• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High thermoelectric performance at room temperature of n-type Mg3Bi2-based materials by Se doping

    2022-07-12 10:28:50XiooMoJinsongLioGuoiYunShZhuXiooLeiLihongHungQinyongZhngChoWngZhifengRen
    Journal of Magnesium and Alloys 2022年4期

    Xioo Mo, Jinsong Lio, Guoi Yun, Sh Zhu, Xioo Lei, Lihong Hung,,*,Qinyong Zhng,**, Cho Wng, Zhifeng Ren

    aKey Laboratory of Fluid and Power Machinery of Ministry of Education, School of Materials Science & Engineering, Xihua University, Chengdu 610039,China

    b Clean Energy Materials and Engineering Center, State Key Laboratory of Electronic Thin Film and Integrated Device, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

    c Department of Physics and TcSUH, University of Houston, Houston, TX 77204, United States

    Abstract Bi2Te3 based alloys have been the most widely used thermoelectric material at low temperature for many decades.Here we report Se doped n-type Mg3Bi2 based materials with a thermoelectric figure-of-meri ZT of 0.82 at 300K and a peak ZT of 1.24 at 498K, which is comparable to the n-type Bi2Te3 and Te doped Mg3Bi1.4Sb0.6.The improved thermoelectric performance is benefite from the high carrier concentration and mobility as well as the thermal conductivity reduction.The reduced resistivity increased the power factor at all measured temperatures, leading to a higher engineering ZT (ZTeng) and engineering power factor (PFeng) for n-type Mg3Bi2.The n-type Mg3Bi1.4Sb0.6 materials are promising for thermoelectric power generation and cooling applications near room temperature.

    ? 2021 Chongqing University.Publishing services provided by Elsevier B.V.on behalf of KeAi Communications Co.Ltd.

    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Peer review under responsibility of Chongqing University

    Keywords: Mg3Bi2; Zintl compound; Thermoelectric; Se-doping.

    1.Introduction

    Generally, almost all of the traditional energy sources are converted by thermal energy; however, the energy conversion efficien y is low, and more than half of the energy is discharged in the form of waste heat.Approximately 60% of the unrecovered waste heat is of low-grade (temperature below 500K), and low-temperature waste heat has less thermal and economic values than high-temperature waste heat.Lowgrade waste heat recovery technologies reduce the environmental impacts of fossil fuels and also improve the overall efficien y.Thermoelectric(TE)power generation is one of the most promising technologies for recycling low-quality waste heat and addressing different energy challenges [1].

    The conversion efficien y of thermoelectric materials is determined by the dimensionless figure-of-meriZT=S2σT/(κe+κL), where S is the Seebeck coefficientσis the electrical conductivity,Tis the absolute temperature, andκe,κLare the electronic and lattice components of thermal conductivity, respectively [2,3].High TE property needs high Seebeck coefficient high electrical conductivity,and low thermal conductivity.However, it is very hard to independently optimize those three TE performance parameters because they are intercoupled.N-type Bi2Te3-based alloys (ZT≈1 at 400K) are one of the most widely used room-temperature TE materials [4-8].In 2011, Liu et al.[8]reported that Cu0.01Bi2Te2.7Se0.3had a peakZTvalue of 1.06 near 125 °C.

    While considering the scarcity and high cost of Te in Bi2Te3alloys, one need to develop new alternative TE materials for large-scale applications at room temperature.

    Zintl compound with complex crystal structure is a kind of promising TE materials, meeting the concept of “electron crystal-phonon glass”.Most of the Zintl compounds are ptype intrinsic semiconductor and hard to be doped into ntype.While Mg3Sb2-based materials show prominent n-type TE performance [9-12].In 2016, Tamaki et al.[13]reported that a peak ZT of 1.51 has been obtained for Te doped ntype Mg3.2Sb1.5Bi0.5at 716K, benefite from its multivalley conduction bands with high valley degeneracies.Generally, n-type Mg3Sb2experiences charge scattering by different sources including ionized impurities [11,14,15]and highly-resistive grain boundaries [10,16].Mg3Bi2behaves as a semimetal different from the isomorphic semiconductor Mg3Sb2.Alloying with Mg3Bi2will significantl changes the valence band structure, and also reduce the thermal conductivity[17,18].The effect of alloying on band structure implies that it is possible to adjust the applicable temperature of materials to a lower range by band engineering strategy.In 2019,Liu and co-workers [19]reported that n-type Mg3+δSbxBi2-xexhibited a comparable TE performance of Bi2Te3-xSexmaterials in the temperature range of 50-250 °C, which immediately gravitated many efforts to promote the researches on n-type Mg3+δSbBi based TE materials near room-temperature range [20,21].

    The effective mass of all conduction bands decreases with the increasing Mg3Bi2content in a solid solution because a lighter band mass is favorable for mobility.Imasato et al.[22]reported that the optimum composition is expected to be around 70% of Mg3Bi2, i.e.Mg3Bi1.4Sb0.6, which is the composition with minimum effective mass while maintaining valley degeneracy.Recent studies [10,16]have reported that room-temperature thermoelectric properties can be improved by increasing the grain size to reduce the grain boundary density instead of changing the scattering mechanism, and the increased grain size does not compromise the original low thermal conductivity [22].n-type Te-doped Mg3Sb2and Mg3Bi2are promising thermoelectric materials, while it is necessary to discover new n-type dopants that are richer and cheaper than tellurium for commercial applications.Existing strategies mainly achieve high mobility through effective electron doping and the reasonable control of alloy concentration to simultaneously optimize the band structure and minimizeκL[18,22-24].Previous studies have expounded that excess magnesium helps maximize the electron concentration and also leads to an increased thermal conductivity [25,26].However,due to the high vapor pressure and easy oxidation of magnesium,the loss of magnesium and the generation of magnesium vacancies easily occur during the synthesis process, resulting in poor electronic transport properties and p-type conduction.

    In this work, the thermoelectric performances of n-type Mg3.2Bi1.4Sb0.6-based material were researched and optimized, using selenium as an effective electron dopant.In order to ensure high carrier mobility,non-oxidized coarse grains were formed by direct current (DC) hot-pressing technology at 1053K.Finally, Se-doped Mg3Bi2-Mg3Sb2alloy shows a high electron concentration of 3×1019cm-3and an ultrahigh mobility of 150 cm2V-1s-1at 300K.In addition, the as-prepared alloy is an environment-friendly and sustainable high-performance thermoelectric material for low-temperature applications.

    2.Experimental details

    High-purity magnesium powder(Mg,99.98%,Alfa Aesar),bismuth pieces (Bi, 99.99%, Alfa Aesar), antimony shots (Sb,99.99%, Alfa Aesar), and selenium powder (Se, 99.99%, Alfa Aesar) were weighed according to the nominal composition of Mg3.2Bi1.4Sb0.6-xSex(x=0, 0.005, 0.01, 0.02, 0.04).Small amount of excess Mg was added to compensate the evaporation of Mg.All the elements were weighed in an argonfille glove box, then loaded into a stainless-steel jar, mixed for 0.5h without grinding balls, and then ball-milled continuously for 10h by a SPEX 8000M Mixer/Mill.The obtained powder was loaded into a graphite die with an inner diameter of 12.7mm and consolidated by a direct-current hot pressing under an axial pressure of 45MPa at 1053K for 2min to obtain a disk sample.

    The thermal diffusivity (D) was measured on a laser flas system (LFA 457, Netzsch, Germany).The specifi heat capacity(Cp)was measured on a differential scanning calorimetry thermal analyzer (DSC 404 C, Netzsch, Germany).The thermal conductivityκwas calculated viaκ=dDCp, wheredis sample density estimated by the Archimedes method.The electrical conductivity (σ) and Seebeck coefficien (S)from 300 to 623K were measured simultaneously on a ZEM-3 system (ZEM-3, ULVAC Riko, Japan).A four-probe Van der Pauw method was used for Hall coefficien (RH) measurement under a magnetic fiel of 1.5 T.The Hall carrier concentration(nH)was obtained bynH=1/(eRH),and the Hall mobility (μH) was estimated byμH=σRH.

    The phase characterization was performed by X-ray diffraction (XRD, D2 PHASER, Bruker) under Cu-Kαradiation.The freshly broken surface of the sample Mg3.2Bi1.4Sb0.59Se0.01was observed by a scanning electron microscope (SEM, Quanta 250G, FEI, USA) to show the particle size.Energy dispersive spectroscopy(EDS)mapping was used to characterize the compositional homogeneity.

    Density functional theory (DFT) calculations were performed using the Vienna ab initio simulation package (VASP)with the projector augmented wave (PAW) method [27,28].The Perdew-Burke-Ernzerhof (PBE) [29]was used as the exchange-correlation, Monkhorst-Packkmesh was used to optimize the structural parameter and calculate the electronic structures.The energy convergence criterion was set at 10-5eV.The spin-orbit coupling (SOC) effect and the modifie Becke-Johnson (mBJ) [30,31]potential were adopted for more accurate electronic structures.In addition,effective band structures of Mg3Bi1.375Sb0.625and Mg3Bi1.375Sb0.5Se0.125were calculated by unfolding the band structures of supercells with 40 atoms (2×2×2 unit cell) into the primitive cells as implemented in BandUP code [32,33].

    Fig.2.Calculated electronic band structure of (a) Mg3Bi2 and (b) Mg3Sb2 by PBE functional with SOC and mBJ.Calculated effective band structure of (c)Mg3Bi1.375Sb0.625 and (d) Mg3Bi1.375Sb0.5Se0.125 by PBE functional.

    3.Results and discussion

    The Zintl compound Mg3Sb2crystallizes in a layered Mn2O3-type structure (space group=P3?m1, Number=164),where each unit cell has three Mg atoms and two Sb atoms,and Mg atoms occupy two distinct crystallographic sites(Fig.1a).XRD patterns of all polycrystalline samples with a nominal composition of Mg3.2Bi1.4Sb0.6-xSex(x=0, 0.005,0.01, 0.02, 0.04) are displayed in Fig.1b.All indexed peaks could be described by the crystal structure of Mg3Sb2phase,and all the samples are single-phase without any impurity within the detection limitation of XRD.

    Fig.2a, b show the calculated band structures of Mg3Bi2and Mg3Sb2with a band gap of 0.29 and 0.64eV respectively,using PBE functional with SOC and mBJ.Fig.2c, d show the calculated effective band structure of Mg3Bi1.375Sb0.625and Mg3Bi1.375Sb0.5Se0.125, using only PEB functional without considering SOC and mBJ.The calculation method ofPBE will underestimate the band gap of materials, so that Mg3Bi1.375Sb0.625and Mg3Bi1.375Sb0.5Se0.125seem as metals or semimetals in Fig.2c, d.Actually, Mg3Bi1.375Sb0.625and Mg3Bi1.375Sb0.5Se0.125are semiconductors, which can be confirme by Fig.S2 in the Supplementary Information.The calculated effective band structures of Mg3Bi1.375Sb0.625and Mg3Bi1.375Sb0.5Se0.125is close to our experimental composition of and Mg3.2Bi1.4Sb0.6and Mg3.2Bi1.4Sb0.59Se0.01.Obviously, the band degeneracy is significantl enhanced after the alloying of Mg3Bi2and Mg3Sb2, as shown in Fig.2c.More importantly, the Fermi energy moves near to the bottom of conduction bands after Se doping, indicating a n-type semiconductor behavior for Mg3.2Bi1.4Sb0.59Se0.01, consistent with our experimental results.And the effective band structure of Mg3Bi1.375Sb0.5Se0.125in Fig.2d displays that alloy Mg3.2Bi1.4Sb0.59Se0.01has a high valley degeneracy including the conduction band minimum located at M, K,Γ, and L points, i.e., there will be a significan improvement in electrical performance for Mg3.2Bi1.4Sb0.6alloy via Se doping.

    Fig.3.(a-b) SEM image, and (c-f) EDS element mappings of the fracture surface of Mg3.2Bi1.4Sb0.59Se0.01 sample.

    Fig.3a, b shows the SEM image of the fracture surface of Mg3.2Bi1.4Sb0.59Se0.01sample, which reveals that the sample was dense and possessed a layered structure.The EDS compositional mappings illustrate that Mg, Sb, Bi, and Se atoms were uniformly distributed in the sample, as shown in Fig.3c-f.

    Undoped Mg3.2Bi1.4Sb0.6is a n-type semiconductor with ultra-high resistivity and low carrier concentration.The temperature dependent Hall carrier concentration (nH) and Hall mobility(μH)of Mg3.2Bi1.4Sb0.6-xSexare presented in Fig.4a,b, respectively.Hall carrier concentration increases signifi cantly with increasing Se doping content.The room temperaturenHof Se-doped samples is in the range of 1.7×1019cm-3to 3.4×1019cm-3, comparable with Te-doped samples[11,34-36].Here, excess Mg (3+0.2 in the formula) is required to ensure the stable acquirement of n-type properties[37].Fig.4b expresses that temperature-dependentμHof all the Se-doped samples follows a decreasing trend with the relationship ofμH~T-p(1≤p≤1.5), implying a dominant charge scattering by acoustic phonons.The mobility starts to drop above 450K can be attributed to the increasing vacancy defect concentration caused by the loss of Mg at high temperature.In the temperature range of 300-450K,μHdeviated fromT-1toT-0.5due to alloy scattering.The relationships of experimentalnHandμHn-Mg3Sb2TE materials with different dopants are compared in Fig.4c, including our results.Basically, the Hall carrier concentration of Sedoped Mg3.2Bi1.4Sb0.6samples in present work is comparable to that of Te-doped Mg3Sb2[17,34], Y doped Mg3SbBi[23]and Sc doped Mg3SbBi [38], also it is higher than that of Se-doped Mg3Sb2[39,40].Moreover, the Hall mobility is also higher than the results reported in the literatures[17,23,34,38].Undoubtedly, Se is an effective n-type dopant that provides optimum carrier concentration and Hall mobility for Mg3.2Bi1.4Sb0.6, leading to the improved power factor.Pisarenko plots ofSversusnHare calculated based on Eqs.(1)-(6) using a single parabolic band (SPB) model, assuming the acoustic phonon scattering mechanism (scattering factorr=-1/2), the results are presented in Fig.4d [41,42].

    Fig.4.Temperature dependent (a) Hall carrier concentration and (b) Hall mobility, (c) Hall carrier concentration as a function of Hall mobility, and (d)Pisarenko plots for Mg3.2Bi1.4Sb0.6-xSex samples at 300, 400 and 500K, data in references are shown for comparison (Se doped Mg3Bi1.5Sb0.5 [39,40], Te doped Mg3Bi1.5Sb0.5 [17,34], Sc doped Mg3BiSb [38]and Y doped Mg3BiSb [23]).The curves are generated by SPB model.

    WhereFn(η) is thenth order Fermi integral,ηthe reduced Fermi energy,ethe electron charge,rthe scattering factor,kBBoltzmann's constant,hPlank's constant,rHthe Hall factor, andxthe variable of integration.Based on the experimental Seebeck coefficient and carrier concentrations, a density of state (DOS) effective massm*~1.2mewas derived for Mg3.2Bi1.4Sb0.6-xSexsamples, slightly larger than that of Mg3Bi1.4Sb0.6(m*~1.1me) [22].

    Fig.5.Temperature dependent (a) resistivity, (b) Seebeck coefficient (c) power factor (d) total thermal conductivity, (e) electrical thermal conductivity, and(f) lattice thermal conductivity of Mg3.2Bi1.4Sb0.6-xSex samples.

    As highly-degenerated multi-valley conduction bands were involved in the charge transportation [13,34,43,44], high mobility and carrier concentration will result in low resistivity and low Seebeck coefficients Fig.5a,b show the temperature dependent resistivity and Seebeck coefficients respectively.Both the resistivity and Seebeck coefficien continuously increase with the increasing temperature, indicating degenerate semiconductor characteristic.With increasing content of Se,the resistivity increases first and reaches the maximum limit whenx=0.01.The significan decrease in resistivity can be attributed to the high carrier concentration and mobility.The room-temperature Seebeck coefficien of Se-doped samples ranged between -175μV K-1and -239μV K-1, which is comparable to the Te-doped samples [13,22].It is evident from Fig.5c that over the entire temperature range, the power factor (PF) of Mg3.2Bi1.4Sb0.6-xSexwas significantl higherthan those of Se-doped samples in the literatures [39,40].The power factor of the sample withx=0.01 was 29μW cm-1K-2at room temperature and decreased to 22μW cm-1K-2at 623K.Such a high power factor was generated from the high Hall mobility, and 70% of Mg3Bi2led to the formation of coarse grains, resulting in ultra-low resistivity [18,22,23].The temperature-dependent total thermal conductivity (κ), electronic thermal conductivity (κe) and lattice thermal conductivity (κL) and bipolar thermal conductivity (κb) of Mg3.2Bi1.4Sb0.6-xSexare presented in Fig.5d-f.κewas estimated according to the Wiedemann-Franz law,κe=LT/ρ, whereLis the Lorenz number.The Lorenz number was determined by the SPB model assuming acoustic phonon scattering [8,45,46].κeshown in Fig.5e increased after Se doping, which mainly due to the reduction of resistivity.As shown in Fig.5f, the sum of the lattice thermal conductivity and bipolar thermal conductivityκL+κbincreases with increasing temperature, this may because the bipolar effect occurs at high temperature (>450K) in the samples.Looking carefully at our experimental data in Fig.4a and 4b, the carrier concentration increases while the mobility decreases at high temperature, and the change trend of Seebeck coeffi cient changes at 450K, these phenomena should be related to bipolar effects.Mg3.2Bi1.4Sb0.595Se0.01shows a very lowκLof 0.6-0.7W m-1K-1at low temperature range, yielding a high room temperature thermoelectric performance.The reduction ofκLcan be ascribed to alloy scattering caused by the compositional change in Mg3Bi2/Mg3Sb2alloys [22].

    Fig.6.(a) Temperature dependent ZT value of Mg3.2Bi1.4Sb0.6-xSex samples, data in references are shown for comparison [8,22], (b) comparison of peak ZT between different material composition [22,24,39,40].

    Fig.7.Calculated (a) PFeng, (b) ZTeng, and (c) maximal conversion efficien y of Mg3.2Bi1.4Sb0.6-xSex samples.The hot side temperature was varied up to 623K while the cold side temperature was kept at 300K.

    TheZTvalues of Mg3.2Bi1.4Sb0.6-xSexsamples are presented in Fig.6a.A peakZTof 1.24 at 498K was obtained for Mg3.2Bi1.4Sb0.59Se0.01, profi from its high power factor and low thermal conductivity.The Mg3.2Bi1.4Sb0.595Se0.005sample shows the highest room temperatureZTof ~0.82, which is comparable with n-Bi2Te3[8], and is significantl higher than that of Te/Se-doped sample in literatures [22,24,39,40],as shown in Fig.6b.

    In addition, as the engineering figur of merit (ZT)engand the engineering power factor (PF)engare widely used to evaluate the conversion efficien y (η) from heat to electricity energy, the (ZT)eng, (PF)eng, andηof Mg3.2Bi1.4Sb0.6-xSexmaterials were calculated by the following equations [47]:

    whereS(T),ρ(T), andκ(T) are temperature-dependent thermoelectric properties,ThandTcare the hot side temperature and the cold side temperature, respectively, andαi(i=0, 1,2) is a dimensionless intensity factor of the Thomson effect.As the temperature gradient in power generation applications is generally very large, the cumulative sum of all of the temperature segments is a more accurate quality factor.The calculated temperature-dependent (PF)eng, (ZT)eng, andηat the cold-side temperature of 300K are presented in Fig.7.(ZT)engandηincreased with the increasing Se concentration fromx=0.005 tox=0.01, while started to decrease slightly fromx=0.02 tox=0.04 at high temperatures.Among all samples,Mg3.2Bi1.4Sb0.59Se0.01had the highest (ZT)engandηof about 0.9 and 12%, respectively.

    4.Conclusions

    A promising n-type Mg3Bi2-based thermoelectric material suitable for the low-temperature TE applications was successfully synthesized by ball milling and hot pressing.Se was found to be an effective and environmentally friendly n-type dopant in comparison with Te.A peakZTvalue of 1.24 at 498K was obtained for Mg3.2Bi1.4Sb0.59Se0.01and a high room temperatureZTof 0.82 was achieved for Mg3.2Bi1.4Sb0.595Se0.005, meaning a good room temperature thermoelectric material attributed to its high power factor and low lattice thermal conductivity.Coarse grains successfully obtained by alloying large amount of Mg3Bi2with Mg3Sb2, which effectively reduces the grain boundary resistance and greatly improves the Hall mobility.Moreover,Mg3.2Bi1.4Sb0.59Se0.01shows high (ZT)engand high (PF)eng,ensuring the possible applications of Se doped Mg3.2Bi1.4Sb0.6materials at low-grade-temperature.

    Declaration of Competing Interest

    The authors declare no competing interests.

    Acknowledgements

    The work performed is supported by Young Scientist Fund of National Natural Science Foundation of China (No.51601152), Chunhui Program from Education Ministry of China,Open Research Subject of Key Laboratory of Fluid and Power Machinery of Ministry of Education (No.SZJJ2017-082), and the Sichuan Science and Technology Program (No.2019JDTD0024).

    啦啦啦在线免费观看视频4| 99riav亚洲国产免费| 波多野结衣一区麻豆| 久久久久久亚洲精品国产蜜桃av| 高潮久久久久久久久久久不卡| 午夜激情av网站| 国产在线一区二区三区精| 国产精品国产av在线观看| 大陆偷拍与自拍| 欧美精品一区二区免费开放| 搡老乐熟女国产| 不卡av一区二区三区| 国产精品影院久久| 99国产综合亚洲精品| 一级作爱视频免费观看| 丁香六月欧美| 精品电影一区二区在线| 国产一区二区激情短视频| 国产色视频综合| 欧美国产精品一级二级三级| 欧美乱码精品一区二区三区| 91成人精品电影| 欧美日韩中文字幕国产精品一区二区三区 | 国产欧美日韩一区二区三| 亚洲av美国av| 桃红色精品国产亚洲av| 国产成人av激情在线播放| 日日夜夜操网爽| 亚洲自偷自拍图片 自拍| 又紧又爽又黄一区二区| 十八禁高潮呻吟视频| 国产三级黄色录像| 国产麻豆69| 一级毛片精品| 99久久人妻综合| 99国产精品免费福利视频| 亚洲一区二区三区欧美精品| 亚洲avbb在线观看| 黄色成人免费大全| 久久中文看片网| 视频在线观看一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 女性被躁到高潮视频| av中文乱码字幕在线| 五月开心婷婷网| 久9热在线精品视频| 亚洲在线自拍视频| 国产欧美日韩一区二区三区在线| 午夜福利免费观看在线| 夜夜夜夜夜久久久久| 在线国产一区二区在线| 伊人久久大香线蕉亚洲五| 国产精品二区激情视频| 国产欧美日韩综合在线一区二区| 国产成人精品久久二区二区免费| 精品电影一区二区在线| 老司机影院毛片| 国产成人av教育| 国精品久久久久久国模美| 999久久久精品免费观看国产| 久久天堂一区二区三区四区| 久久精品91无色码中文字幕| 亚洲精品久久午夜乱码| 男人舔女人的私密视频| 俄罗斯特黄特色一大片| 777米奇影视久久| 超碰成人久久| 色在线成人网| 免费人成视频x8x8入口观看| 午夜久久久在线观看| a级毛片黄视频| 国产一区在线观看成人免费| 免费看十八禁软件| 黄色a级毛片大全视频| 亚洲五月色婷婷综合| 80岁老熟妇乱子伦牲交| 国产色视频综合| 精品国产乱子伦一区二区三区| 999久久久精品免费观看国产| 精品乱码久久久久久99久播| 亚洲人成电影免费在线| 中文字幕精品免费在线观看视频| 两个人免费观看高清视频| 交换朋友夫妻互换小说| 久久午夜综合久久蜜桃| 女人被躁到高潮嗷嗷叫费观| 天堂√8在线中文| 国产熟女午夜一区二区三区| 久久国产亚洲av麻豆专区| 老熟女久久久| 欧美日韩乱码在线| 中出人妻视频一区二区| 岛国在线观看网站| 精品国产美女av久久久久小说| 电影成人av| 男女高潮啪啪啪动态图| 亚洲精品中文字幕在线视频| videosex国产| 中文字幕色久视频| 在线观看66精品国产| 他把我摸到了高潮在线观看| 99精品久久久久人妻精品| 美女福利国产在线| 搡老岳熟女国产| 满18在线观看网站| 午夜免费鲁丝| 国产男靠女视频免费网站| 51午夜福利影视在线观看| 久久久国产成人精品二区 | av线在线观看网站| 午夜日韩欧美国产| 亚洲专区字幕在线| 一区福利在线观看| tocl精华| 国产在视频线精品| av欧美777| 日韩人妻精品一区2区三区| 黄色丝袜av网址大全| 亚洲成人免费电影在线观看| 色94色欧美一区二区| 欧美黄色淫秽网站| 亚洲欧美日韩另类电影网站| 亚洲av成人av| 国产国语露脸激情在线看| 午夜日韩欧美国产| 久久久精品免费免费高清| 这个男人来自地球电影免费观看| 怎么达到女性高潮| 美女视频免费永久观看网站| 午夜福利免费观看在线| svipshipincom国产片| 亚洲熟女毛片儿| 精品人妻熟女毛片av久久网站| 欧美日韩视频精品一区| 午夜福利影视在线免费观看| av视频免费观看在线观看| 嫁个100分男人电影在线观看| 人妻丰满熟妇av一区二区三区 | 天天操日日干夜夜撸| 国内久久婷婷六月综合欲色啪| 午夜两性在线视频| 深夜精品福利| 十分钟在线观看高清视频www| 热99国产精品久久久久久7| 国产精品香港三级国产av潘金莲| 后天国语完整版免费观看| 精品国内亚洲2022精品成人 | tocl精华| 欧美精品啪啪一区二区三区| 国产不卡av网站在线观看| tocl精华| 久久久久国产精品人妻aⅴ院 | 欧美最黄视频在线播放免费 | 国产av一区二区精品久久| 桃红色精品国产亚洲av| 香蕉久久夜色| 一区福利在线观看| 在线观看免费午夜福利视频| 国产亚洲精品一区二区www | 精品国产国语对白av| 午夜影院日韩av| 亚洲黑人精品在线| 日日摸夜夜添夜夜添小说| 亚洲 国产 在线| 狠狠婷婷综合久久久久久88av| 熟女少妇亚洲综合色aaa.| 中文亚洲av片在线观看爽 | 色婷婷久久久亚洲欧美| 亚洲精品美女久久久久99蜜臀| 三级毛片av免费| 欧美日韩瑟瑟在线播放| 天堂√8在线中文| 久久香蕉激情| 又黄又爽又免费观看的视频| 天堂动漫精品| 婷婷丁香在线五月| 超碰97精品在线观看| 露出奶头的视频| 国产男女内射视频| 国产精品影院久久| 91国产中文字幕| 在线国产一区二区在线| 午夜福利一区二区在线看| 制服诱惑二区| 又黄又爽又免费观看的视频| 亚洲av日韩精品久久久久久密| 大片电影免费在线观看免费| ponron亚洲| 在线看a的网站| 成人18禁高潮啪啪吃奶动态图| 午夜免费成人在线视频| 国产精品一区二区精品视频观看| 亚洲国产精品sss在线观看 | 久久精品91无色码中文字幕| 亚洲欧美日韩高清在线视频| 欧美精品高潮呻吟av久久| 国产精品自产拍在线观看55亚洲 | av国产精品久久久久影院| 乱人伦中国视频| 国产成人精品无人区| 黑人欧美特级aaaaaa片| 无遮挡黄片免费观看| 精品福利永久在线观看| 人人妻人人添人人爽欧美一区卜| 精品一区二区三卡| 无人区码免费观看不卡| 欧美成人午夜精品| 免费女性裸体啪啪无遮挡网站| 久久久久精品国产欧美久久久| 天天躁夜夜躁狠狠躁躁| av网站免费在线观看视频| 精品国产乱子伦一区二区三区| tube8黄色片| 亚洲人成电影观看| 99国产精品一区二区三区| 天堂动漫精品| 黑人猛操日本美女一级片| 大型黄色视频在线免费观看| 99riav亚洲国产免费| 国产99久久九九免费精品| av天堂在线播放| 欧美亚洲 丝袜 人妻 在线| 亚洲中文日韩欧美视频| 亚洲av成人不卡在线观看播放网| 母亲3免费完整高清在线观看| 国产激情欧美一区二区| 日韩 欧美 亚洲 中文字幕| 国产av又大| 欧美激情久久久久久爽电影 | 热99久久久久精品小说推荐| 老司机福利观看| 飞空精品影院首页| 亚洲国产欧美一区二区综合| 两性午夜刺激爽爽歪歪视频在线观看 | 在线天堂中文资源库| 777米奇影视久久| 丝袜在线中文字幕| 久久精品成人免费网站| 一本大道久久a久久精品| 免费在线观看完整版高清| 欧美丝袜亚洲另类 | x7x7x7水蜜桃| 丰满饥渴人妻一区二区三| 18禁美女被吸乳视频| 人人妻人人添人人爽欧美一区卜| 热99久久久久精品小说推荐| 国产亚洲欧美精品永久| 免费看a级黄色片| 超色免费av| 日韩免费高清中文字幕av| 亚洲精品美女久久久久99蜜臀| 校园春色视频在线观看| 国产亚洲精品第一综合不卡| 国产av又大| 老司机在亚洲福利影院| 天天添夜夜摸| 国产成人av激情在线播放| 午夜福利欧美成人| e午夜精品久久久久久久| 激情视频va一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 亚洲在线自拍视频| 宅男免费午夜| 法律面前人人平等表现在哪些方面| 好男人电影高清在线观看| 日韩人妻精品一区2区三区| 91九色精品人成在线观看| 99热只有精品国产| 正在播放国产对白刺激| 人妻 亚洲 视频| 亚洲欧美激情综合另类| 国产欧美日韩一区二区三区在线| 亚洲色图 男人天堂 中文字幕| 国产乱人伦免费视频| 欧美日韩亚洲综合一区二区三区_| 免费观看精品视频网站| 99精品欧美一区二区三区四区| 91麻豆av在线| 午夜影院日韩av| 日韩有码中文字幕| 婷婷成人精品国产| 麻豆av在线久日| 一区二区三区国产精品乱码| 国产午夜精品久久久久久| 国产高清国产精品国产三级| 亚洲片人在线观看| 91麻豆av在线| tube8黄色片| 无人区码免费观看不卡| 中文字幕制服av| 色精品久久人妻99蜜桃| 国产精品电影一区二区三区 | 日本a在线网址| 人人妻人人爽人人添夜夜欢视频| 免费在线观看黄色视频的| 欧美不卡视频在线免费观看 | 亚洲欧美日韩另类电影网站| 亚洲性夜色夜夜综合| av片东京热男人的天堂| 91在线观看av| 精品国产一区二区三区四区第35| 1024视频免费在线观看| 久久青草综合色| 亚洲少妇的诱惑av| 一级片免费观看大全| 精品第一国产精品| 欧美大码av| 在线观看免费视频日本深夜| 国产欧美日韩精品亚洲av| 欧美丝袜亚洲另类 | 男女床上黄色一级片免费看| 国产在线精品亚洲第一网站| 深夜精品福利| 亚洲欧美日韩高清在线视频| 捣出白浆h1v1| 精品国产乱子伦一区二区三区| 亚洲精品一二三| 国产精品 欧美亚洲| 午夜福利视频在线观看免费| 色婷婷av一区二区三区视频| 国产亚洲精品第一综合不卡| 在线av久久热| 国产亚洲精品第一综合不卡| 亚洲一区高清亚洲精品| 日韩制服丝袜自拍偷拍| 视频区图区小说| 国产高清视频在线播放一区| 国产极品粉嫩免费观看在线| 丝瓜视频免费看黄片| 在线观看日韩欧美| 悠悠久久av| 制服诱惑二区| 女人被躁到高潮嗷嗷叫费观| 99热国产这里只有精品6| 国产成人欧美| 欧美人与性动交α欧美精品济南到| 久久香蕉精品热| 亚洲精品自拍成人| 国产精品亚洲一级av第二区| 18在线观看网站| 欧美日韩av久久| 高清黄色对白视频在线免费看| 无限看片的www在线观看| 久久中文字幕人妻熟女| 国产精品久久久久成人av| 一个人免费在线观看的高清视频| 丝袜美足系列| 俄罗斯特黄特色一大片| 超碰成人久久| 天天操日日干夜夜撸| 又黄又爽又免费观看的视频| av超薄肉色丝袜交足视频| 激情在线观看视频在线高清 | 妹子高潮喷水视频| 久久九九热精品免费| 国产亚洲一区二区精品| 中文欧美无线码| 精品国产亚洲在线| 成年人黄色毛片网站| 热re99久久精品国产66热6| 久久性视频一级片| 老司机靠b影院| 久久九九热精品免费| 精品国产超薄肉色丝袜足j| 国产精品偷伦视频观看了| 操出白浆在线播放| 91字幕亚洲| 久99久视频精品免费| ponron亚洲| 国产精品美女特级片免费视频播放器 | 一级毛片女人18水好多| 亚洲中文av在线| 免费在线观看日本一区| 久久精品人人爽人人爽视色| 9191精品国产免费久久| 国产伦人伦偷精品视频| 9热在线视频观看99| 久久亚洲真实| 日韩中文字幕欧美一区二区| 一级作爱视频免费观看| 亚洲精品在线观看二区| 老司机午夜福利在线观看视频| 巨乳人妻的诱惑在线观看| 成熟少妇高潮喷水视频| 日韩欧美一区视频在线观看| 国产片内射在线| 国产一卡二卡三卡精品| 免费在线观看日本一区| 一个人免费在线观看的高清视频| 无限看片的www在线观看| 性色av乱码一区二区三区2| 超碰成人久久| 久久亚洲真实| 精品国产亚洲在线| 日本一区二区免费在线视频| 乱人伦中国视频| 夜夜夜夜夜久久久久| 免费黄频网站在线观看国产| 自拍欧美九色日韩亚洲蝌蚪91| 国产又爽黄色视频| 国产成人啪精品午夜网站| 国产高清激情床上av| 法律面前人人平等表现在哪些方面| 久久精品国产亚洲av香蕉五月 | 露出奶头的视频| 天天躁日日躁夜夜躁夜夜| 大陆偷拍与自拍| 欧美人与性动交α欧美软件| av超薄肉色丝袜交足视频| 亚洲五月色婷婷综合| 国产精华一区二区三区| 免费在线观看影片大全网站| 视频区图区小说| 国产男靠女视频免费网站| 少妇的丰满在线观看| 国产日韩欧美亚洲二区| 久久精品国产99精品国产亚洲性色 | 久久ye,这里只有精品| 欧美午夜高清在线| 亚洲在线自拍视频| 国产成人精品在线电影| 亚洲专区字幕在线| 亚洲五月天丁香| 国产精品免费视频内射| 大香蕉久久成人网| 自线自在国产av| 亚洲免费av在线视频| 国产真人三级小视频在线观看| 黑人猛操日本美女一级片| 日韩欧美一区二区三区在线观看 | 欧美在线黄色| 国产精品一区二区在线不卡| 日本黄色日本黄色录像| 香蕉久久夜色| 中亚洲国语对白在线视频| 精品国产亚洲在线| 日本wwww免费看| 国产精品久久久av美女十八| 免费av中文字幕在线| 一本一本久久a久久精品综合妖精| 亚洲 欧美一区二区三区| 女性生殖器流出的白浆| 热99国产精品久久久久久7| 色精品久久人妻99蜜桃| 欧美 日韩 精品 国产| 极品人妻少妇av视频| 亚洲国产毛片av蜜桃av| 搡老乐熟女国产| 亚洲熟妇中文字幕五十中出 | 午夜免费成人在线视频| 美女扒开内裤让男人捅视频| 亚洲久久久国产精品| 亚洲成人手机| а√天堂www在线а√下载 | 精品一区二区三区四区五区乱码| 精品国产一区二区三区四区第35| 亚洲情色 制服丝袜| 黄色视频不卡| 国产成+人综合+亚洲专区| 日韩人妻精品一区2区三区| 超碰97精品在线观看| 精品一区二区三区四区五区乱码| 飞空精品影院首页| 国产精品美女特级片免费视频播放器 | 色播在线永久视频| 欧美在线一区亚洲| 身体一侧抽搐| 18禁裸乳无遮挡动漫免费视频| 国产精品香港三级国产av潘金莲| 黄色a级毛片大全视频| 亚洲人成77777在线视频| 久久久久国产精品人妻aⅴ院 | 亚洲伊人色综图| 大片电影免费在线观看免费| 中文字幕人妻丝袜一区二区| av电影中文网址| 一级,二级,三级黄色视频| 亚洲国产欧美日韩在线播放| 亚洲免费av在线视频| 午夜福利一区二区在线看| 精品国内亚洲2022精品成人 | 窝窝影院91人妻| 国产伦人伦偷精品视频| 午夜两性在线视频| x7x7x7水蜜桃| av视频免费观看在线观看| 精品国内亚洲2022精品成人 | 热re99久久国产66热| 国产成人精品无人区| 精品一区二区三区视频在线观看免费 | 在线观看免费日韩欧美大片| 婷婷精品国产亚洲av在线 | 亚洲精品美女久久久久99蜜臀| 韩国av一区二区三区四区| 老鸭窝网址在线观看| 国产99白浆流出| 国产成人免费观看mmmm| 国产一卡二卡三卡精品| 亚洲欧美一区二区三区久久| 国产精品 国内视频| ponron亚洲| 人妻久久中文字幕网| 日本精品一区二区三区蜜桃| 无限看片的www在线观看| 最新的欧美精品一区二区| 韩国精品一区二区三区| 熟女少妇亚洲综合色aaa.| 国产欧美日韩精品亚洲av| 中文字幕精品免费在线观看视频| 一区二区三区精品91| 国产男靠女视频免费网站| 亚洲精品国产色婷婷电影| 90打野战视频偷拍视频| 亚洲专区国产一区二区| 久久这里只有精品19| 精品人妻在线不人妻| 国产1区2区3区精品| 欧美在线一区亚洲| 午夜精品国产一区二区电影| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲成av片中文字幕在线观看| 国产在视频线精品| 国产精品成人在线| 亚洲国产毛片av蜜桃av| 国产成人av激情在线播放| 免费观看人在逋| 一边摸一边做爽爽视频免费| e午夜精品久久久久久久| 午夜免费观看网址| 好看av亚洲va欧美ⅴa在| 亚洲人成电影观看| 村上凉子中文字幕在线| 91老司机精品| 免费观看人在逋| 热re99久久精品国产66热6| 首页视频小说图片口味搜索| 国产精品二区激情视频| 老司机亚洲免费影院| 久久久国产成人免费| 国产精品久久久av美女十八| 免费观看精品视频网站| 精品福利永久在线观看| 大型黄色视频在线免费观看| 在线播放国产精品三级| 久久中文字幕人妻熟女| 999久久久精品免费观看国产| 中文字幕色久视频| 亚洲熟妇熟女久久| 午夜激情av网站| 美女 人体艺术 gogo| 他把我摸到了高潮在线观看| 王馨瑶露胸无遮挡在线观看| 嫁个100分男人电影在线观看| 亚洲美女黄片视频| 人人妻人人添人人爽欧美一区卜| 亚洲av日韩在线播放| 久久久久久久国产电影| 国产精品久久电影中文字幕 | 精品国产乱子伦一区二区三区| 亚洲精品中文字幕一二三四区| 悠悠久久av| 国产男女内射视频| 国产精品一区二区在线观看99| 国产精品亚洲一级av第二区| 久久久国产成人精品二区 | 99热国产这里只有精品6| 一区二区日韩欧美中文字幕| 亚洲中文日韩欧美视频| 又大又爽又粗| 亚洲国产精品sss在线观看 | 亚洲国产精品合色在线| bbb黄色大片| 丰满的人妻完整版| 久久精品亚洲精品国产色婷小说| 波多野结衣一区麻豆| 一区福利在线观看| 精品国产国语对白av| 中文欧美无线码| 国产又色又爽无遮挡免费看| 热re99久久国产66热| 一区二区三区精品91| 巨乳人妻的诱惑在线观看| 少妇猛男粗大的猛烈进出视频| 国产黄色免费在线视频| 亚洲国产毛片av蜜桃av| 啦啦啦视频在线资源免费观看| 视频在线观看一区二区三区| 免费黄频网站在线观看国产| 欧美最黄视频在线播放免费 | 18禁黄网站禁片午夜丰满| 午夜免费观看网址| 欧美色视频一区免费| 欧美精品高潮呻吟av久久| 怎么达到女性高潮| 最近最新免费中文字幕在线| 亚洲成人免费av在线播放| av国产精品久久久久影院| 一级,二级,三级黄色视频| 免费黄频网站在线观看国产| 99精品在免费线老司机午夜| 中国美女看黄片| 国产成人系列免费观看| 精品国内亚洲2022精品成人 | av不卡在线播放| 午夜精品久久久久久毛片777| 80岁老熟妇乱子伦牲交| 中文字幕精品免费在线观看视频| 亚洲人成电影免费在线| 91麻豆精品激情在线观看国产 | 国产精品久久久av美女十八| 免费一级毛片在线播放高清视频 | 亚洲av欧美aⅴ国产| 乱人伦中国视频| 亚洲精品久久午夜乱码| 免费看十八禁软件|