• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identification of egg protein-derived peptides as xanthine oxidase inhibitors:virtual hydrolysis, molecular docking, and in vitro activity evaluation

    2022-07-11 05:49:10ZhipengYuYxinCoRuotongKnHuizhuoJiWenzhuZhoSijiWuJingoLiuDviShiun
    食品科學與人類健康(英文) 2022年6期

    Zhipeng Yu, Yxin Co, Ruotong Kn, Huizhuo Ji, Wenzhu Zho,*,Siji Wu, Jingo Liu, Dvi Shiun

    a School of Food Science and Engineering, Hainan University, Haikou 570228, China

    b College of Food Science and Engineering, Bohai University, Jinzhou 121013, China

    c Lab of Nutrition and Functional Food, Jilin University, Changchun 130062, China

    d Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China

    ABSTRACT

    The purpose of this study was to screen the xanthine oxidase (XO) inhibitory peptides from egg white proteins through virtual hydrolysis, in vitro activity validation, and molecular docking. The results demonstrated that tripeptide EEK from ovalbumin exhibited potent XO inhibitory activity with an IC50 value of 141 μmol/L.The molecular docking results showed that tripeptide EEK bound with the active center of XO via 3 carbon hydrogen bond interactions, 2 salt bridges, 5 conventional hydrogen bond interactions, and 4 attractive charge interactions. The residues Glu802, Phe1009, and Arg880 may play key roles in the XO catalytic reaction.Especially, the key intermolecular forces of inhibiting XO activity may be special type of hydrogen bonds including carbon hydrogen bond interactions and attraction charge interactions. The novel tripeptide EEK is potential candidates for controlling hyperuricemia.

    Keywords:

    Egg protein-derived peptides

    Hyperuricemia

    Inhibitor mechanism

    Molecular docking

    Xanthine oxidase

    1. Introduction

    Uric acid is thefinal production of purine metabolism in human [1,2].The excessive production and blocked excretion of uric acid will lead to hyperuricemia [3]. In recent years, the prevalence of hyperuricemia has been on the rise due to the increase of high-purine foods intake [4,5]. It has been reported that urate nephropathy also related to hyperuricemia [6]. Reducing the intake of high-purine foods can effectively control the level of blood uric acid in the body by inhibiting the synthesis of uric acid or promoting the excretion of uric acid [7]. Xanthine oxidase (XO, EC 1.17.3.2) is a liver enzyme that catalyzes the two-step oxidation of hypoxanthine to xanthine,followed by xanthine to uric acid [8,9]. Thus, XO is a crucial molecular target for the research and development of drugs to treat hyperuricemia [10]. XO inhibitors, e.g., allopurinol and febuxostat,are widely used in the treatment of hyperuricemia [11]. However,allopurinol and febuxostat have certain side effects [12,13]. Thus, XO inhibitors identified from foods have become the potential candidate for the treatment of hyperuricemia.

    Some XO inhibitory peptides have been isolated from seafood, including bonito, tuna, and shark cartilage [14-16]. Egg white proteins are high quality source of bioactive peptides [17].Previous studies had successfully identified bioactive peptides from ovalbumin, ovomucoid, and lysozyme, such as antioxidant peptides,immunologically active peptides, and antimicrobial peptides [18-23].Therefore, ovalbumin, ovomucoid, and lysozyme were used for screening potential XO inhibitory peptides. However, the classical methods of separation and purification of bioactive peptides are time-consuming and costly [22]. Many studies have demonstrated the efficiency of virtual screening which is considered as an effective alternative to traditional enzymatic hydrolysis [24-26]. Therefore,the in silico enzyme digestion methods were applied for producing food-derived bioactive peptides [27].

    The purpose of this work was to identify novel XO inhibitory peptides from egg white proteins. Egg white proteins were hydrolyzed using virtual enzymatic hydrolysis. The water solubility and toxicological properties of the obtained peptides were predicted.Subsequently, the in vitro inhibitory activity of XO was validated using high performance liquid chromatography (HPLC). Furthermore,the potential interaction mechanism of XO inhibitory peptides with XO was investigated via molecular docking simulation. This study provides new insights into the application of egg white protein-derived peptides in the treatment of hyperuricemia.

    2. Materials and methods

    2.1 Chemical reagents

    Uric acid (≥ 99%), xanthine (≥ 99.5%), and xanthine oxidase (EC 1.17.3.2, 5 units, milk extract) were obtained from Sigma-Aldrich (St Louis, Missouri, USA). Tri fluoroacetic acid (TFA)and chromatographic grades methanol were obtained from Thermo Fisher Scientific (Waltham, Massachusetts, USA). All other chemicals and reagents were analytical grade.

    2.2 Proteolysis simulation of egg white proteins

    Egg white proteins were hydrolyzed using the program ExPASy PeptideCutter (http://web.expasy.org/peptide_cutter/) [28]. Ovalbumin(Accession of NCBI: AAB59956), ovomucoid (Accession of NCBI:ACJ04729 and XP_021266564), and lysozyme (Accession of NCBI:AAB31830) of egg white proteins were obtained from the National Center for Biotechnology Information (NCBI), available on https://www.ncbi.nlm.nih.gov/. Then, in silico digestion was performed using three typical enzymes in the gastrointestinal (GI) tract, i.e., pepsin (EC 3.4.23.1), trypsin (EC 3.4.21.4) and chymotrypsin (EC 3.4.21.1) [29].The absorption efficiency of peptides depended on the length of chain,the shorter peptides chain length, the better absorption of peptides [30].Therefore, tripeptides, tetrapeptides, and pentapeptides were chosen to the solubility and toxicity prediction.

    2.3 The prediction of solubility and toxicity of peptides

    The solubility of the peptides was evaluated by the peptide property calculator (http://www.innovagen.com/) [31]. Subsequently,the mutagenicity, developmental toxicity potential (DTP), and skin sensitization (GPMT) of those peptides were analyzed by Discovery Studio (DS) 2017 R2 software (Dassault Systemes Biovia, San Diego,CA, USA) [32].

    2.4 Molecular docking of peptides and XO

    Bovine xanthine oxidase preserved all catalytic essential residues of human enzymes, with 90% overall sequence homology [33].And the bovine XO was a common target protein for screening XO inhibitors, thus it was used for molecular docking [34-36]. The crystal structure of quercetin and Bovine XO complex (PDB ID: 3NVY) was downloaded from the Protein Data Bank (PDB) (https://www.rcsb.org/) [16]. The pretreatment of crystal structure was performed using DS 2017 R2 software. The structure of XO was prepared by removing water molecules, adding hydrogen atoms, deleting the original ligand (quercetin) and Mo atoms and defining the active center with coordinates X: 87.70, Y: 7.70, and Z: 15.97, and the docking radius was 9 ? [16,34]. The structure of peptides was draw by DS 2017 R2 software, and the structures of positive control allopurinol and febuxostat were obtained from the PubMed (https://pubmed.ncbi.nlm.nih.gov/about/). Then, the ligand pretreatment process is described as energy minimizing and preparing ligands in the small molecules tab of DS 2017 R2 software (Dassault Systemes Biovia, San Diego,CA, USA). The CDOCKER program of DS 2017 R2 software was used for molecular docking. The best pose was selected based on the CDOCKER-Energy scores.

    2.5 Peptides synthesis

    Potential XO inhibitory peptides from egg white proteins were synthesized using an AAPPTEC Apex 396 peptide synthesizer as previously described [22].

    2.6 In vitro XO inhibitory activity assay

    The XO inhibitory activity of potential peptides was determined according to HPLC method [16]. All solutions were dissolved in phosphate buffer (pH 7.4). The test samples (10 μL) and 30 μL XO (0.025 U/mL) were added into the 0.5 mL centrifuge tube and preheated at 37 °C for 10 min. Then, 30 μL (5 mmol/L) xanthine was added to start the reaction and lasted for 20 min at 37 °C. Refrigerate at 5 °C to stop the reaction. Then, xanthine content in thefinal mixture was determined by HPLC with 10 μL of the reaction solution at 254 nm, and the inhibition rate of the sample to XO was calculated.

    3. Results and discussions

    3.1 Virtual screening of potential XO inhibitory peptides

    Virtual screening is quick, reliable, and efficient method for screening the bioactive peptides. A total of 62 tripeptides,tetrapeptides, and pentapeptides were obtained in the hydrolysates of ovalbumin, ovomucoid and lysozyme. Then, the water solubility was predicted, the results showed that 44 peptides had good water solubility. The toxicity prediction results indicated that all peptides were all no-mutagen, 4 peptides (SSSAN, ASR, PEY, and QINSR)had DTP toxic and 4 peptides (GAK, PDAA, GNK, and PDAV)were sensitizer. Therefore, 36 peptides with good water solubility and non-toxicity were used for screening potential XO inhibitory peptides by molecular docking. The docking of 28 peptides with XO was successful, and their CDOCKER-Energy scores were presented in Table 1. The lower CDOCKER-Energy scores indicated that peptides were more likely to be connected with XO, thus obtaining a more favorable conformation [37]. The CDOCKER-Energy scores of peptides EEK (-96.88 kcal/mol), TNDC (-86.44 kcal/mol),EGK (-86.30 kcal/mol), EER (-84.04 kcal/mol), and DNEC (-82.55 kcal/mol)were lower than that of other peptides, and also lower than that of positive control allopurinol (5.91 kcal/mol) and febuxostat (31.62 kcal/mol).Therefore, peptides EEK, TNDC, EGK, EER, and DNEC were synthesized for further study, and mass spectra results of EEK,TNDC, EGK, EER, and DNEC were shown in Fig. 1.

    Table 1Water solubility, toxicity prediction of peptides and docking with XO.

    3.2 In vitro XO inhibitory activity of peptides

    The XO inhibitory activity of the peptides EEK, TNDC, EGK,EER, and DNEC were determined. At the concentration of 0.50 mg/mL,the XO inhibitory rates of peptide EEK was 73.67%, and that of peptides TNDC, EGK, EER, and DNEC were 4.38%, 10.49%, 5.41%,and 13.24%, respectively. Therefore, peptide EEK was selected to continue the following study. Peptide EEK which matched 289–291 residues of ovalbumin in egg, showed the best XO inhibitory activity with IC50value of 141 μmol/L (0.40 mg/mL). The XO inhibitory activity of peptide EEK was lower than that of commercial inhibitor allopurinol (IC50= 10.10 μg/mL) [11], but was significantly better than that of XO inhibitory peptides WPPKN (IC50= 17.75 mg/mL),ADIYTE (IC50= 19.01 mg/mL), and EEAK (IC50= 0.58 mg/mL)reported from previous studies [11,16].

    3.3 Molecular interaction mechanism of tripeptide EEK with XO

    XO is a dimer; each monomer contains an active site, Glu802,Glu1261, and Arg880 residues in the molybdenum center of the gorge play key roles in catalyzing xanthine oxidation, whereas some residues at the entrance of the cavity, such as Leu648, Phe649,Phe914, Phe1009, Val1011, Phe1013, and Leu1014, modulate the entry of small molecules including substrates or inhibitors into the center [38-42]. The best docking pose of EEK and XO was shownin Fig. 2. EEK and XO were stably bonded by 3 carbon hydrogen bond interactions (carbon hydrogen bond interactions are considered weaker hydrogen bonds where the donor is a polarized carbon atom [43]), 2 salt bridges, 5 conventional hydrogen bond interactions,and 4 attractive charge interactions. Two carbon hydrogen bond interactions were formed between the hydrogen atoms (HB1 and HB2) of the residues Ser876 of XO and the oxygen atom (O17)of EEK, both with a length of 2.82 ?. The carbon hydrogen bond interaction was also formed between the hydrogen atoms (HA)of the amino acid residue Phe1009 and the oxygen atom (O14) of EEK (2.45 ?). The oxygen atom (OE2) of residues Glu879 and the oxygen atom (OE1) of residues Glu802 of XO bond with EEK by salt bridges interactions at distances of 1.82 and 1.87 ?, respectively.Five conventional hydrogen bond interactions were formed between H52, O15, O14, O15, and O30 of EEK and the nitrogen atom (NE2)of His875, the hydrogen atoms (HE, HH21) of Arg880, the hydrogen atoms (HG1) of Thr1010, the hydrogen atoms (HD22) of Asn768 of XO, at distances of 2.58, 2.08, 2.08, 1.90, and 2.17 ?, respectively.Four attractive charge interactions were found in the EEK-XO complex. The first one involved the oxygen atom (OE2) of residue Glu879 with the hydrogen atom (H51) of EEK with a length of 1.82 ?;the second one involved the nitrogen atom (NH2) of the residue Arg880 with the oxygen atom (O15) of EEK with a length of 3.35 ?;the third one involved the oxygen atom (OE1) of the residue Glu802 with the hydrogen atom (H3) of EEK with a length of 1.87 ?;and the fourth one involved the nitrogen atom (NZ) of the residue Lys771 with the oxygen atom (O30) of EEK with a length of 4.70 ?.

    Fig. 1 The mass spectra results of peptides (a) EEK, (b) TNDC, (c) EGK, (d) EER, and (e) DNEC.

    Fig. 2 The docking interactions of EEK with XO. (a) 3D structure of EEK-XO complex, red represents residues amino acids of XO, black represents atom numberings in XO; blue represents atom numberings in peptide EEK. (b) 2D diagram of the EEK-XO molecular interactions. Light blue represents carbon hydrogen bond. Green represents conventional hydrogen bond. Orange represents salt bridge and electrostatic interactions, and red color represents unfavorable negative-negative interactions.

    Previous studies have demonstrated that quercetin interacted with catalytic residues Phe914, Glu802, Val1011, Leu648, Leu1014,Leu873, Phe1009, Ala1079, Arg880 and Thr1010 in the L chain of XO [33]. As shown Fig. 3a, EEK bond the XO by residues Lys771,Asn768, Ser876, Glu802, Thr1010, Arg880, Phe1009, His875, and Glu879 of the chain L. Therefore, the residues Glu802, Thr1010,Arg880, and Phe1009 of XO might play important roles in EEK combination, and they may also be important screening criterion.Additionally, as shown in Table 2, peptides EEAK, FH, DN, and YLD all combined with the residues Glu802, Phe1009, and Arg880 of XO. Thus, Glu802, Phe1009, and Arg880 may play major roles in XO binding.

    Fig. 3 (Continued)

    Fig. 3 (a) The docking poses of original ligand quercetin and XO. Green represents conventional hydrogen bond. Light blue represents Pi-Donor hydrogen bond.Hotpink represents Pi-Pi stacked and Pi-Pi T-shaped interaction. Pink represents Pi-Alkyl interaction. Purple represents Pi-Sigma interaction. Red represents unfavorable bump and unfavorable acceptor-acceptor interaction. Molecular interactions of (b) allopurinol, (c) febuxostat, peptides (d) EEAK, (e) FH, (f) DN, and(g) YLD with XO.

    Table 2The interaction residues of XO with EEK, quercetin, allopurinol, febuxostat,EEAK, FH, DN, YLD, LD, LND, and NY.

    Table 3The number of interactions between ligands and the amino acid residues of XO.

    Compared with the original ligand quercetin in XO, tripeptide EEK had more advantages in binding with the predicted amino acid residues (Glu802, Phe1009, and Arg880) of XO. Quercetin formed two unfavorable chemical bonds with Glu802 of XO, while tripeptide EEK combined with Glu802 steadily by a salt bridge and an attractive charge interaction. Quercetin contacted with Phe1009 of XO by two Pi-Pi-T-Shaped interactions. In contrast, tripeptide EEK bond Phe1009 of XO by a carbon hydrogen bond interaction. Quercetin combined with Arg880 of XO by a conventional hydrogen bond interaction, tripeptide EEK formed an attraction charge interaction with Arg880. As shown in Table 3, the number of carbon hydrogen bond interactions and attraction charge interactions formed by the combination of EEK with XO was higher than allopurinol, febuxostat,EEAK, FH, DN, and YLD [15,16,34]. Therefore, carbon hydrogen bond interactions and attraction charge interactions may play key roles in screening for the XO inhibitors.

    The structure and IC50value of peptides EEK were similar with known XO inhibitory peptide EEAK. The EEK-XO complex had more carbon hydrogen bond interactions and attractive charge interactions compared with the EEAK-XO complex. Additionally,EEK could bind to Phe1009 of XO which was important for the binding of other XO inhibitory peptides (FH, DN, and YLD).Therefore, the XO inhibitory activity of EEK in vitro was higher than that of EEAK. And it is further proved that Phe1009 residue of XO might play a key role in XO-ligand interaction.

    4. Conclusion

    Tripeptide EEK with XO inhibitory activity was identified from Ovalbumin with an IC50value of 141 μmol/L. The tripeptide EEK bond to the active center of XO via 3 carbon hydrogen bond interactions, 2 salt bridges, 5 conventional hydrogen bond interactions, and 4 attractive charge interactions. Glu802, Phe1009,and Arg880 are key residues in the interaction of peptides and XO. The carbon hydrogen bond interactions and attraction charge interactions play major roles in the interaction between peptide and the predicted amino acid residues (Glu802, Phe1009, and Arg880) of XO. Tripeptide EEK was promising to use as a natural XO inhibitor to control hyperuricemia. Although EEK from ovalbumin has been shown XO inhibitory activity, ex vivo and in vivo experimentation are needed to further verify these results and explain the mechanism in the future.

    Con flicts of interest

    There are no con flicts of interest to declare.

    Acknowledgement

    This paper was supported by Beijing Advanced Innovation Center for Food Nutrition and Human Health (20181036).

    天堂俺去俺来也www色官网| 中文字幕人妻熟人妻熟丝袜美| 高清av免费在线| 三级国产精品欧美在线观看| 国产一区有黄有色的免费视频| 男人和女人高潮做爰伦理| 亚洲自偷自拍三级| 精品人妻偷拍中文字幕| 久久鲁丝午夜福利片| 欧美丝袜亚洲另类| 国产成人福利小说| 国内精品美女久久久久久| 久热这里只有精品99| 欧美成人a在线观看| 精品久久久久久电影网| 午夜福利在线观看免费完整高清在| 成年女人在线观看亚洲视频 | 欧美日韩亚洲高清精品| 亚洲国产最新在线播放| 777米奇影视久久| 亚洲精品乱码久久久久久按摩| 97超碰精品成人国产| 亚洲图色成人| 日本一二三区视频观看| 国产精品三级大全| 一区二区三区精品91| 成人免费观看视频高清| 国产久久久一区二区三区| 亚洲高清免费不卡视频| 国产成人精品婷婷| 成人毛片a级毛片在线播放| 日韩在线高清观看一区二区三区| 18禁动态无遮挡网站| 国内精品宾馆在线| 在线观看国产h片| 欧美日韩精品成人综合77777| 波野结衣二区三区在线| 青春草视频在线免费观看| 麻豆成人午夜福利视频| 亚洲精品国产色婷婷电影| 在线观看一区二区三区| 国产午夜福利久久久久久| 18+在线观看网站| 高清毛片免费看| 人妻少妇偷人精品九色| 一级二级三级毛片免费看| 精品国产乱码久久久久久小说| 日本免费在线观看一区| 久久久精品免费免费高清| 蜜桃久久精品国产亚洲av| 国产精品嫩草影院av在线观看| 18禁在线播放成人免费| 亚洲av免费在线观看| 日日啪夜夜撸| 老师上课跳d突然被开到最大视频| 欧美xxxx性猛交bbbb| 成人无遮挡网站| 国产成人精品婷婷| 日本与韩国留学比较| 边亲边吃奶的免费视频| 久久久精品免费免费高清| av在线老鸭窝| 禁无遮挡网站| 免费看av在线观看网站| 天堂网av新在线| 美女高潮的动态| 香蕉精品网在线| 国内精品宾馆在线| 欧美少妇被猛烈插入视频| 亚洲伊人久久精品综合| 一个人看的www免费观看视频| 久久精品国产亚洲av涩爱| 在线观看人妻少妇| 久久久色成人| h日本视频在线播放| 一区二区三区四区激情视频| 中文精品一卡2卡3卡4更新| 日韩一本色道免费dvd| 80岁老熟妇乱子伦牲交| 99久久人妻综合| 女人十人毛片免费观看3o分钟| 大码成人一级视频| 人人妻人人澡人人爽人人夜夜| 又爽又黄无遮挡网站| 美女内射精品一级片tv| 精品午夜福利在线看| 色网站视频免费| av线在线观看网站| 嘟嘟电影网在线观看| 国产免费视频播放在线视频| 国产男人的电影天堂91| 97人妻精品一区二区三区麻豆| 神马国产精品三级电影在线观看| 亚洲电影在线观看av| 熟女电影av网| 三级经典国产精品| 少妇高潮的动态图| 国产精品99久久久久久久久| 日日摸夜夜添夜夜添av毛片| 高清在线视频一区二区三区| 亚洲成人一二三区av| 久久精品夜色国产| 三级国产精品片| 成人鲁丝片一二三区免费| 国产一级毛片在线| 99热6这里只有精品| 熟女人妻精品中文字幕| 美女内射精品一级片tv| 嫩草影院新地址| 成人漫画全彩无遮挡| 久久久国产一区二区| 九九久久精品国产亚洲av麻豆| 欧美亚洲 丝袜 人妻 在线| 国产免费一级a男人的天堂| 九九在线视频观看精品| 熟女电影av网| 欧美日韩一区二区视频在线观看视频在线 | 国产免费福利视频在线观看| 你懂的网址亚洲精品在线观看| 麻豆成人av视频| 狂野欧美激情性bbbbbb| 一区二区三区四区激情视频| 亚洲精品国产色婷婷电影| 精品一区在线观看国产| 久久人人爽av亚洲精品天堂 | 国产精品国产三级国产av玫瑰| 婷婷色麻豆天堂久久| 肉色欧美久久久久久久蜜桃 | 男女那种视频在线观看| 五月天丁香电影| 丝袜脚勾引网站| 国语对白做爰xxxⅹ性视频网站| 精品久久久精品久久久| 久久久色成人| 久久精品夜色国产| 成人鲁丝片一二三区免费| 国产精品久久久久久精品古装| 性色av一级| 国产精品久久久久久精品古装| 中文字幕亚洲精品专区| 涩涩av久久男人的天堂| 伊人久久国产一区二区| 乱系列少妇在线播放| 一区二区三区四区激情视频| 一本久久精品| 一级a做视频免费观看| 激情五月婷婷亚洲| 亚洲成人中文字幕在线播放| 男的添女的下面高潮视频| 亚洲精品aⅴ在线观看| 日韩精品有码人妻一区| 又粗又硬又长又爽又黄的视频| 欧美xxxx黑人xx丫x性爽| 婷婷色av中文字幕| 禁无遮挡网站| 欧美xxxx性猛交bbbb| 99热6这里只有精品| 成人鲁丝片一二三区免费| 熟妇人妻不卡中文字幕| 国产 一区 欧美 日韩| 日韩电影二区| 搞女人的毛片| 人体艺术视频欧美日本| 日韩av不卡免费在线播放| 亚洲天堂av无毛| 久久久成人免费电影| 免费av毛片视频| 99热网站在线观看| 国产精品av视频在线免费观看| 免费av毛片视频| 国产精品一及| 少妇丰满av| 91aial.com中文字幕在线观看| 午夜福利高清视频| 人妻夜夜爽99麻豆av| 制服丝袜香蕉在线| 欧美日韩一区二区视频在线观看视频在线 | 韩国高清视频一区二区三区| 建设人人有责人人尽责人人享有的 | 夫妻性生交免费视频一级片| 成人亚洲欧美一区二区av| av.在线天堂| 寂寞人妻少妇视频99o| 91久久精品电影网| 国产黄色免费在线视频| 亚洲精品,欧美精品| 国产精品偷伦视频观看了| 日本与韩国留学比较| 99久久中文字幕三级久久日本| xxx大片免费视频| 成人漫画全彩无遮挡| 插阴视频在线观看视频| 97精品久久久久久久久久精品| 久热久热在线精品观看| 青春草视频在线免费观看| 国产又色又爽无遮挡免| 男女那种视频在线观看| 久热这里只有精品99| 国产伦精品一区二区三区四那| 国产成人一区二区在线| 久久女婷五月综合色啪小说 | 亚洲成色77777| 你懂的网址亚洲精品在线观看| 久久久午夜欧美精品| 亚洲怡红院男人天堂| av一本久久久久| 天天躁日日操中文字幕| 在线 av 中文字幕| 日本黄色片子视频| 观看免费一级毛片| 麻豆乱淫一区二区| 水蜜桃什么品种好| 丰满少妇做爰视频| 日本爱情动作片www.在线观看| 午夜免费鲁丝| 亚洲国产欧美人成| 久久99热这里只频精品6学生| 色哟哟·www| av又黄又爽大尺度在线免费看| 国产亚洲最大av| 91精品伊人久久大香线蕉| 97热精品久久久久久| 亚洲精品成人av观看孕妇| 内地一区二区视频在线| 欧美高清成人免费视频www| 成年版毛片免费区| 亚洲精品自拍成人| 色吧在线观看| 日韩成人av中文字幕在线观看| 国产精品精品国产色婷婷| 青春草亚洲视频在线观看| 国产一区二区亚洲精品在线观看| 久久精品久久精品一区二区三区| 久久韩国三级中文字幕| 一二三四中文在线观看免费高清| 王馨瑶露胸无遮挡在线观看| 国产精品熟女久久久久浪| 在线免费观看不下载黄p国产| 香蕉精品网在线| av线在线观看网站| 国产淫语在线视频| 伦精品一区二区三区| 国产男女超爽视频在线观看| 在线观看av片永久免费下载| 91aial.com中文字幕在线观看| 日韩制服骚丝袜av| 高清av免费在线| 欧美激情在线99| 久久久色成人| 国产69精品久久久久777片| 国产久久久一区二区三区| 免费看光身美女| 22中文网久久字幕| eeuss影院久久| 国产一区亚洲一区在线观看| 狂野欧美激情性xxxx在线观看| av国产久精品久网站免费入址| 99热全是精品| 夜夜爽夜夜爽视频| 国产精品一区二区三区四区免费观看| 男女边摸边吃奶| 中文精品一卡2卡3卡4更新| 青青草视频在线视频观看| 2021少妇久久久久久久久久久| 一级av片app| 国产一区有黄有色的免费视频| 国产伦在线观看视频一区| 日韩欧美 国产精品| 中文欧美无线码| xxx大片免费视频| 嫩草影院新地址| 国产成人aa在线观看| av在线老鸭窝| 夫妻性生交免费视频一级片| 日韩av在线免费看完整版不卡| 高清日韩中文字幕在线| 嫩草影院入口| 特大巨黑吊av在线直播| 波多野结衣巨乳人妻| 夜夜看夜夜爽夜夜摸| 久久久久久久久大av| 九九久久精品国产亚洲av麻豆| 日韩成人av中文字幕在线观看| 亚洲色图综合在线观看| 国产一级毛片在线| 99热这里只有精品一区| 内射极品少妇av片p| 免费看光身美女| 深夜a级毛片| 亚洲欧美成人综合另类久久久| 欧美国产精品一级二级三级 | 涩涩av久久男人的天堂| 亚洲最大成人中文| 亚洲欧美精品专区久久| 国产视频首页在线观看| 丝袜脚勾引网站| 99热这里只有是精品50| 伦理电影大哥的女人| 成人毛片60女人毛片免费| 亚洲精品乱久久久久久| 亚洲精品影视一区二区三区av| 蜜桃久久精品国产亚洲av| 久久久久国产网址| 欧美精品一区二区大全| 精品国产三级普通话版| 久久综合国产亚洲精品| 高清欧美精品videossex| 成人二区视频| 日韩视频在线欧美| 三级经典国产精品| 久久99精品国语久久久| 亚洲自偷自拍三级| 日日摸夜夜添夜夜爱| 国产亚洲av片在线观看秒播厂| 婷婷色麻豆天堂久久| 亚洲色图综合在线观看| 中文在线观看免费www的网站| 午夜福利网站1000一区二区三区| 国产黄片视频在线免费观看| 禁无遮挡网站| 欧美+日韩+精品| av免费在线看不卡| 最近中文字幕高清免费大全6| 欧美xxxx性猛交bbbb| 国产成人a区在线观看| 大香蕉久久网| 日本与韩国留学比较| 国产亚洲午夜精品一区二区久久 | 欧美潮喷喷水| 永久免费av网站大全| 免费不卡的大黄色大毛片视频在线观看| 国产高清有码在线观看视频| 色视频www国产| 91狼人影院| 街头女战士在线观看网站| 美女xxoo啪啪120秒动态图| 简卡轻食公司| 精品久久久噜噜| av.在线天堂| 国产欧美另类精品又又久久亚洲欧美| 免费观看的影片在线观看| 午夜精品一区二区三区免费看| 国产av码专区亚洲av| 丰满人妻一区二区三区视频av| 超碰av人人做人人爽久久| 韩国av在线不卡| 80岁老熟妇乱子伦牲交| 国产精品久久久久久久电影| 18禁裸乳无遮挡动漫免费视频 | 精品久久久噜噜| 欧美日韩一区二区视频在线观看视频在线 | 3wmmmm亚洲av在线观看| 国产精品嫩草影院av在线观看| 伦精品一区二区三区| 丰满人妻一区二区三区视频av| 日韩一区二区三区影片| 99re6热这里在线精品视频| 免费高清在线观看视频在线观看| 欧美国产精品一级二级三级 | 一级毛片黄色毛片免费观看视频| 草草在线视频免费看| 一二三四中文在线观看免费高清| a级毛色黄片| 夜夜爽夜夜爽视频| 国产午夜福利久久久久久| 草草在线视频免费看| 嫩草影院入口| 丝袜喷水一区| 日产精品乱码卡一卡2卡三| 中国国产av一级| 中文字幕人妻熟人妻熟丝袜美| 欧美最新免费一区二区三区| 99久久中文字幕三级久久日本| 春色校园在线视频观看| 可以在线观看毛片的网站| 久久精品人妻少妇| 国产亚洲最大av| 99热这里只有是精品在线观看| 欧美日本视频| freevideosex欧美| 国产亚洲午夜精品一区二区久久 | 三级经典国产精品| 草草在线视频免费看| 国产亚洲精品久久久com| 国产成人精品一,二区| 寂寞人妻少妇视频99o| 国产精品久久久久久精品电影| 王馨瑶露胸无遮挡在线观看| 亚洲av成人精品一区久久| 亚洲精品乱码久久久久久按摩| 久久综合国产亚洲精品| 少妇熟女欧美另类| av线在线观看网站| 国产高清不卡午夜福利| www.色视频.com| 超碰av人人做人人爽久久| 亚洲婷婷狠狠爱综合网| 又爽又黄a免费视频| 国产色婷婷99| 欧美日韩一区二区视频在线观看视频在线 | 一级毛片黄色毛片免费观看视频| 一级片'在线观看视频| av女优亚洲男人天堂| 日韩一区二区视频免费看| 国产乱人视频| 中国国产av一级| 麻豆精品久久久久久蜜桃| 色5月婷婷丁香| 街头女战士在线观看网站| 校园人妻丝袜中文字幕| 国产精品蜜桃在线观看| 九草在线视频观看| 日韩不卡一区二区三区视频在线| 毛片一级片免费看久久久久| 18禁动态无遮挡网站| 五月开心婷婷网| 少妇人妻久久综合中文| 日韩欧美精品免费久久| 涩涩av久久男人的天堂| 免费观看av网站的网址| 男女国产视频网站| 国产视频内射| 免费大片黄手机在线观看| 最新中文字幕久久久久| 好男人视频免费观看在线| 中文字幕人妻熟人妻熟丝袜美| av.在线天堂| 国产一区二区亚洲精品在线观看| 韩国av在线不卡| 日韩,欧美,国产一区二区三区| 国内揄拍国产精品人妻在线| 97热精品久久久久久| 久久精品国产鲁丝片午夜精品| 国产有黄有色有爽视频| 啦啦啦在线观看免费高清www| 少妇 在线观看| 日本熟妇午夜| 国产精品秋霞免费鲁丝片| 婷婷色综合www| a级一级毛片免费在线观看| 黄片无遮挡物在线观看| 国产免费视频播放在线视频| 最近最新中文字幕大全电影3| 国产免费福利视频在线观看| 久久ye,这里只有精品| 晚上一个人看的免费电影| 欧美日韩一区二区视频在线观看视频在线 | 久久久亚洲精品成人影院| 我要看日韩黄色一级片| 高清毛片免费看| 在线观看一区二区三区| 王馨瑶露胸无遮挡在线观看| 日韩视频在线欧美| 日日啪夜夜撸| 欧美成人一区二区免费高清观看| 国产午夜精品一二区理论片| av国产免费在线观看| 插阴视频在线观看视频| av专区在线播放| 国产精品福利在线免费观看| 嫩草影院入口| 狠狠精品人妻久久久久久综合| 激情 狠狠 欧美| 成人亚洲精品av一区二区| 亚洲av欧美aⅴ国产| 久久久久久久精品精品| 成人美女网站在线观看视频| 国产黄频视频在线观看| 欧美zozozo另类| 久久久精品免费免费高清| 丰满人妻一区二区三区视频av| 欧美xxxx性猛交bbbb| 欧美激情久久久久久爽电影| 爱豆传媒免费全集在线观看| 青春草国产在线视频| 边亲边吃奶的免费视频| 国语对白做爰xxxⅹ性视频网站| 人妻一区二区av| 国产一区亚洲一区在线观看| 免费看av在线观看网站| 国产爱豆传媒在线观看| 久久97久久精品| 亚洲三级黄色毛片| 免费播放大片免费观看视频在线观看| 麻豆成人午夜福利视频| 白带黄色成豆腐渣| 久久久精品欧美日韩精品| 男女那种视频在线观看| 久久精品国产自在天天线| 午夜爱爱视频在线播放| 久久女婷五月综合色啪小说 | 午夜福利视频1000在线观看| 看免费成人av毛片| 爱豆传媒免费全集在线观看| 久久精品国产a三级三级三级| 国产精品成人在线| 亚洲欧美中文字幕日韩二区| 国产黄片美女视频| 亚洲av一区综合| 国产免费又黄又爽又色| 日日啪夜夜撸| 亚洲av免费高清在线观看| 免费看光身美女| a级毛片免费高清观看在线播放| 日日啪夜夜爽| 国产一区二区三区av在线| 丝袜脚勾引网站| 99精国产麻豆久久婷婷| 亚洲色图综合在线观看| 联通29元200g的流量卡| 日韩不卡一区二区三区视频在线| 人妻少妇偷人精品九色| 99精国产麻豆久久婷婷| 校园人妻丝袜中文字幕| 小蜜桃在线观看免费完整版高清| www.色视频.com| 国产精品伦人一区二区| 国产爱豆传媒在线观看| 亚洲国产最新在线播放| 免费大片黄手机在线观看| 亚洲欧洲日产国产| 亚洲天堂国产精品一区在线| 亚洲精品成人久久久久久| 亚洲最大成人手机在线| 人人妻人人澡人人爽人人夜夜| 天天躁日日操中文字幕| 国产欧美日韩精品一区二区| 美女主播在线视频| 欧美丝袜亚洲另类| 在线精品无人区一区二区三 | 肉色欧美久久久久久久蜜桃 | 亚洲三级黄色毛片| 草草在线视频免费看| 国产成人aa在线观看| 色网站视频免费| 黄色怎么调成土黄色| 精品久久久噜噜| 看非洲黑人一级黄片| 熟妇人妻不卡中文字幕| 国内少妇人妻偷人精品xxx网站| 一二三四中文在线观看免费高清| 高清视频免费观看一区二区| 国产亚洲最大av| 亚洲三级黄色毛片| 七月丁香在线播放| 高清在线视频一区二区三区| 美女主播在线视频| 美女高潮的动态| 久久久午夜欧美精品| 好男人在线观看高清免费视频| 亚洲成色77777| 久久6这里有精品| 精品少妇黑人巨大在线播放| 成人特级av手机在线观看| 中文字幕久久专区| 亚洲国产精品专区欧美| 免费黄网站久久成人精品| 亚洲精品日韩av片在线观看| 欧美3d第一页| 日韩av在线免费看完整版不卡| 久久人人爽人人片av| 亚洲欧美精品专区久久| 免费看av在线观看网站| 日韩中字成人| 欧美高清性xxxxhd video| 国产伦精品一区二区三区视频9| 女人被狂操c到高潮| 中文欧美无线码| 色视频www国产| 久久久久久九九精品二区国产| 国产成人aa在线观看| 久久99精品国语久久久| 欧美丝袜亚洲另类| 男人舔奶头视频| 久久人人爽人人片av| 男人舔奶头视频| 99热这里只有是精品在线观看| av在线蜜桃| 久久久色成人| 国产精品一区二区性色av| 免费观看的影片在线观看| 九草在线视频观看| 最近中文字幕高清免费大全6| 日日摸夜夜添夜夜添av毛片| 有码 亚洲区| 成年女人在线观看亚洲视频 | 香蕉精品网在线| 日本色播在线视频| 一级av片app| 亚洲欧美日韩无卡精品| 国产精品国产三级国产专区5o| 亚洲一区二区三区欧美精品 | 国产精品久久久久久久电影| 18禁裸乳无遮挡免费网站照片| 美女脱内裤让男人舔精品视频| 一本久久精品| 精品熟女少妇av免费看| 春色校园在线视频观看| 人体艺术视频欧美日本| 亚洲va在线va天堂va国产| 你懂的网址亚洲精品在线观看| 亚洲精品日本国产第一区| 边亲边吃奶的免费视频| 精品人妻熟女av久视频| 91午夜精品亚洲一区二区三区| 麻豆精品久久久久久蜜桃| 国产 一区精品| 亚洲精品456在线播放app| 日本午夜av视频| 欧美日韩亚洲高清精品| 美女主播在线视频| 熟妇人妻不卡中文字幕| 美女国产视频在线观看| 丝袜喷水一区| xxx大片免费视频|