王平美,何玫瑩,賈新利,肖沛文,羅健輝,江波
樹莓形SiO2–TiO2納米粒子的制備及其在光學(xué)涂層中的應(yīng)用
王平美1,2,何玫瑩3,賈新利3,肖沛文1,2,羅健輝1,2,江波3
(1.中國石油勘探開發(fā)研究院,北京 100083;2.中國石油天然氣集團有限公司 納米化學(xué)重點實驗室,北京 100083;3.四川大學(xué) 化學(xué)學(xué)院 綠色化學(xué)與技術(shù)教育部重點實驗室,成都 610064)
提高TiO2納米粒子在復(fù)合光學(xué)薄膜中的分散性及光催化自清潔效率。以通過St?ber法制備的粒徑為70、140 nm的SiO2粒子與酸催化法制備的粒徑為5 nm的TiO2粒子為原料,分別使用硅烷偶聯(lián)劑3–氨丙基三乙氧基硅烷(APTES,或KH550)與γ–縮水甘油醚氧丙基三乙氧基硅烷(GLYMO,或KH560)對2種納米粒子進行表面改性。通過2種粒子表面的化學(xué)基團之間的化學(xué)鍵,將2種粒子進行偶聯(lián),形成了小粒子包覆大粒子的樹莓形結(jié)構(gòu),并利用溶膠–凝膠法制備了光學(xué)涂層,通過紫外–可見分光光度計、紅外光譜儀、激光粒度儀等多種表征設(shè)備對制備的復(fù)合納米粒子及構(gòu)筑的薄膜的結(jié)構(gòu)、形貌和性能進行了分析。粒徑較小的TiO2納米粒子通過表面基團的反應(yīng)均勻地包覆在粒徑較大的TiO2納米粒子表面形成樹莓形的復(fù)合結(jié)構(gòu),構(gòu)筑的薄膜具有較高的透光率(>90%),較好地保留了玻璃基底的透過率,在紫外輻照條件下可在120 min內(nèi)完全降解有機污染物,具有高效的光催化自清潔功能。水接觸角測試表明,膜層表面具有較高的親水性,其接觸角最低可達2.68°,因此具有較好的防霧性能。此外,膜層的透過率在耐摩擦試驗中表現(xiàn)出較高的穩(wěn)定性,摩擦測試前后透過率變化在1.0%以內(nèi)。通過表面基團偶聯(lián)的方法成功制備了樹莓形復(fù)合納米粒子,以該粒子構(gòu)筑的涂層材料兼具透光性、高效光催化自清潔性以及防霧性能,并且具有良好的機械強度。
樹莓形納米粒子;St?ber法;溶膠–凝膠法;光學(xué)薄膜;自清潔性能;機械穩(wěn)定性
為了解決以上問題,筆者設(shè)計了一種硅鈦復(fù)合粒子的制備方法:以通過St?ber法[20]制備的SiO2納米溶膠(粒徑約為70、140 nm)和酸催化法制備的TiO2納米溶膠(粒徑約為5 nm)為原料,通過表面接枝改性的方法,將反應(yīng)活性基團引入納米粒子表面,異種納米粒子之間發(fā)生反應(yīng)形成化學(xué)鍵,從而偶聯(lián)形成小球均勻分布在大球表面的“樹莓狀”結(jié)構(gòu),SiO2粒子作為內(nèi)核起到填充和支撐的作用,既降低了體系的折射率,同時也提高了TiO2粒子的分散性,使TiO2粒子在光催化過程中具有更大的比表面積,提高了光催化效率。相較于已有的關(guān)于“樹莓形”納米粒子的研究[21-24],本文提出的制備路線更加簡便,條件更加溫和,制備過程不涉及高溫煅燒等操作,避免了對光學(xué)基底的損傷。由于制備出的復(fù)合粒子具有較小的粒徑,因此也更加適用于構(gòu)筑透明的表面涂層[25]。同時本文也對樹莓形硅鈦復(fù)合粒子構(gòu)筑的涂層進行了系列性能測試,證明了該涂層具有較好的透光性、耐摩擦性、光催化自清潔性以及防霧性。
采用的化學(xué)試劑有:正硅酸乙酯(TEOS),美國Acros公司;鈦酸四丁酯(TBOT),天津科密歐化學(xué)試劑公司;3–氨丙基三乙氧基硅烷(APTES,或KH550),美國Alfa–Aesar公司;六甲基二硅氮雜烷(HMDS)、γ–縮水甘油醚氧丙基三甲氧基硅烷(GLYMO,或KH560)、乙醇(使用前進行二次蒸餾處理)、氨水(NH3?H2O,質(zhì)量分數(shù)為25.0%~28.0%)、鹽酸(HCl,質(zhì)量分數(shù)為36.0%~38.0%),成都科龍化工試劑公司;超純水(電阻率為18.25 MΩ?cm),自制。
1)SiO2納米粒子的制備。SiO2溶膠采用TEOS作為前驅(qū)體,氨水作為催化劑,在乙醇體系中通過水解縮合反應(yīng)制備得到。將TEOS、EtOH、H2O、NH3?H2O依次加入到反應(yīng)容器中,各反應(yīng)物的物質(zhì)的量為(TEOS)∶(H2O)∶(EtOH)∶(NH3)=1∶3.25∶37.6∶,通過改變值來調(diào)控納米粒子的粒徑。在30 ℃下攪拌反應(yīng)2 h,反應(yīng)結(jié)束后,將溶膠置于恒溫水浴槽中25 ℃下陳化7 d。陳化結(jié)束后,通過110 ℃回流24 h對溶膠進行除氨。根據(jù)前驅(qū)體中Si元素的含量可計算得到最終制備的納米溶膠中SiO2的質(zhì)量分數(shù)約為4.2%。
2)TiO2納米粒子的制備。TiO2納米溶膠以鈦酸正丁酯(TBOT)作為前驅(qū)體,鹽酸作為催化劑,乙醇作為分散介質(zhì),通過水解縮合過程得到。首先,向反應(yīng)容器中加入EtOH、H2O以及HCl,然后在劇烈攪拌下向上述混合物中逐滴加入前驅(qū)體TBOT,各反應(yīng)物的物質(zhì)的量比為(TBOT)∶(H2O)∶(HCl)∶(EtOH)=1∶3.6∶50∶0.22。為了避免水解速度過快而導(dǎo)致出現(xiàn)凝膠化或沉淀現(xiàn)象,將滴加速度控制在1滴/s,滴加完畢后在30 ℃下持續(xù)攪拌2 h,反應(yīng)結(jié)束后,將溶膠置于恒溫生化培養(yǎng)箱中25 ℃陳化7 d,以保證前驅(qū)體充分水解縮合。以前驅(qū)體中Ti元素的含量可計算得到最終制備的納米溶膠中TiO2的質(zhì)量分數(shù)約為3.0%。
3)納米粒子的表面改性。取SiO2溶膠用無水乙醇稀釋至sio2質(zhì)量分數(shù)為1.05%,然后加入SiO2固含量為50%的HMDS對納米粒子進行疏水改性以提高納米粒子的單分散性,防止凝膠或沉淀的產(chǎn)生。取TiO2溶膠用無水乙醇稀釋至tio2質(zhì)量分數(shù)為1.0%。使用含有環(huán)氧基團的硅烷偶聯(lián)劑GLYMO對TiO2納米粒子進行表面改性,加入量為TiO2固含量的75%,30 ℃下反應(yīng)2 h后,置于恒溫生化培養(yǎng)箱中25 ℃下陳化3 d。
4)樹莓形復(fù)合納米粒子的制備。取改性后的SiO2溶膠60 g,加入30 μL的APTES,30 ℃下反應(yīng)6 h,然后加入60 g TiO2溶膠,繼續(xù)攪拌反應(yīng)2 h,置于恒溫生化培養(yǎng)箱中25 ℃下陳化3 d。
以K9玻璃片作為膜層的基底,先將K9玻璃基片浸泡于去離子水中以洗去表面附著的灰塵,隨后用無水乙醇浸泡,用無塵布輕輕擦干后備用。若K9基片之前已使用過,需使用質(zhì)量分數(shù)為0.3%的HF溶液進行清洗,刻蝕掉基片表面殘留的膜層材料。使用HF溶液清洗的時間不宜過長,以免對基片的表面性能造成影響。將基片浸泡在HF溶液中數(shù)秒后,取出并立即用去離子水沖洗,再用無水乙醇浸泡,最后用無塵布輕輕擦拭。鍍膜過程在專用的萬級潔凈間里完成,鍍膜環(huán)境需保持(25±2)℃且相對濕度為(30± 5)%。采用浸漬–提拉法以180 mm/min的提拉速度進行膜層的鍍制。制備完成的膜層需要在潔凈間放置30 min左右,以保證溶劑充分揮發(fā),膜層結(jié)構(gòu)基本穩(wěn)定。
采用Malvern Zetasizer Nano ZS90激光納米粒度電位儀,對各納米粒子分散體系的粒徑大小與分布情況進行分析,測試溫度設(shè)定為25 ℃,每個樣品平行測定3次,每次測試掃描11次。采用PerkinElmer Lambda750紫外–可見分光光度儀對各涂層的光學(xué)透過率進行測試,測量時掃描間隔設(shè)定為1 nm。采用Bruker Tensor 27紅外光譜儀對涂覆硬脂酸的復(fù)合納米粒子涂層的吸收光譜進行表征,通過吸收峰的強度隨紫外輻照時間變化的情況來評價涂層的光催化自清潔性能。采用Thermofisher透射電鏡(TEM)及元素分析(EDX)對納米顆粒的微觀形貌及元素組成進行分析,測試前使用無水乙醇將待測樣品稀釋至原濃度的1/100,利用超聲波清洗儀(中國,SCIENTC,SB25–12DT)進行超聲分散,之后將充分分散的樣品少量滴于覆蓋碳膜的支撐銅網(wǎng)(230目,北京中鏡科儀技術(shù)有限公司),室溫下干燥備用,測試過程中儀器的工作電壓為120 kV。采用常德儀器公司制造的靜滴接觸角測量儀對各涂層的靜態(tài)水接觸角進行測試,每次測試的液滴體積為5 μL。采用Bruker–D2 X–多晶衍射儀(XRD)來確定制備的TiO2溶膠顆粒的晶型情況,樣品為研磨細的干燥溶膠粉末,其中X射線源為Cu靶Kα射線,掃描范圍為10°~90°,速率為5 (°)/min。
通過St?ber法制備的納米SiO2粒子的粒徑為(76±1)(=0.33)和(142±3) nm(=0.55)并分別命名為S70和S140,其分別對應(yīng)圖1a中黑色和綠色曲線。酸催化制備的納米TiO2粒子的粒徑為(5.2± 1) nm(命名為ACT,圖1a中紅色曲線),S70與ACT偶聯(lián)后粒徑由原來的(76±1) nm增加至(120± 3) nm(命名為R70),S140與ACT偶聯(lián)后粒徑由原來的(142±3) nm增加至(170±2) nm(命名為R140),發(fā)生的化學(xué)反應(yīng)過程如圖2所示。試驗中制備的SiO2粒子和TiO2粒子表面均有大量的羥基,加入表面改性劑后,新的基團不同程度地取代了原有的羥基。與GLYMO反應(yīng)后的TiO2粒子表面被引入環(huán)氧基團,在陳化過程中,環(huán)氧基團部分水解開環(huán),1個環(huán)氧基團可生成2個羥基,未開環(huán)的環(huán)氧基團與SiO2粒子表面的氨基發(fā)生偶聯(lián)反應(yīng),將小粒徑的TiO2粒子固定在大粒徑的SiO2粒子表面。
偶聯(lián)反應(yīng)前后的納米粒子均為單分散狀態(tài),即在圖1a中的分散曲線為單峰且對應(yīng)的多分散指數(shù)PDI<0.20。為了證明改性后的粒子表面存在的反應(yīng)活性基團是試驗組偶聯(lián)成功的重要原因,試驗中設(shè)置了對照組(M70和M140),即使用未進行表面改性的原始溶膠粒子與試驗組采用相同的比例直接混合。粒徑測試結(jié)果顯示,直接混合后的納米溶膠粒徑相較于混合前的SiO2粒徑有一定的變化,如圖1b所示,最終得到的平均粒徑均小于與之對應(yīng)的試驗組。以上試驗現(xiàn)象說明了向納米粒子表面引入反應(yīng)活性基團并將TiO2粒子和SiO2粒子混合后,粒子之間會發(fā)生定向的偶聯(lián)反應(yīng)而并非無序的團聚,從而使得納米粒子的粒徑在增加的同時保持體系的單分散性。
圖1 樣品ACT、S70、S140、R70和R140的粒徑分布曲線(a);偶聯(lián)過程前后的粒徑變化以及與對照組粒徑的對比情況(b)
圖2 TiO2 和SiO2納米粒子的表面改性和偶聯(lián)過程以及偶聯(lián)過程中粒子表面之間發(fā)生的主要化學(xué)反應(yīng)示意圖
從透射電鏡的圖像上很難觀察到單分散的TiO2納米粒子,這是由于酸催化的TiO2納米粒子的粒徑較小,導(dǎo)致比表面積較大,同時其表面具有豐富的羥基,這2個原因共同導(dǎo)致了TiO2納米粒子的表面能較高,在溶劑揮發(fā)過程中極易聚集成團,如圖3a所示。R70中(圖3b)并未找到類似于圖3a中的TiO2納米粒子團聚體,直觀地說明了以大粒徑SiO2納米粒子為核制備樹莓形結(jié)構(gòu)可以提高TiO2納米粒子的分散性。將圖3b中的粒子進行放大,得到單個復(fù)合納米粒子的圖像(如圖3d所示),觀察其形態(tài)結(jié)構(gòu)并做EDX分析(如圖3c),在粒子上同時檢出了硅、鈦2種元素,說明SiO2和TiO2納米粒子偶聯(lián)在了一起,形成了單分散的球狀結(jié)構(gòu);結(jié)合圖1中偶聯(lián)后體系粒徑的增大,證明了生成的粒子結(jié)構(gòu)是TiO2小粒子包裹SiO2大粒子的樹莓形結(jié)構(gòu)。
膜層的光學(xué)透過性可以通過其在某一波段的透過率曲線來評估。圖4a為K9玻璃基片與各膜層在400~800 nm波段的透過率曲線,可以看到,在K9玻璃基底分別鍍制了幾種膜層后,透過率均有一定的下降,這是由于樹莓形納米粒子中的TiO2含量較高,不可避免地損失了一定的透過性。ACT膜層在短波長范圍內(nèi)的透過率降低十分明顯,R70和R140的透過率曲線較為平緩,且R70膜層在400~800 nm波段的平均透過率為90.0%左右,R140的透過性稍差,這一現(xiàn)象可能是由粒子體積過大造成膜層表面發(fā)生了光散射所致。
為了評估膜層的耐摩擦性能,使用的方法是將無塵布包裹在3 kg的砝碼底端,勻速地在膜層表面來回摩擦100次,通過比較摩擦前后膜層的透過率曲線變化來判斷膜層的耐摩擦性能。以上述方法對R70膜層進行操作,得到的摩擦前后透過率曲線對比如圖4b所示,在300~800 nm波段內(nèi)平均透過率下降了0.76%,說明R70膜層具有良好的耐摩擦性能。
圖3 ACT(a)、R70(b、d)的透射電鏡圖像;R70的EDX元素分析譜圖(c)
圖4 K9基片以及R70、R140和ACT膜層在400~800 nm波長內(nèi)的透過率曲線(a);R70膜層摩擦測試前后在300~800 nm波長內(nèi)的透過率曲線(b)
對于膜層材料,除了表面的耐摩擦性能之外,對基底材料的附著能力也是評估其機械穩(wěn)定性能的一個重要指標。這里用膠帶試驗來定性地評估膜層對基底材料的附著能力。如圖5所示,經(jīng)過透明膠帶撕扯后的膜層樣品沒有發(fā)生脫落現(xiàn)象,在日光燈下通過肉眼觀察仍然平滑光潔,說明R70膜層對玻璃基底材料具有較強的附著能力。
綜合以上的測試結(jié)果及分析,可以說明樹莓形硅鈦納米復(fù)合粒子構(gòu)筑的光學(xué)薄膜具有較好的光學(xué)透過性和機械強度。
圖5 對鍍制在載玻片表面的R70膜層進行膠帶試驗
在研究樹莓形SiO2–TiO2納米粒子構(gòu)建的光學(xué)膜層的光催化自清潔性能之前,需要先確定復(fù)合粒子中包含的TiO2納米顆粒的晶型。由圖6可以斷定,通過酸催化反應(yīng)得到的TiO2納米粒子的晶型為無定形。
在探究膜層的光催化自清潔性能時,需要在膜層表面附著一層模擬污染物層。本文采用的模擬污染物為硬脂酸(Stearic acid,SA)。具體的試驗方法[9,15]是:配制50 mmol/L的硬脂酸乙醇溶液,然后利用浸漬–提拉法以180 mm/min的提拉速度將模擬污染物的乙醇溶液鍍至待測膜層表面。待污染物層在空氣中自然干燥后,將其放置在紫外光反應(yīng)器中,反應(yīng)器燈箱中裝備有高壓汞燈(250 W);樣片置于紫外燈管正下方,距離為20 cm;輻照過程中以相同的時間間隔對樣片進行翻轉(zhuǎn),確保兩側(cè)的膜層接受紫外燈直接照射的時間相等。通過檢測膜層表面有機污染物的吸收峰強度隨輻照時間的變化情況,對膜層的光催化降解有機物的性能進行分析。圖7a為鍍有硬脂酸的R70膜層的—CH2吸收峰在紫外光照下的強度變化情況。圖7a中在2 916、2 848 cm?1處的吸收峰分別對應(yīng)于硬脂酸中—CH2—基團的反對稱伸縮和對稱伸縮振動。結(jié)合圖7a和圖7b可以直觀地看到—CH2—吸收峰強度在光照20 min后顯著下降,然后逐漸降低,80 min后—CH2吸收峰完全消失,表明R70膜層可以有效地進行光催化降解有機物。
圖6 ACT溶膠干燥后制備的TiO2粉末的XRD譜圖
圖7 鍍有硬脂酸的R70膜層的—CH2紅外吸收峰在紫外輻照下的變化情況(a);鍍有硬脂酸的R70膜層在2 916 cm?1處—CH2的吸光度比值A(chǔ)/A0隨紫外輻照時間的變化趨勢(b)
已有研究表明,在光催化性能方面無定形的TiO2相較于銳鈦礦型的TiO2不具備優(yōu)勢[26-27],未進行納米結(jié)構(gòu)處理的無定形薄膜的光催化性能較差[28],在長時間的紫外光照射下,無法有效地分解附著在表面的有機污染物。存在于樹莓形結(jié)構(gòu)中的無定形TiO2納米粒子能夠顯著地降解有機污染物,其原因主要有以下3點:(1)通過酸催化制備并經(jīng)過KH560改性且未經(jīng)高溫處理的TiO2納米粒子表面具有豐富的羥基,能夠在光催化反應(yīng)中捕獲由輻照產(chǎn)生的電子和空穴,并在表面產(chǎn)生活性氧基團,空穴與活性氧基團具有很強的氧化能力,可將附著在催化劑表面的有機污染物分解為CO2和H2O等小分子無機物[29-30];(2)樹莓形結(jié)構(gòu)增大了TiO2納米粒子的比表面積[16],增大了其表面與污染物接觸的面積,從而提高了催化效率;(3)樹莓形納米粒子之間由于粒徑較大而存在較高的孔隙率,宏觀上TiO2納米粒子在體系中的堆積更加疏松,使活性反應(yīng)物(空穴與活性氧基團)和降解產(chǎn)物小分子的遷移更加順利,從而加快催化反應(yīng)的速度。
在測試膜層的表面潤濕性試驗中,采用靜態(tài)水接觸角法進行評估。如圖8a—c所示,裸載玻片、R140膜層和R70膜層表面的靜態(tài)水接觸角分別為40.19°、7.98°和2.68°,其中R70膜層表面達到了超親水狀態(tài)(水接觸角小于5°),這是由于樹莓形納米粒子表面分布的TiO2粒子含有豐富的羥基,經(jīng)KH560改性及水解后,羥基含量進一步提高,從而使得其膜層表面具有很強的親水性。
為了測試膜層的防霧性能,將一側(cè)鍍有R70膜層的載玻片放置于盛有90 ℃的熱水的小燒杯上方,其中載玻片裸露的一側(cè)立即產(chǎn)生一層霧氣,而鍍有R70膜層的一側(cè)依舊保持高透過狀態(tài),其下方的物相清晰可見(圖8d)。R70膜層表面具有優(yōu)異的防霧性能主要是由于高溫水蒸氣在上升接觸其表面時并未冷凝為水滴,而是迅速鋪展形成很薄的水膜,光線透過率基本不受影響,從而起到防霧的效果。
圖8 裸載玻片(a)、R140膜層(b)和R70膜層(c)的水接觸角;一側(cè)鍍有R70膜層的載玻片置于盛裝熱水的小燒杯上方(d)
1)本文利用納米粒子表面基團之間的化學(xué)偶聯(lián)反應(yīng),制備出了樹莓形硅鈦復(fù)合納米粒子。在這種特殊結(jié)構(gòu)的硅鈦復(fù)合結(jié)構(gòu)中,大粒徑的SiO2納米粒子起到“支撐作用”,利用粒子表面的化學(xué)反應(yīng),將小粒徑的TiO2粒子均勻地附著在大粒徑的SiO2粒子表面。
2)通過鹽酸催化制備出的TiO2材料的晶型為無定形,在光催化性能上不具備優(yōu)勢,但試驗結(jié)果顯示,當(dāng)其存在于這種特殊的樹莓形結(jié)構(gòu)中時,減少了粒子之間的團聚與堆疊,比表面積增大,使其在無定形狀態(tài)下仍具有較好的光催化降解有機污染物的能力。
3)通過制備的樹莓形SiO2–TiO2復(fù)合納米粒子構(gòu)筑的表面涂層,在經(jīng)過摩擦試驗后,k9玻璃的透光率僅下降0.76%,且通過膠帶測試發(fā)現(xiàn)涂層保存完好,沒有出現(xiàn)脫落,這表明涂層對基底具有較強的附著能力。2種測試結(jié)果共同說明了制備的涂層具有良好的機械穩(wěn)定性。
4)樹莓形SiO2–TiO2復(fù)合納米粒子在K9玻璃基片表面構(gòu)筑的涂層可以在較大限度地保留基片原有的光學(xué)透過性的前提下,為其表面賦予優(yōu)異的光催化自清潔性能、機械穩(wěn)定性能及防霧性能等。
[1] JIANG Lang, NIU Tian-chao, LU Xiu-qiang, et al. Low- Temperature, Bottom-up Synthesis of Graphene via a Radical-Coupling Reaction[J]. Journal of the American Chemical Society, 2013, 135(24): 9050-9054.
[2] LAI Min, MUBEEN S, CHARTUPRAYOON N, et al. Synthesis of Sn Doped CuO Nanotubes from Core-Shell Cu/SnO(2) Nanowires by the Kirkendall Effect[J]. Nano-technology, 2010, 21(29): 295601.
[3] MATSUMOTO Y, ISHIKAWA Y, NISHIDA M, et al. A New Electrochemical Method to Prepare Mesoporous Titanium (IV) Oxide Photocatalyst Fixed on Alumite Substrate[J]. The Journal of Physical Chemistry B, 2000, 104(17): 4204-4209.
[4] BENSOUICI F, SOUIER T, IRATNI A, et al. Effect of Acid Nature in the Starting Solution on Surface and Photocatalytic Properties of TiO2Thin Films[J]. Surface and Coatings Technology, 2014, 251: 170-176.
[5] ANDERSSON M, ?STERLUND L, LJUNGSTR?M S, et al. Preparation of Nanosize Anatase and Rutile TiO2by Hydrothermal Treatment of Microemulsions and Their Activity for Photocatalytic Wet Oxidation of Phenol[J]. The Journal of Physical Chemistry B, 2002, 106(41): 10674-10679.
[6] ROTHSCHILD A, LEVAKOV A, SHAPIRA Y, et al. Surface Photovoltage Spectroscopy Study of Reduced and Oxidized Nanocrystalline TiO2Films[J]. Surface Science, 2003, 532-535: 456-460.
[7] O'REGAN B, GR?TZEL M. A Low-Cost, High-Effi-ciency Solar Cell Based on Dye-Sensitized Colloidal TiO2Films[J]. Nature, 1991, 353(6346): 737-740.
[8] ZHANG Xin-tong, SATO O, TAGUCHI M, et al. Self- Cleaning Particle Coating with Antireflection Properties[J]. Chemistry of Materials, 2005, 17(3): 696-700.
[9] HELSCH G, DEUBENER J. Compatibility of Antireflec-tive Coatings on Glass for Solar Applications with Pho-tocatalytic Properties[J]. Solar Energy, 2012, 86(3): 831- 836.
[10] MAO Qiang-qiang, ZENG Da-wen, XU Keng, et al. Fabrication of Porous TiO2-SiO2Multifunctional Anti- Reflection Coatings by Sol-Gel Spin Coating Method[J]. RSC Advances, 2014, 4(101): 58101-58107.
[11] LIU Zhao-yue, ZHANG Xin-tong, MURAKAMI T, et al. Sol-Gel SiO2/TiO2Bilayer Films with Self-Cleaning and Antireflection Properties[J]. Solar Energy Materials and Solar Cells, 2008, 92(11): 1434-1438.
[12] PRADO R, BEOBIDE G, MARCAIDE A, et al. Develop-ment of Multifunctional Sol-Gel Coatings: Anti-Ref-lection Coatings with Enhanced Self-Cleaning Capa-city[J]. Solar Energy Materials and Solar Cells, 2010, 94(6): 1081-1088.
[13] FAUSTINI M, NICOLE L, BOISSIèRE C, et al. Hy-drophobic, Antireflective, Self-Cleaning, and Antifogging Sol–Gel Coatings: An Example of Multifunctional Nanos-tructured Materials for Photovoltaic Cells[J]. Chemistry of Materials, 2010, 22(15): 4406-4413.
[14] MIAO Lei, SU Li-fen, TANEMURA S, et al. Cost-Effec-tive Nanoporous SiO2-TiO2Coatings on Glass Substrates with Antireflective and Self-Cleaning Properties[J]. Applied Energy, 2013, 112: 1198-1205.
[15] GULDIN S, KOHN P, STEFIK M, et al. Self-Cleaning Antireflective Optical Coatings[J]. Nano Letters, 2013, 13(11): 5329-5335.
[16] SREE S P, DENDOOVEN J, MASSCHAELE K, et al. Synthesis of Uniformly Dispersed Anatase Nanoparticles Inside Mesoporous Silica Thin Films via Controlled Breakup and Crystallization of Amorphous TiO2Depo-sited Using Atomic Layer Deposition[J]. Nanoscale, 2013, 5(11): 5001-5008.
[17] LI Xiao-yu, HE Jun-hui. Synthesis of Raspberry-Like SiO2-TiO2Nanoparticles toward Antireflective and Self- Cleaning Coatings[J]. ACS Applied Materials & Inter-faces, 2013, 5(11): 5282-5290.
[18] YAO Lin, HE Jun-hui, GENG Zhi, et al. Fabrication of Mechanically Robust, Self-Cleaning and Optically High- Performance Hybrid Thin Films by SiO2&TiO2Double- Shelled Hollow Nanospheres[J]. Nanoscale, 2015, 7(30): 13125-13134.
[19] WANG Yun-bo, WU Jian, WANG Hong-ning, et al. Eff-ec-tive Balance of Antireflection and Self-Cleaning Pro-perties via Hollow Silica Nanospheres-Based Surface Coated with Scattered Titania Nanoparticles[J]. Solar Energy, 2015, 122: 763-772.
[20] ST?BER W, FINK A, BOHN E. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range[J]. Journal of Colloid and Interface Science, 1968, 26(1): 62-69.
[21] D'ACUNZI M, MAMMEN L, SINGH M, et al. Super-hydrophobic Surfaces by Hybrid Raspberry-Like Parti-cles[J]. Faraday Discussions, 2010, 146: 35-48.
[22] MART?-NEZ PORCEL J E, RIVAS AIELLO M B, ARCE V B, et al. Effect of Hybrid SiO2@Ag Nano-particles with Raspberry-Like Morphology on the Excited States of the Photosensitizers Rose Bengal and Ribo-flavin[J]. New Journal of Chemistry, 2019, 43(23): 9123- 9133.
[23] GAULDING J C, SAXENA S, MONTANARI D E, et al. Packed Colloidal Phases Mediate the Synthesis of Rasp-berry-Structured Microgel Heteroaggregates[J]. ACS Macro Letters, 2013, 2(4): 337-340.
[24] JIANG Wei-jie, GROZEA C M, SHI Zeng-qian, et al. Fluorinated Raspberry-Like Polymer Particles for Superamphiphobic Coatings[J]. ACS Applied Materials & Interfaces, 2014, 6(4): 2629-2638.
[25] BUDUNOGLU H, YILDIRIM A, BAYINDIR M. Flexible and Mechanically Stable Antireflective Coatings from Nanoporous Organically Modified Silica Co-lloids[J]. Journal of Materials Chemistry, 2012, 22(19): 9671-9677.
[26] OHTANI B, OGAWA Y, NISHIMOTO S I. Photocatalytic Activity of Amorphous–Anatase Mixture of Titanium(IV) Oxide Particles Suspended in Aqueous Solutions[J]. The Journal of Physical Chemistry B, 1997, 101(19): 3746-3752.
[27] TANAKA K, CAPULE M F V, HISANAGA T. Effect of Crystallinity of TiO2on Its Photocatalytic Action[J]. Chemical Physics Letters, 1991, 187(1-2): 73-76.
[28] YUANYANG L, LIANGHONG Y, BO J. Simple Way to Enhance the Photocatalytic Activity and Application in Antireflective Coatings for Amorphous TiO2[J]. Chinese Journal of Inorganic Chemistry, 2018, 34(9): 1701-1709.
[29] HATANAKA Y, NAITO H, ITOU S, et al. Photocatalytic Characteristics of Hydro-Oxygenated Amorphous Tita-nium Oxide Films Prepared Using Remote Plasma Enhan-ced Chemical Vapor Deposition[J]. Applied Surface Sci-ence, 2005, 244(1-4): 554-557.
[30] NAKAMURA M, KATO S, AOKI T, et al. Role of Terminal OH Groups on the Electrical and Hydrophilic Properties of Hydro-Oxygenated Amorphous TiO:OH Thin Films[J]. Journal of Applied Physics, 2001, 90(7): 3391-3395.
[31] KOODALI R T, ZHAO Dan. Photocatalytic Degradation of Aqueous Organic Pollutants Using Titania Supported Periodic Mesoporous Silica[J]. Energy & Environmental Science, 2010, 3(5): 608-614.
Synthesis of Raspberry-like SiO2-TiO2Nanoparticles and the Application in Optical Films
1,2,3,3,1,2,1,2,3
(1. Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China; 2. Key Laboratory of Nano Chemistry (KLNC), CNPC, Beijing 100083, China; 3. Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China)
It is an novel method to synthesis SiO2-TiO2composite nanoparticles with raspberry-like structure, which constructed multifunctional films with properties of high light transmittance, anti-fogging, photocatalytic self-cleaning, as well as mechanical robustness. Since titania is of good performance in photocatalytic self-cleaning, it is widely used in the preparation of functional surface coatings. However, dense titania has high refractive index and nano-titania is easy to agglomerate, resulting in poor optical transmission properties and photocatalytic self-cleaning effective of surface coatings prepared with titania. To solve this problem, a composite nanostructure was created to improve the dispersing stability and photocatalytic effective of small titania nanospheres in optical films. In this paper, SiO2nanospheres with sizes of 70 nm and 140 nm were synthesized through St?ber method, and 5 nm TiO2nanospheres were prepared under acid catalysis. SiO2nanospheres were modified by hexamethyldisilane (HMDS) and then decorated by (3-aminopropyl) triethoxysilane (APTES, or KH550) to graft amino groupson surfaces. TiO2nanospheres were modified by γ-glycidoxy-propyltrimethoxysilane (GLYMO, or KH560) to graft epoxy groupson surfaces. followed by silica-titania composite nanoparticles with raspberry-like morphology were fabricated via the assembly of silica nanospheres and hydrophilic titania nanoparticles through chemical interactions between amino groups and epoxy groups. Then, optical films were prepared through dip-coating met hod by using raspberry-like SiO2-TiO2nanoparticles as building blocks. By wrapping around SiO2nanospheres, small TiO2spheres can be uniformly distributed in the film without agglomeration, thus more chemical activity can be retained. Characterization instruments such as DLS, TEM, EDX, XRD, UV-vis spectrophotometer, Infrared spectrometer were involved to analyze the structure, morphology, properties and performances of raspberry-like particles and optical films they built. As the results, raspberry-like morphology was successfully prepared since SiO2nanospheres with larger size were covered evenly by smaller TiO2nanospheres. The optical films built by SiO2-TiO2nanoparticles have a high transmittance, which is more than 90%, thus the light transmission of substrates was largely reserved. Organic contaminants on the films can be totally degraded within 120 min under UV illumination. The water contact angles of films were as low as 2.68°, which means the films were superhydrophilic, water drops can spread rapidly on the surface, thus they have a good performance in anti-fogging. Furthermore, films exhibited a strong adhesion to the substrates and a good friction resistance, transmittance of films showed a high stability after abrasion-resistant testing, only 1.0% decrease on average. Briefly, raspberry-like SiO2-TiO2nanoparticles were synthesized successfully through surface-connection between SiO2and TiO2nanospheres and as building blocks to form optical films which can provide a high light transmittance, photocatalytic self-cleaning property for the substrates, and also have a good performance in mechanical robustness, therefore, these films can perform well in outdoor application with harsh conditions. Also, in this work, an advanced preparation method of SiO2-TiO2hybrid films was created, the whole preparation process was carried out under mild conditions, which avoids the influences of high temperature calcination for template removal and chemical corrosion on the performance of optical substrates, as well as high energy consumption and environmental pollution, which is in line with the concept of environmentally friendly and sustainable development.
raspberry-like; St?ber method; sol-gel method; optical coatings; self-cleaning; mechanical robust
TB34
A
1001-3660(2022)06-0374-08
10.16490/j.cnki.issn.1001-3660.2022.06.036
2021–03–30;
2022–05–09
2021-03-30;
2022-05-09
中國石油天然氣股份有限公司科學(xué)研究與技術(shù)開發(fā)項目(2018A–0907,2020D–5006–82)
PetroChina Scientific Research and Technology Development Project (2018A-0907, 2020D-5006-82)
王平美(1968—),女,碩士,高級工程師,主要研究方向為納米新材料研制及其應(yīng)用和油田化學(xué)劑。
WANG Ping-mei (1968-), Female, Master, Senior engineer, Research focus: nanomaterials and oil field chemicals.
江波(1963—),男,博士,教授,主要研究方向為功能高分子材料。
JIANG Bo (1963-), Male, Doctor, Professor, Research focus: functional polymer.
王平美, 何玫瑩, 賈新利, 等. 樹莓形SiO2–TiO2納米粒子的制備及其在光學(xué)涂層中的應(yīng)用[J]. 表面技術(shù), 2022, 51(6): 374-381.
WANG Ping-mei, HE Mei-ying, JIA Xin-li, et al. Synthesis of Raspberry-like SiO2-TiO2Nanoparticles and the Application in Optical Films[J]. Surface Technology, 2022, 51(6): 374-381.
責(zé)任編輯:萬長清