angle,and large-angle observed seismic data,and their dominant incident angles areθp1=12?,θp2=21?,andθp3=30?respectively.To show the advantages of using SRC instead of PRC,the conventional planewave EI inversion is also implemented by using the spherical-wave synthetic seismograms with different frequencies as the observed data.

    Figs.5 and 6 display the complex spherical-wave EI inversion results and plane-wave EI inversion results when there is no noise.In Figs.5 and 6,it can be observed that the complex spherical-wave EI inversion results are good agreement with the true EI value,and the differences between the plane-wave EI inversion results and true EI value decrease with the increase of frequency and propagation distance,which indicates that the SRC cannot be ignored in the case of near field and the spherical-wave effect is not obvious in far field.Figs.7-10 display the complex spherical-wave EI inversion results and plane-wave EI inversion results in noise situation.In Figs.7 and 8,SNR is 5.In Figs.9 and 10,SNR is 2.Considering that the weight of the imaginary part to the spherical-wave reflection coefficient is less than the real part(Fig.2),the imaginary part is more sensitive to noise than the real part.In Figs.7-10,we can observe that the real parts of spherical-wave EI inversion results are better than the imaginary parts and plane-wave EI inversion results.Even in the case of noise,the real parts of spherical-wave EI and plane-wave EI can be estimated stably.Similarly,the differences between the plane-wave EI inversion results and true EI value decrease with the increase of frequency and propagation distance.However,due to the influence of noise,the spherical wave effect become weaker.

    Fig.15.The(a)real part and(b)imaginary part inversion results of the complex spherical-wave EI at the incident angles and frequencies of 12?and 30 Hz,12?and 40 Hz,21?and 30 Hz,and 21?and 40 Hz,respectively.

    Fig.16.The plane-wave EI inversion results at the incident angles of(a)12?,(b)21?,and(c)30?,respectively.

    With the inverted complex-valued spherical-wave EI of different incident angles and frequencies,we can further extract the P-and S-wave velocities and density using equation(28).The inverted plane-wave EI and the exact Zoeppritz equation of PPwave are also used for plane-wave elastic parameters estimation.One of the advantages of our spherical-wave inversion approach is that SRC is frequency dependent and we can use more reflection information of seismic data with different frequencies and incident angles.In the far field,the available incident angle is very small.The more seismic reflection information can be provided from the seismic data with different frequency components.When the seismic frequency band is narrow,the more seismic reflection information can be provided from the seismic data with different incident angles/offsets.

    Figs.11-13 display the comparisons between true values and the inversion results of P-wave velocity,S-wave velocity,and density when there is no noise,SNR=5,and SNR=3,respectively.The red,black,blue,and green curves denote the true values,spherical-wave inversion results,plane-wave inversion results,and the initial model,respectively.From Fig.11 we can see that the inversion results of P-and S-wave velocities,and density show a good agreement with the true values when there is no noise.Compared with the inverted elastic parameters using our sphericalwave inversion approach,the difference between the true values and the plane-wave inversion results is larger.With the increase of noise,the differences between the inversion results and true values increases.Under the influence of noise,the spherical wave effect is no longer obvious.The P-and S-wave velocities and density estimated from the spherical-wave inversion approach are better than those obtained by plane-wave approach.Especially for the density term,the advantage of our approach is more obvious.Even in the case of noise,no matter the signal-to-noise ratio is 2 or 5,the inversion results can also be well estimated using our sphericalwave inversion approach.

    5.Field data example

    We employ a field data example to verify our complex sphericalwave inversion approach.The field data are acquired from the seismic traces near borehole(known CDP)which are located in an oilfield of eastern China and have been amplitude-preserved processed.The seismic data are partially stacked,and the incident angle ranges are 8?-16?and 17?-25?.So,the dominant incident angles of the observed seismic data areθp1=12?andθp2=21?,respectively.Next,the different frequency components of partially stacked seismic data at the frequency range of 20-40 Hz and 30-50 Hz are preserved by the continuous wavelet transform,and their dominant frequencies respectively are 30 Hz and 40 Hz.There is no specific rule on how to determine the frequencies used in the inversion.Since the energy of seismic reflection data is concentrated near the dominant frequency(35 Hz),the frequency components near the dominant frequency are utilized for inversion.With the real-valued seismic data of different incident angles and frequencies,the corresponding real-valued wavelets can be extracted.The imaginary parts of seismic data and wavelets can be further obtained by Hilbert transform.To illustrate the advantages of the proposed approach,the conventional plane-wave inversion is also implemented using the seismic datasets with the incident angles of 12?,21?,and 30?,respectively.Based on the inverted complex spherical-wave EI,we implement the complex sphericalwave elastic inversion for P-and S-wave velocities and density using the field datasets,the workflow is shown in Fig.14.

    Fig.15 displays the inversion results of complex spherical-wave EI of different incident angles and frequencies.Different from the synthetic data examples,the dominant frequencies of observed field seismic data respectively are f1=30 Hz and f2=40 Hz,and the dominant incident angles of observed seismic data respectively are θp1=12?andθp2=21?.The plane-wave EI inversion results are displayed in Fig.16 for comparison.As can be seen from Figs.15 and 16,compared with the imaginary part of the spherical-wave EI,the plane-wave EI inversion results are much the same as the real part of the spherical-wave EI inversion results.

    With the inverted plane-wave EI and complex spherical-wave EI,the corresponding P-and S-wave velocities and density can be further extracted,as shown in Fig.17a and b.It can be seen from Fig.17 that the inversion results estimated by our spherical-wave approach have higher resolution and continuity than that estimated by the plane-wave approach.Fig.18 further displays the inversion results and the well logs near the borehole.In Fig.18,the P-and S-wave velocities and density estimated from our approach can match the filtered well-logging data,and are better than that estimated by plane-wave approach.The field data example verifies the feasibility and practicability of our complex spherical-wave inversion approach using spherical-wave amplitude,phase,and frequency information.

    Fig.17.Comparisons of P-wave velocity,S-wave velocity,and density between the(a)plane-wave inversion results and(b)spherical-wave inversion results.

    6.Conclusions

    Based on the theory of wave decomposition,the simple harmonic wave is convoluted with SRC to obtain the spherical-wave synthetic seismic seismogram at a certain angular frequency.It is assumed that geophone can only record the real part of complex seismic trace,which describes the physical properties of seismic motion.We further demonstrate that the imaginary parts of seismogram and wavelet can be got by the Hilbert transform of their corresponding real parts.We then propose the concept of complex spherical-wave elastic impedance(EI)and derive a complex spherical-wave EI equation.To fully exploit the amplitude and phase information of spherical-wave reflection coefficient(SRC),the complex spherical-wave EI inversion and elastic parameters extraction are implemented.Our inversion approach consists of two steps:estimating complex spherical-wave EI from seismic data of different frequency components and incident angles with Bayesian framework,and extracting P-and S-wave velocities and density from the inverted complex spherical-wave EI.The synthetic data and field data examples show that our spherical-wave inversion approach can reasonably estimate the velocities and density,which demonstrates the feasibility and practicability of using the amplitude and phase information of spherical wave reflection with different offsets and frequencies to estimate the elastic parameters.It is worth noting that the P-and S-wave velocities and density estimated from our spherical-wave inversion approach are better than that estimated by plane-wave inversion approach.

    It must be emphasized that we have made some assumptions in the real world,only the real part of seismic signal can be recorded,the P-wave velocity in upper medium is assumed to be known a priori and it can be obtained from tomographic velocity approximately.Actually,seismic wavelets with different dominant frequencies have a certain bandwidth.The spherical-wave reflection coefficient with the angular frequencyωnis used to approximately describe the seismic reflection of the wavelet with the dominant frequency ofωn.

    Fig.18.Comparisons of P-wave velocity,S-wave velocity,and density between true values(red solid curves),spherical-wave inversion results(black solid curves),and plane-wave inversion results(blue solid curves)near the borehole.

    Acknowledgements

    We would acknowledge the sponsorship of the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(Grant No.2021QNLM020001-6)and National Natural Science Foundation of China(42030103,41974119)and Science Foundation from Innovation and Technology Support Program for Young Scientists in Colleges of Shandong province and Ministry of Science and Technology of China(2019RA2136).

    久久99精品国语久久久| .国产精品久久| 欧美+亚洲+日韩+国产| 久久久久久伊人网av| 91久久精品国产一区二区三区| 免费观看精品视频网站| 国产免费一级a男人的天堂| .国产精品久久| 日韩人妻高清精品专区| 悠悠久久av| 在线a可以看的网站| 国产午夜精品一二区理论片| 精品人妻一区二区三区麻豆| 极品教师在线视频| 啦啦啦观看免费观看视频高清| 久久久久久久亚洲中文字幕| 欧美最新免费一区二区三区| 伦理电影大哥的女人| 亚洲欧美日韩东京热| 国内精品美女久久久久久| 少妇被粗大猛烈的视频| 日韩制服骚丝袜av| 国产精品福利在线免费观看| 久久婷婷人人爽人人干人人爱| 日韩精品有码人妻一区| 黄色视频,在线免费观看| 欧美日韩乱码在线| 亚洲婷婷狠狠爱综合网| 一本久久中文字幕| 国产单亲对白刺激| 尤物成人国产欧美一区二区三区| 看黄色毛片网站| 婷婷亚洲欧美| 神马国产精品三级电影在线观看| 在线免费观看的www视频| 欧美zozozo另类| 亚洲成a人片在线一区二区| 免费人成在线观看视频色| 亚洲人成网站在线播放欧美日韩| 男人舔女人下体高潮全视频| 最近视频中文字幕2019在线8| 久久久色成人| 一本精品99久久精品77| 亚洲国产精品合色在线| 91aial.com中文字幕在线观看| 亚洲无线在线观看| 久久久久网色| 国产在线精品亚洲第一网站| 老熟妇乱子伦视频在线观看| 亚洲国产精品sss在线观看| 成人特级av手机在线观看| 一本一本综合久久| 真实男女啪啪啪动态图| 午夜精品一区二区三区免费看| 国产成人精品一,二区 | 国产高潮美女av| 自拍偷自拍亚洲精品老妇| 欧美精品国产亚洲| 免费搜索国产男女视频| 在线免费十八禁| 内地一区二区视频在线| 国产伦在线观看视频一区| 亚洲激情五月婷婷啪啪| 婷婷色综合大香蕉| www日本黄色视频网| 偷拍熟女少妇极品色| 禁无遮挡网站| 午夜精品国产一区二区电影 | 日本一本二区三区精品| av天堂中文字幕网| 搞女人的毛片| 亚洲成人av在线免费| 村上凉子中文字幕在线| 国产精品综合久久久久久久免费| 日韩人妻高清精品专区| 久久精品国产自在天天线| 午夜a级毛片| 97在线视频观看| 日本爱情动作片www.在线观看| 国产精品伦人一区二区| 欧美日韩综合久久久久久| 国产精品免费一区二区三区在线| 熟女人妻精品中文字幕| 伦精品一区二区三区| 国产一区二区三区av在线 | 一级黄色大片毛片| 亚洲av免费在线观看| 日韩亚洲欧美综合| kizo精华| 在线观看一区二区三区| 99riav亚洲国产免费| 国产又黄又爽又无遮挡在线| 身体一侧抽搐| 99九九线精品视频在线观看视频| 精品日产1卡2卡| 伦理电影大哥的女人| 亚洲综合色惰| 午夜激情欧美在线| 人妻制服诱惑在线中文字幕| 国产私拍福利视频在线观看| 狂野欧美白嫩少妇大欣赏| 亚洲国产日韩欧美精品在线观看| 精品国产三级普通话版| 老司机影院成人| 看片在线看免费视频| 99国产极品粉嫩在线观看| 99九九线精品视频在线观看视频| 亚洲人成网站在线播| 国产老妇女一区| 国产一区亚洲一区在线观看| 99热6这里只有精品| 精品少妇黑人巨大在线播放 | 夜夜爽天天搞| 免费观看精品视频网站| 亚洲成人中文字幕在线播放| 禁无遮挡网站| 欧美人与善性xxx| 国产一区二区在线观看日韩| 久久久色成人| 欧美日韩国产亚洲二区| 亚洲av.av天堂| 精品欧美国产一区二区三| 免费人成在线观看视频色| 日产精品乱码卡一卡2卡三| 天美传媒精品一区二区| 亚洲在线自拍视频| 亚洲自拍偷在线| 日韩av在线大香蕉| 国产av麻豆久久久久久久| 国产极品天堂在线| 99国产精品一区二区蜜桃av| 免费人成在线观看视频色| 2022亚洲国产成人精品| 毛片一级片免费看久久久久| 精品国内亚洲2022精品成人| 日本与韩国留学比较| 狠狠狠狠99中文字幕| 久久久久久久久久久丰满| 国产白丝娇喘喷水9色精品| 国产亚洲5aaaaa淫片| 日日干狠狠操夜夜爽| 精品人妻一区二区三区麻豆| 中文字幕av成人在线电影| 综合色丁香网| 午夜精品一区二区三区免费看| 波多野结衣高清无吗| 日本爱情动作片www.在线观看| 在线播放国产精品三级| 欧美精品一区二区大全| 一个人观看的视频www高清免费观看| 久久精品国产鲁丝片午夜精品| 日本-黄色视频高清免费观看| 色综合站精品国产| 亚洲国产精品久久男人天堂| 三级国产精品欧美在线观看| 日日干狠狠操夜夜爽| 国产又黄又爽又无遮挡在线| 黄片无遮挡物在线观看| 久久九九热精品免费| 亚洲精华国产精华液的使用体验 | 国产在线精品亚洲第一网站| 亚洲精品日韩av片在线观看| 日韩欧美精品免费久久| kizo精华| av又黄又爽大尺度在线免费看 | 亚洲欧美日韩卡通动漫| 欧美成人免费av一区二区三区| 精品久久久久久久人妻蜜臀av| 日韩欧美精品v在线| 18禁在线无遮挡免费观看视频| 黄色欧美视频在线观看| 免费观看a级毛片全部| 能在线免费看毛片的网站| 大又大粗又爽又黄少妇毛片口| 此物有八面人人有两片| 亚洲婷婷狠狠爱综合网| 欧美日韩国产亚洲二区| 国产av不卡久久| 国产精品一二三区在线看| 黄色配什么色好看| 亚洲精品粉嫩美女一区| 国产精品蜜桃在线观看 | 岛国在线免费视频观看| 波多野结衣巨乳人妻| 国产不卡一卡二| 国产亚洲精品久久久com| 十八禁国产超污无遮挡网站| 村上凉子中文字幕在线| 成人av在线播放网站| 日韩国内少妇激情av| 免费不卡的大黄色大毛片视频在线观看 | 日本熟妇午夜| 99久久精品热视频| 秋霞在线观看毛片| 欧美三级亚洲精品| 亚洲最大成人av| 欧美另类亚洲清纯唯美| 久久欧美精品欧美久久欧美| 免费搜索国产男女视频| 尾随美女入室| 亚洲精品色激情综合| 久久久久性生活片| 国内精品美女久久久久久| 免费看美女性在线毛片视频| 久久久精品大字幕| avwww免费| 国产人妻一区二区三区在| 亚洲,欧美,日韩| 久久久成人免费电影| 国产精品一区www在线观看| 伊人久久精品亚洲午夜| 亚洲内射少妇av| 亚洲欧美精品综合久久99| 午夜福利在线观看免费完整高清在 | 美女高潮的动态| 亚洲无线观看免费| 日本黄色视频三级网站网址| 老女人水多毛片| 欧美另类亚洲清纯唯美| 久久久久国产网址| 日韩欧美精品v在线| 久久精品影院6| 91久久精品国产一区二区三区| 一本久久中文字幕| 99热全是精品| 欧美3d第一页| 日韩在线高清观看一区二区三区| 一区二区三区高清视频在线| 日韩欧美三级三区| 搡老妇女老女人老熟妇| 久久精品久久久久久久性| 免费一级毛片在线播放高清视频| 日本免费一区二区三区高清不卡| 天美传媒精品一区二区| 国产精品电影一区二区三区| 美女国产视频在线观看| 日韩一区二区三区影片| 国产成人精品久久久久久| 日日摸夜夜添夜夜爱| 青春草视频在线免费观看| 3wmmmm亚洲av在线观看| 一级黄片播放器| 免费av不卡在线播放| 欧美性猛交黑人性爽| 亚洲国产精品成人久久小说 | 亚洲自偷自拍三级| 高清毛片免费看| 日韩精品青青久久久久久| 色哟哟·www| 国产日本99.免费观看| 婷婷亚洲欧美| 国产不卡一卡二| 麻豆国产av国片精品| 亚洲欧美日韩东京热| 变态另类丝袜制服| 亚洲天堂国产精品一区在线| 亚洲美女视频黄频| 午夜激情福利司机影院| 我的老师免费观看完整版| 欧美在线一区亚洲| av在线亚洲专区| 欧美精品国产亚洲| 国产大屁股一区二区在线视频| 2022亚洲国产成人精品| 国内精品宾馆在线| 精品不卡国产一区二区三区| 国产黄片视频在线免费观看| 国产午夜精品论理片| 亚州av有码| 国产精品久久电影中文字幕| 精品人妻视频免费看| 亚洲国产色片| 欧美日韩一区二区视频在线观看视频在线 | 热99re8久久精品国产| 婷婷精品国产亚洲av| 乱人视频在线观看| 国产精品电影一区二区三区| 国产高清视频在线观看网站| 一本精品99久久精品77| 国产成人91sexporn| 欧美丝袜亚洲另类| 一区二区三区高清视频在线| 在现免费观看毛片| 国产成人午夜福利电影在线观看| 国产精品一区二区三区四区久久| 亚洲精品乱码久久久v下载方式| 神马国产精品三级电影在线观看| 高清毛片免费观看视频网站| 网址你懂的国产日韩在线| 我要看日韩黄色一级片| 亚洲av中文字字幕乱码综合| 国产蜜桃级精品一区二区三区| 色视频www国产| 1000部很黄的大片| 亚洲最大成人手机在线| .国产精品久久| 亚洲av一区综合| 可以在线观看毛片的网站| 久久久久久伊人网av| 国产69精品久久久久777片| 亚洲欧美精品自产自拍| 欧美成人一区二区免费高清观看| 国产精品国产高清国产av| 乱人视频在线观看| 国产激情偷乱视频一区二区| 久久精品久久久久久噜噜老黄 | 亚洲三级黄色毛片| 日韩欧美精品v在线| 日韩欧美精品免费久久| 国产精品无大码| 国产一区二区在线av高清观看| 69人妻影院| 如何舔出高潮| 国产探花极品一区二区| av免费观看日本| 女人十人毛片免费观看3o分钟| 精品久久久久久成人av| 亚洲人成网站在线播放欧美日韩| 亚洲自偷自拍三级| 亚洲欧美中文字幕日韩二区| 小蜜桃在线观看免费完整版高清| 成人毛片a级毛片在线播放| 亚洲18禁久久av| 国产精品久久久久久精品电影小说 | 免费不卡的大黄色大毛片视频在线观看 | 91在线精品国自产拍蜜月| 在线国产一区二区在线| 哪里可以看免费的av片| 亚洲在线自拍视频| 五月玫瑰六月丁香| 成人美女网站在线观看视频| 黑人高潮一二区| 乱码一卡2卡4卡精品| 欧美日韩精品成人综合77777| 欧美丝袜亚洲另类| av天堂在线播放| 国产人妻一区二区三区在| 欧美三级亚洲精品| 久久国内精品自在自线图片| 亚洲国产高清在线一区二区三| 美女内射精品一级片tv| 变态另类成人亚洲欧美熟女| 日日摸夜夜添夜夜爱| 18+在线观看网站| 亚洲国产欧美人成| 可以在线观看毛片的网站| 五月玫瑰六月丁香| 国产成人a区在线观看| 丰满的人妻完整版| 日本三级黄在线观看| 91av网一区二区| 青春草国产在线视频 | 久久九九热精品免费| 成人亚洲欧美一区二区av| 岛国在线免费视频观看| 一个人看的www免费观看视频| 天美传媒精品一区二区| 国产精品国产高清国产av| 综合色丁香网| 亚洲最大成人中文| 岛国在线免费视频观看| 亚洲欧美日韩东京热| 国产黄片视频在线免费观看| 少妇熟女aⅴ在线视频| 国产成年人精品一区二区| 久久精品国产99精品国产亚洲性色| 美女脱内裤让男人舔精品视频 | 嘟嘟电影网在线观看| 中文字幕av成人在线电影| 美女内射精品一级片tv| 国产伦理片在线播放av一区 | 国产美女午夜福利| 日本成人三级电影网站| 日韩成人av中文字幕在线观看| 欧美成人免费av一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看| 麻豆国产97在线/欧美| 亚洲图色成人| 国产极品天堂在线| 一本一本综合久久| 欧美激情久久久久久爽电影| 狂野欧美激情性xxxx在线观看| 十八禁国产超污无遮挡网站| avwww免费| 麻豆乱淫一区二区| 欧美日韩综合久久久久久| 国产视频首页在线观看| 亚洲美女搞黄在线观看| 欧美精品一区二区大全| 男女视频在线观看网站免费| av专区在线播放| www日本黄色视频网| 亚洲欧美日韩高清专用| 天天一区二区日本电影三级| 亚洲av成人av| 如何舔出高潮| 亚洲av中文av极速乱| 亚洲精品久久国产高清桃花| videossex国产| 亚洲图色成人| 日本与韩国留学比较| 亚洲最大成人手机在线| 天天一区二区日本电影三级| 久久精品影院6| 内地一区二区视频在线| 神马国产精品三级电影在线观看| 亚洲va在线va天堂va国产| 伦精品一区二区三区| 有码 亚洲区| 级片在线观看| av免费观看日本| 中文字幕精品亚洲无线码一区| 亚洲国产高清在线一区二区三| 亚洲aⅴ乱码一区二区在线播放| 国产成人freesex在线| 两个人视频免费观看高清| 色综合色国产| 禁无遮挡网站| 大型黄色视频在线免费观看| 久久久久性生活片| av国产免费在线观看| 中文字幕制服av| 菩萨蛮人人尽说江南好唐韦庄 | 联通29元200g的流量卡| 亚洲欧洲日产国产| 麻豆成人av视频| 天美传媒精品一区二区| 亚洲成人av在线免费| 春色校园在线视频观看| 悠悠久久av| 少妇熟女欧美另类| 自拍偷自拍亚洲精品老妇| 老司机福利观看| 久久精品国产自在天天线| 精品久久久久久久久久久久久| av免费在线看不卡| 成人欧美大片| 久久久久久久久大av| 欧美另类亚洲清纯唯美| 97人妻精品一区二区三区麻豆| 男人舔女人下体高潮全视频| 精品欧美国产一区二区三| 欧美激情久久久久久爽电影| 成人特级av手机在线观看| 亚洲av成人精品一区久久| av专区在线播放| 中文亚洲av片在线观看爽| 日本爱情动作片www.在线观看| 亚洲人成网站在线观看播放| 国产成年人精品一区二区| 老师上课跳d突然被开到最大视频| 亚洲精品日韩av片在线观看| 韩国av在线不卡| 日日啪夜夜撸| 午夜爱爱视频在线播放| 久久精品91蜜桃| 嫩草影院入口| 婷婷精品国产亚洲av| 卡戴珊不雅视频在线播放| 熟妇人妻久久中文字幕3abv| 一级毛片电影观看 | 嘟嘟电影网在线观看| 亚洲精品亚洲一区二区| 国产精品久久久久久精品电影小说 | 国产精品一区www在线观看| 在线观看66精品国产| 最近中文字幕高清免费大全6| 少妇的逼水好多| 美女黄网站色视频| 内地一区二区视频在线| avwww免费| 老师上课跳d突然被开到最大视频| 一边亲一边摸免费视频| 亚洲欧美成人精品一区二区| 搡老妇女老女人老熟妇| 亚洲人成网站在线播放欧美日韩| 可以在线观看的亚洲视频| 国产女主播在线喷水免费视频网站 | 国产精品一区二区三区四区久久| 日韩欧美在线乱码| 免费人成视频x8x8入口观看| 寂寞人妻少妇视频99o| 在线免费十八禁| 免费看a级黄色片| 晚上一个人看的免费电影| 成人国产麻豆网| av黄色大香蕉| 男女边吃奶边做爰视频| 亚洲国产精品合色在线| 久久国内精品自在自线图片| 久久99精品国语久久久| 精品99又大又爽又粗少妇毛片| 国产成年人精品一区二区| 久久亚洲国产成人精品v| 日日摸夜夜添夜夜爱| 日本黄色视频三级网站网址| 99热这里只有是精品在线观看| 久久精品国产亚洲av香蕉五月| 国内精品久久久久精免费| 欧美一区二区亚洲| 欧美日韩综合久久久久久| 乱系列少妇在线播放| 黄片wwwwww| 丝袜喷水一区| 成人漫画全彩无遮挡| 国产精品乱码一区二三区的特点| 99久国产av精品国产电影| 日本五十路高清| 别揉我奶头 嗯啊视频| 亚洲18禁久久av| 国产精品99久久久久久久久| 高清毛片免费观看视频网站| 日产精品乱码卡一卡2卡三| 九九爱精品视频在线观看| 九色成人免费人妻av| 国产免费男女视频| 午夜精品在线福利| 欧美日韩在线观看h| 一本精品99久久精品77| 亚洲最大成人av| 在线a可以看的网站| 国产美女午夜福利| 久久这里只有精品中国| 国产伦精品一区二区三区四那| 狠狠狠狠99中文字幕| 中文亚洲av片在线观看爽| 久久精品夜色国产| 色综合亚洲欧美另类图片| 看片在线看免费视频| 女人十人毛片免费观看3o分钟| 国产成人精品久久久久久| 久久久国产成人精品二区| 久久精品国产清高在天天线| 亚洲人成网站在线观看播放| 69av精品久久久久久| 久久久久久九九精品二区国产| 亚洲欧美精品综合久久99| 精品午夜福利在线看| 欧美人与善性xxx| 亚洲欧美清纯卡通| 国产午夜福利久久久久久| 亚洲欧美中文字幕日韩二区| 99国产极品粉嫩在线观看| 成年av动漫网址| 美女黄网站色视频| 亚洲精华国产精华液的使用体验 | av.在线天堂| 久久久久九九精品影院| av福利片在线观看| 非洲黑人性xxxx精品又粗又长| 国产高清激情床上av| 亚洲精品乱码久久久v下载方式| 亚洲欧美成人综合另类久久久 | 午夜福利高清视频| 免费黄网站久久成人精品| 丰满乱子伦码专区| 国产黄片美女视频| 在线免费观看不下载黄p国产| 最新中文字幕久久久久| 精品国内亚洲2022精品成人| 亚洲欧美日韩卡通动漫| 在线观看av片永久免费下载| 久久草成人影院| 欧美精品国产亚洲| 欧美激情久久久久久爽电影| 日本欧美国产在线视频| 精华霜和精华液先用哪个| 精品国内亚洲2022精品成人| 亚洲欧美日韩卡通动漫| 91午夜精品亚洲一区二区三区| 日本三级黄在线观看| 成人特级av手机在线观看| 国产高清不卡午夜福利| 日本撒尿小便嘘嘘汇集6| 97超视频在线观看视频| 国产探花极品一区二区| 国产精华一区二区三区| 3wmmmm亚洲av在线观看| 国产伦精品一区二区三区四那| 久久午夜福利片| 日本与韩国留学比较| 国产高清三级在线| 91在线精品国自产拍蜜月| 成人毛片60女人毛片免费| 桃色一区二区三区在线观看| 久久久久久久久久黄片| 大香蕉久久网| 三级毛片av免费| 日日撸夜夜添| 成人欧美大片| 午夜亚洲福利在线播放| 在线观看66精品国产| 日韩亚洲欧美综合| 日本免费一区二区三区高清不卡| 久久精品夜色国产| 中文欧美无线码| 尤物成人国产欧美一区二区三区| 国国产精品蜜臀av免费| 日韩国内少妇激情av| 亚洲最大成人手机在线| 久久99精品国语久久久| 在线播放国产精品三级| or卡值多少钱| 一级黄色大片毛片| 中文字幕精品亚洲无线码一区| 欧美bdsm另类| 国产精品野战在线观看| 日本av手机在线免费观看| 欧美区成人在线视频| 日韩 亚洲 欧美在线| 久久精品国产自在天天线| 精品久久久久久久久久免费视频| 国产男人的电影天堂91| 美女被艹到高潮喷水动态| 狂野欧美激情性xxxx在线观看|