• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Salp Swarm Algorithm for Solving Optimal Power Flow Problem with Thyristor-Controlled Series Capacitor

    2022-07-08 01:38:32BalasubbareddyMallalaDivyanshiDwivedi

    Balasubbareddy Mallala | Divyanshi Dwivedi

    Abstract—In this paper, a salp swarm algorithm (SSA) is proposed for solving the optimal power flow (OPF)problem of a power system with the incorporation of the thyristor-controlled series capacitor (TCSC).The proposed methodology is implemented for determining the optimal setting of control variables for the OPF problem, which includes the real power of generators buses, voltages of generator buses, reactive power injected by shunt compensators, and tap changing transformer ratios.The performance of the proposed approach is validated and tested on the standard IEEE-30 bus system and single-objective functions, including transmission line losses.The severity factor has been minimized and the result obtained is compared with the existing algorithms.Simulation results achieved with the proposed SSA approach demonstrate that it results in an effective and better solution for the OPF problem.

    1.lntroduction

    The optimal power flow (OPF) is considered to be an imperative problem for energy management in power systems.In simple terms, OPF optimally adjusts the control variables of the power systems to optimize the objective functions, including the transmission line loss and severity factor, while considering both the equality and inequality constraints[1],[2].

    In recent years, a number of classical and metaheuristic optimization algorithms have been developed by researchers to resolve the OPF problem.The conventional techniques used in [3] to [8] include quadratic programming, the Newton method, interior-point methods, gradient methods, and linear and nonlinear programming.However, as observed, these approaches cannot be implemented for large power systems and do not lead to global optimum solutions.Thus, the development of metaheuristic techniques has been undertaken by researchers to overcome the problems faced with the conventional techniques.These metaheuristic optimization techniques include the genetic algorithm (GA)[9], particle swarm optimization(PSO)[10], biogeography-based optimization (BBO)[11], gravitational search algorithm (GSA)[12], simulated annealing (SA)[13], Tabu search algorithm[14], and gray wolf optimizer[15], and are currently being implemented in power systems to resolve the OPF problem.

    The current issues related to energy saving, energy utilization, environmental conditions, and increasing prices have created obstacles in constructing new generating units and transmission networks.So more efficient usage of the present transmission networks is demanded.This can be achieved by the incorporation of flexible alternating current transmission system (FACTS) devices, such as thyristor-controlled series capacitors (TCSCs) within the power systems.Detailed explanations of these devices were provided in [16] to[18]; in simple terms, FACTS devices readjust the power in the lines and bus voltages, and hence, enhance the usage of the present transmission networks.

    In this paper, the salp swarm algorithm (SSA) proposed by Mirjaliliet al.[19]is employed to resolve the OPF problem in power systems by incorporating TCSCs.The standard IEEE-30 bus test system is adopted and the OPF problem is resolved in terms of different objectives, including the transmission line loss and severity factor minimization, under the consideration of constraints which include the power balances, real and reactive power generation, voltages, transmission lines, and physical limits of TCSCs.The optimal location of TCSCs is considered according to that recorded in the existing literature.The obtained results are compared with those of other metaheuristic algorithms to demonstrate the effectiveness and robustness of SSA in terms of resolving the OPF problem.

    2.Steady-State Modeling of TCSC

    In TCSCs, a controllable reactance is inserted in series with the considered transmission line.Fig.1shows a model of a transmission line with one TCSC placed between busmand busn.Under steadystate conditions, TCSC can be represented by a constant reactance, whereas in the power flow equations, the controllable reactanceis directly considered as a control variable.

    Fig.1.TCSC between bus m and bus n.

    The modified real power (P) and reactive power (Q) flows from busmand busnare as follows:

    whereVmandVnare the voltages at busmand busn, respectively;δm,nis the phase angle between busmand busn;can be expressed as

    3.Problem Formulation

    OPF helps in optimizing the steady-state performance of power systems in terms of specific objective functions with the equality, inequality, and device constraints.Mathematically, the OPF problem can be expressed as follows:

    subject to

    whereFp(x,y) is the various optimal power flow functions, such as the transmission line loss and severity factor;randsare the equality and inequality constraints, respectively;xandyare the vectors of the dependent and control variables of the system, respectively;nis the total number of objective functions.

    The state vector can be represented as follows:

    meanwhile, the control vector can be represented by

    wherePg1is the real power of generator 1,Pg2is the real power of bus 2,Vl1is the voltage of load bus 1,Vg1is the generator voltage of the slack bus,Qg1is the reactive power of generator 1,QSH1is the reactive power generated by shunt capacitor 1,Sl1is the apparent power of generator 1, andT1is the tapping setting of transformer.And NPQ is the number of load buses, NGB is the number of generator bus, NTL is the number of transmission lines, NC is the number of shunt compensators, and NT is the number of off-nominal tap transformers.

    3.1.Objective Functions

    In this paper, two single objective functions are minimized, which are mathematically expressed below:

    i) Minimization of the transmission line loss.

    wherePLOSSmis the real power loss in themth transmission line.

    ii) Severity function

    3.2.Constraints

    The equality and inequality constraints can be expressed as follows:

    i) Equality constraints

    wherePgmis the real power of busm,PDis the real power demand, andPLis the real power loss;Qgmis the reactive power of busm,QDis the reactive power demand, andQLis the reactive power loss.

    ii) Inequality constraints

    ? Generators constraints

    whereVgmis the voltage of generatormandQgmis the reactive power of generatorm.

    ? Constraints for voltages at buses and discrete transformer tap settings

    whereVmis the voltage of busmandTmis the tapping setting of the transformer of busm.

    ? Real power generation limits

    wherePgmis the real power generated by generatorm.

    ? Constraints for the reactive power supply from the capacitor banks:

    whereQCmis the reactive power supply from capacitor bankm.

    ? Constraints for transmission line loads:

    whereSlmis the line loading of transmission linem.

    iii) TCSC constraints

    4.SSA

    Salps belong to the Salpidae family and have a similar structure and movement style as a jellyfish, i.e., by contracting, water is pumped through the body to move them forward[19].The salps shown inFig.2(a) form swarms known as “salp chains” (Fig.2(b)) which allow them to change the coordinates for foraging.Basically, the salp swarm optimization algorithm is inspired by the navigation and foraging behaviors of salps in their natural habitats.

    Mathematically, salp chains can be modeled by initially dividing the population into two groups, a leader and followers, where a leader is a salp that presents at the creation of the chain and leads the movement, which is then followed by the followers.Heremstores the position of the salps in two dimensions andFis the food source targeted by the salps.The position of the leader can be updated using the following equations:

    Fig.2.Salp and salp chain: (a) single salp and (b) salp chain.

    where,Fj,lj, andujare the positions of the leader, the food source, and the lower and upper bounds in thejth dimension, respectively, whereasd1,d2, andd3are random numbers, andd1maintains a balance between exploration and exploitation, which can be defined as follows:

    wheretandTrepresent the current and maximum numbers of iterations, respectively.Thereafter, the position of the followers can be updated using the following equation:

    wherei≥2 andis the position of theith follower in thejth dimension.By using (10),(11), and (13), salp chains can be simulated.The pseudo code of SSA is shown asTable 1.The flowchart of SSA is shown inFig.3.

    Table 1: SSA

    5.Results and Analysis

    5.1.lllustrative Example 1

    The proposed SSA is aimed at resolving the OPF problem.To test the effectiveness of the proposed algorithm within a power system, it is evaluated based on the standard IEEE-30 bus system.Generally, the IEEE-30 bus system consists of six generators placed on buses 1,2, 5, 8, 11, and 13; four off-nominal tap ratio transformers placed between buses (6-9), (6-10), (4-12), and(27-28); and two shunt capacitors placed at buses 10 and 24.For each objective, the proposed algorithm performed up to 100 iterations.The system data, including bus data, line data, and generator data, are adopted from [20].

    Fig.3.Flowchart of SSA.

    The transmission line is validated using the SSA method, and the results are compared with those using the existing methods, such as the artificial bee colony algorithm (ABC).The OPF results for the minimization of the transmission line loss is tabulated inTable 2.It is evident that the transmission line loss are minimized using the SSA method in comparison with the existing methods.The convergence characteristics of the proposed method are also compared with those of the existing methods, as shown inFig.4.It can be observed that the proposed method achieves a better value for the objective functions in question, with an effective convergence obtained with fewer iterations.

    5.2.lncorporation of TCSC

    More analysis is then performed for the transmission line loss and the severity factor with the incorporation of TCSC.In accordance with the existing literature, TCSC was placed between buses (3-4).The results obtained for the considered objectives are presented inTable 3.It is clear that without any FACTS device, the transmission line loss is 2.962 MW and the initial severity factor is 1.436, which are minimized to 2.916 MW and 1.344, respectively, with the incorporation of TCSC.Thus, it can be concluded that the performance of the power system is improved with the incorporation of TCSC.The convergence curves for both the objective functions are shown inFigs.5and6.The effectiveness and improved performance of the proposed algorithm with the incorporation of TCSC can be clearly observed.

    Table 2: OPF results for the minimization of the transmission line loss in the IEEE-30 bus system

    Table 3: OPF results for the transmission line loss and severity factor with and without TCSC

    Fig.4.Convergence curve for transmission line loss.

    Fig.5.Convergence curve for transmission line loss with and without TCSC.

    Fig.6.Convergence curve for severity factor with and without TCSC.

    6.Conclusion

    This paper demonstrated the application of SSA for resolving the OPF problem of power systems with some equality and inequality constraints.It was shown that SSA effectively optimized the transmission line loss and severity factor compared with the existing algorithms and that it also maintained an excellent balance between exploration and exploitation.Following the validation of SSA,TCSC was incorporated within the power system.And it was observed that the considered objective functions were further minimized, which demonstrates that the implementation of SSA with the incorporation of TCSC will provide a better solution for the OPF problem.In the future, multi-objective SSA (MSSA) could be used to resolve the multi-objective problems in power systems.

    Disclosures

    The authors declare no conflicts of interest.

    国产精品 国内视频| 两个人免费观看高清视频| 一区在线观看完整版| 午夜老司机福利片| 在线av久久热| 大码成人一级视频| 久久久久精品国产欧美久久久 | 亚洲精品国产一区二区精华液| 人人妻人人澡人人看| 免费观看a级毛片全部| 一区二区av电影网| 99热国产这里只有精品6| 热99久久久久精品小说推荐| 99精国产麻豆久久婷婷| 午夜福利在线免费观看网站| 电影成人av| 久久久精品国产亚洲av高清涩受| 一级毛片电影观看| 日本av手机在线免费观看| 少妇猛男粗大的猛烈进出视频| 高清欧美精品videossex| 9热在线视频观看99| 在线观看www视频免费| 免费在线观看影片大全网站| 老汉色∧v一级毛片| 丁香六月天网| 精品一品国产午夜福利视频| 人妻 亚洲 视频| 99国产精品免费福利视频| 国产精品一区二区在线观看99| 肉色欧美久久久久久久蜜桃| 丝袜人妻中文字幕| 精品国产一区二区久久| 夜夜夜夜夜久久久久| svipshipincom国产片| 另类亚洲欧美激情| 一区二区三区精品91| 婷婷成人精品国产| 午夜福利视频精品| 国产成人av教育| 日本五十路高清| 欧美亚洲日本最大视频资源| 香蕉国产在线看| 叶爱在线成人免费视频播放| 久久国产精品男人的天堂亚洲| 在线 av 中文字幕| 又黄又粗又硬又大视频| 亚洲专区国产一区二区| 亚洲av欧美aⅴ国产| 啦啦啦 在线观看视频| 亚洲精品粉嫩美女一区| 亚洲九九香蕉| 亚洲av日韩在线播放| 三级毛片av免费| 久久精品熟女亚洲av麻豆精品| 久久久国产欧美日韩av| 国产野战对白在线观看| 亚洲久久久国产精品| 国产精品久久久人人做人人爽| 黄片小视频在线播放| 亚洲专区国产一区二区| 久久综合国产亚洲精品| 午夜老司机福利片| 中国美女看黄片| 美女大奶头黄色视频| a级毛片在线看网站| 黄片大片在线免费观看| 国产精品影院久久| 亚洲成人免费av在线播放| 精品亚洲成a人片在线观看| 国产日韩欧美视频二区| 十分钟在线观看高清视频www| 99精品久久久久人妻精品| 别揉我奶头~嗯~啊~动态视频 | 在线亚洲精品国产二区图片欧美| tube8黄色片| 亚洲精品美女久久久久99蜜臀| 日韩三级视频一区二区三区| 天堂中文最新版在线下载| 后天国语完整版免费观看| 亚洲欧洲日产国产| 最新在线观看一区二区三区| 中文字幕av电影在线播放| a级毛片黄视频| 大片免费播放器 马上看| 日韩大片免费观看网站| 我的亚洲天堂| 国产老妇伦熟女老妇高清| 涩涩av久久男人的天堂| 亚洲精品美女久久av网站| 久久久久久久久久久久大奶| 久久久久久亚洲精品国产蜜桃av| 脱女人内裤的视频| 亚洲精品在线美女| 亚洲精品久久成人aⅴ小说| 在线天堂中文资源库| 亚洲国产欧美一区二区综合| 亚洲欧美成人综合另类久久久| 黄色怎么调成土黄色| 777久久人妻少妇嫩草av网站| 一个人免费看片子| 亚洲精品美女久久av网站| 亚洲一码二码三码区别大吗| 亚洲天堂av无毛| 爱豆传媒免费全集在线观看| 婷婷丁香在线五月| 成人国语在线视频| 美女扒开内裤让男人捅视频| 中文字幕高清在线视频| 下体分泌物呈黄色| av在线app专区| 91精品三级在线观看| 国产精品 国内视频| 菩萨蛮人人尽说江南好唐韦庄| 精品一区二区三区四区五区乱码| 99香蕉大伊视频| 最新在线观看一区二区三区| 高清av免费在线| 国产人伦9x9x在线观看| av国产精品久久久久影院| 丰满迷人的少妇在线观看| 亚洲欧美成人综合另类久久久| 国产成人欧美在线观看 | 纵有疾风起免费观看全集完整版| 嫁个100分男人电影在线观看| 最近最新中文字幕大全免费视频| 精品国产乱码久久久久久男人| 免费高清在线观看日韩| 精品国产一区二区三区久久久樱花| 女人精品久久久久毛片| 久久久精品国产亚洲av高清涩受| 美女主播在线视频| 老司机午夜福利在线观看视频 | 亚洲男人天堂网一区| 精品人妻熟女毛片av久久网站| 女人久久www免费人成看片| 亚洲人成77777在线视频| 亚洲av日韩精品久久久久久密| 在线天堂中文资源库| 欧美日本中文国产一区发布| 国产欧美亚洲国产| 久久精品国产亚洲av香蕉五月 | 大片电影免费在线观看免费| 亚洲色图综合在线观看| 黄色 视频免费看| 精品国产一区二区三区四区第35| 欧美日韩亚洲综合一区二区三区_| 男人操女人黄网站| 欧美少妇被猛烈插入视频| 91九色精品人成在线观看| 妹子高潮喷水视频| 亚洲精品一二三| 岛国毛片在线播放| 精品免费久久久久久久清纯 | 久久精品亚洲熟妇少妇任你| av天堂在线播放| 在线精品无人区一区二区三| 亚洲精品中文字幕一二三四区 | 黄色视频在线播放观看不卡| 国产成人系列免费观看| 国产欧美亚洲国产| bbb黄色大片| 天堂8中文在线网| 美女国产高潮福利片在线看| videos熟女内射| 亚洲中文av在线| 欧美日韩视频精品一区| 亚洲国产中文字幕在线视频| 国产成人av激情在线播放| 夜夜骑夜夜射夜夜干| 三上悠亚av全集在线观看| 国产av一区二区精品久久| 丝袜美腿诱惑在线| 国产成人影院久久av| 美女主播在线视频| 亚洲伊人久久精品综合| 制服人妻中文乱码| 真人做人爱边吃奶动态| 亚洲熟女毛片儿| 热re99久久精品国产66热6| 精品亚洲乱码少妇综合久久| 精品一品国产午夜福利视频| 久久久水蜜桃国产精品网| 国产福利在线免费观看视频| 十分钟在线观看高清视频www| 亚洲avbb在线观看| 啦啦啦中文免费视频观看日本| 午夜福利影视在线免费观看| 777久久人妻少妇嫩草av网站| 午夜福利视频在线观看免费| www.av在线官网国产| 国内毛片毛片毛片毛片毛片| 如日韩欧美国产精品一区二区三区| 午夜激情久久久久久久| 欧美久久黑人一区二区| 亚洲成人手机| 亚洲成人手机| 丝袜在线中文字幕| 国产在线观看jvid| 国产三级黄色录像| 国内毛片毛片毛片毛片毛片| 人人妻人人爽人人添夜夜欢视频| 久久精品人人爽人人爽视色| 一级片免费观看大全| 黄色片一级片一级黄色片| 青春草亚洲视频在线观看| 麻豆乱淫一区二区| 久久亚洲精品不卡| 国产精品自产拍在线观看55亚洲 | 国产区一区二久久| 美女扒开内裤让男人捅视频| svipshipincom国产片| 无限看片的www在线观看| 动漫黄色视频在线观看| 亚洲成人国产一区在线观看| 色精品久久人妻99蜜桃| 成人国产av品久久久| 久久这里只有精品19| 人人妻人人添人人爽欧美一区卜| 韩国高清视频一区二区三区| 久久久精品免费免费高清| 中亚洲国语对白在线视频| 久久久国产一区二区| 美女国产高潮福利片在线看| 精品国产一区二区三区四区第35| 国产福利在线免费观看视频| 熟女少妇亚洲综合色aaa.| 欧美精品亚洲一区二区| 国产精品久久久人人做人人爽| 99热国产这里只有精品6| 国产精品一区二区精品视频观看| 大陆偷拍与自拍| 中文字幕最新亚洲高清| 少妇精品久久久久久久| 亚洲性夜色夜夜综合| 夫妻午夜视频| 99国产极品粉嫩在线观看| 最新的欧美精品一区二区| 亚洲av片天天在线观看| 日韩三级视频一区二区三区| 欧美久久黑人一区二区| 日韩欧美一区视频在线观看| av又黄又爽大尺度在线免费看| 国产精品久久久久久精品古装| 久久99一区二区三区| 美女福利国产在线| 欧美日本中文国产一区发布| 久久国产精品人妻蜜桃| 精品亚洲成a人片在线观看| 免费高清在线观看视频在线观看| a级毛片黄视频| 91成年电影在线观看| 久久久久精品国产欧美久久久 | 如日韩欧美国产精品一区二区三区| 女性被躁到高潮视频| 久久久国产精品麻豆| 男女高潮啪啪啪动态图| 天天影视国产精品| 性少妇av在线| 久久久久久免费高清国产稀缺| 国产福利在线免费观看视频| 高清欧美精品videossex| 中文字幕人妻丝袜一区二区| 丰满人妻熟妇乱又伦精品不卡| 久久人人97超碰香蕉20202| 欧美在线一区亚洲| 免费日韩欧美在线观看| 精品国产乱码久久久久久男人| 精品少妇久久久久久888优播| 男女无遮挡免费网站观看| 老司机午夜十八禁免费视频| 18禁观看日本| 99香蕉大伊视频| 秋霞在线观看毛片| 永久免费av网站大全| 精品高清国产在线一区| 亚洲国产精品999| 爱豆传媒免费全集在线观看| 丝瓜视频免费看黄片| 91国产中文字幕| 在线 av 中文字幕| 亚洲人成77777在线视频| 午夜免费鲁丝| 成年动漫av网址| 三级毛片av免费| 麻豆乱淫一区二区| 国产黄色免费在线视频| 下体分泌物呈黄色| 国产成人精品无人区| 大片免费播放器 马上看| 亚洲第一青青草原| 男女国产视频网站| 国产精品久久久人人做人人爽| 女人精品久久久久毛片| 精品人妻一区二区三区麻豆| 18禁黄网站禁片午夜丰满| 妹子高潮喷水视频| 国产色视频综合| 狂野欧美激情性bbbbbb| 国产有黄有色有爽视频| 99九九在线精品视频| 亚洲成av片中文字幕在线观看| 久久久精品94久久精品| 在线观看免费视频网站a站| 免费不卡黄色视频| 亚洲av成人不卡在线观看播放网 | av在线app专区| 精品国产乱码久久久久久小说| 动漫黄色视频在线观看| 亚洲激情五月婷婷啪啪| 欧美激情久久久久久爽电影 | 精品久久久久久电影网| 亚洲专区中文字幕在线| 午夜精品久久久久久毛片777| 97精品久久久久久久久久精品| 久久人妻熟女aⅴ| 久久 成人 亚洲| 精品乱码久久久久久99久播| 国产人伦9x9x在线观看| 18禁国产床啪视频网站| 国产高清videossex| 国产xxxxx性猛交| 日韩大片免费观看网站| 无遮挡黄片免费观看| 人人妻人人澡人人看| 不卡一级毛片| 大香蕉久久成人网| 超碰97精品在线观看| 午夜福利在线观看吧| 欧美人与性动交α欧美软件| 亚洲欧美精品自产自拍| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲专区字幕在线| 无遮挡黄片免费观看| 深夜精品福利| 国产精品av久久久久免费| 黑人猛操日本美女一级片| 精品人妻一区二区三区麻豆| 久久精品亚洲av国产电影网| 又黄又粗又硬又大视频| www.999成人在线观看| 亚洲av男天堂| 9热在线视频观看99| 一本一本久久a久久精品综合妖精| 日本a在线网址| 伦理电影免费视频| 亚洲全国av大片| 香蕉丝袜av| 男女高潮啪啪啪动态图| 老熟妇仑乱视频hdxx| 国产一区二区激情短视频 | 激情视频va一区二区三区| 在线精品无人区一区二区三| 中文字幕色久视频| 国产精品一二三区在线看| 在线天堂中文资源库| 亚洲国产欧美在线一区| 亚洲成人免费电影在线观看| 91成年电影在线观看| 久久久精品94久久精品| 成年av动漫网址| 国产福利在线免费观看视频| 老司机在亚洲福利影院| 伊人亚洲综合成人网| 岛国在线观看网站| 国产成人精品无人区| 成年人午夜在线观看视频| 69av精品久久久久久 | 国产成人系列免费观看| 欧美另类亚洲清纯唯美| 亚洲专区中文字幕在线| 国产伦人伦偷精品视频| 亚洲情色 制服丝袜| 欧美精品高潮呻吟av久久| 男人操女人黄网站| 老熟妇乱子伦视频在线观看 | 免费不卡黄色视频| 亚洲精品国产区一区二| 成年美女黄网站色视频大全免费| 黄色怎么调成土黄色| 韩国精品一区二区三区| 亚洲人成77777在线视频| 成人国产av品久久久| 亚洲色图综合在线观看| 另类精品久久| 色94色欧美一区二区| 国产区一区二久久| 色婷婷久久久亚洲欧美| 欧美久久黑人一区二区| 99国产极品粉嫩在线观看| 1024视频免费在线观看| 国产97色在线日韩免费| 精品国产国语对白av| 欧美变态另类bdsm刘玥| 制服诱惑二区| 色视频在线一区二区三区| 99久久人妻综合| 国产熟女午夜一区二区三区| 亚洲欧美精品综合一区二区三区| 午夜福利在线免费观看网站| 亚洲国产精品一区三区| 欧美97在线视频| 成人国产av品久久久| 亚洲精品成人av观看孕妇| 99国产精品免费福利视频| 最新的欧美精品一区二区| 免费一级毛片在线播放高清视频 | 国产成人啪精品午夜网站| 久久性视频一级片| 欧美日韩国产mv在线观看视频| 80岁老熟妇乱子伦牲交| 国产精品亚洲av一区麻豆| 国产欧美日韩一区二区三区在线| 中国美女看黄片| 不卡av一区二区三区| av有码第一页| 黑人猛操日本美女一级片| av欧美777| 午夜激情久久久久久久| 国产精品麻豆人妻色哟哟久久| 女人精品久久久久毛片| 精品人妻一区二区三区麻豆| 久久久精品国产亚洲av高清涩受| 欧美日韩亚洲高清精品| 一区二区三区精品91| 一级黄色大片毛片| 欧美精品人与动牲交sv欧美| 午夜91福利影院| 性高湖久久久久久久久免费观看| 9色porny在线观看| 久久av网站| 国产人伦9x9x在线观看| avwww免费| 色婷婷av一区二区三区视频| 亚洲精品第二区| 欧美日韩亚洲综合一区二区三区_| 啦啦啦在线免费观看视频4| 亚洲 国产 在线| 精品国产超薄肉色丝袜足j| 女人久久www免费人成看片| 欧美大码av| 巨乳人妻的诱惑在线观看| av又黄又爽大尺度在线免费看| 一个人免费看片子| 最新在线观看一区二区三区| 国产精品影院久久| 18禁黄网站禁片午夜丰满| 亚洲精品国产av蜜桃| 欧美日韩视频精品一区| 天堂俺去俺来也www色官网| 纵有疾风起免费观看全集完整版| 精品少妇内射三级| 亚洲va日本ⅴa欧美va伊人久久 | 午夜精品国产一区二区电影| 亚洲精品日韩在线中文字幕| 五月天丁香电影| 国产亚洲精品久久久久5区| 免费在线观看日本一区| 免费少妇av软件| 国产成人一区二区三区免费视频网站| 999精品在线视频| 欧美亚洲 丝袜 人妻 在线| 一级a爱视频在线免费观看| 亚洲黑人精品在线| 王馨瑶露胸无遮挡在线观看| 真人做人爱边吃奶动态| 秋霞在线观看毛片| 国产免费福利视频在线观看| 99国产精品99久久久久| 亚洲成av片中文字幕在线观看| 男女国产视频网站| 在线观看人妻少妇| 黄色片一级片一级黄色片| 飞空精品影院首页| 叶爱在线成人免费视频播放| 中文字幕精品免费在线观看视频| 美女脱内裤让男人舔精品视频| 又黄又粗又硬又大视频| 亚洲国产精品一区二区三区在线| 又黄又粗又硬又大视频| 天堂中文最新版在线下载| 超碰成人久久| 男女之事视频高清在线观看| 在线十欧美十亚洲十日本专区| 免费观看人在逋| 脱女人内裤的视频| av有码第一页| 免费一级毛片在线播放高清视频 | 国产视频一区二区在线看| 少妇裸体淫交视频免费看高清 | 搡老乐熟女国产| 男人舔女人的私密视频| 久9热在线精品视频| 少妇粗大呻吟视频| 精品熟女少妇八av免费久了| 每晚都被弄得嗷嗷叫到高潮| 99久久国产精品久久久| 精品亚洲成国产av| 可以免费在线观看a视频的电影网站| 精品一区二区三卡| 欧美另类亚洲清纯唯美| 国产精品久久久人人做人人爽| 国产高清videossex| 亚洲精品一二三| 久久久久久久精品精品| 国产一区二区三区综合在线观看| 久久综合国产亚洲精品| 国产一区二区三区综合在线观看| 精品国内亚洲2022精品成人 | 中文精品一卡2卡3卡4更新| 国产亚洲精品第一综合不卡| 99久久国产精品久久久| 男人操女人黄网站| 黑人操中国人逼视频| 亚洲午夜精品一区,二区,三区| 超色免费av| 亚洲三区欧美一区| 国产欧美日韩一区二区精品| 国产精品久久久久久精品古装| 后天国语完整版免费观看| 在线观看www视频免费| tocl精华| 激情视频va一区二区三区| 亚洲精品久久久久久婷婷小说| a 毛片基地| 嫁个100分男人电影在线观看| 亚洲国产精品成人久久小说| 伊人亚洲综合成人网| 亚洲专区国产一区二区| 日韩大码丰满熟妇| 飞空精品影院首页| 大香蕉久久成人网| 国产成人欧美| 久9热在线精品视频| 十分钟在线观看高清视频www| 亚洲精品国产av蜜桃| 日韩制服骚丝袜av| 久久精品国产a三级三级三级| 欧美日韩视频精品一区| 亚洲熟女毛片儿| 大香蕉久久成人网| 欧美日韩亚洲高清精品| 在线观看免费午夜福利视频| 国产深夜福利视频在线观看| 操美女的视频在线观看| 久久久久久人人人人人| 两性夫妻黄色片| 黄网站色视频无遮挡免费观看| 亚洲熟女精品中文字幕| 99国产极品粉嫩在线观看| 精品欧美一区二区三区在线| 久久亚洲精品不卡| 色视频在线一区二区三区| 日韩熟女老妇一区二区性免费视频| 91九色精品人成在线观看| 国产精品自产拍在线观看55亚洲 | 免费看十八禁软件| 不卡一级毛片| 国产国语露脸激情在线看| 一个人免费看片子| 日本猛色少妇xxxxx猛交久久| 国产一卡二卡三卡精品| 黄色怎么调成土黄色| 美女脱内裤让男人舔精品视频| a 毛片基地| 亚洲av国产av综合av卡| 久久久久久免费高清国产稀缺| 亚洲美女黄色视频免费看| 悠悠久久av| 黄色片一级片一级黄色片| 亚洲 国产 在线| 国产真人三级小视频在线观看| 叶爱在线成人免费视频播放| 99久久99久久久精品蜜桃| 日韩欧美免费精品| 亚洲一区中文字幕在线| 久久性视频一级片| 国产精品一二三区在线看| 操出白浆在线播放| 丝瓜视频免费看黄片| 亚洲免费av在线视频| 欧美黑人精品巨大| 精品少妇久久久久久888优播| 精品国产一区二区三区久久久樱花| 老司机影院成人| 亚洲精品久久久久久婷婷小说| 999久久久精品免费观看国产| 美女主播在线视频| 波多野结衣av一区二区av| 亚洲精品国产色婷婷电影| 在线天堂中文资源库| 国产免费一区二区三区四区乱码| 国产有黄有色有爽视频| 色老头精品视频在线观看| a在线观看视频网站| 动漫黄色视频在线观看| 午夜福利免费观看在线| 十八禁人妻一区二区| 亚洲五月色婷婷综合| 日本av免费视频播放| 亚洲av成人不卡在线观看播放网 | 女人爽到高潮嗷嗷叫在线视频| 最近最新免费中文字幕在线| 纯流量卡能插随身wifi吗| 亚洲av男天堂| 国产av一区二区精品久久| 啦啦啦视频在线资源免费观看| 亚洲国产精品一区二区三区在线| 少妇 在线观看| 国产成人一区二区三区免费视频网站| 巨乳人妻的诱惑在线观看| 黑人欧美特级aaaaaa片| 黄色视频不卡| 亚洲欧美清纯卡通| 亚洲一码二码三码区别大吗|