• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Now- and Fore-casting the Secular Epidemiological Trends and Seasonality of the Comeback of Scarlet Fever in China:A 16-year Time Series Analysis*

    2022-07-01 05:04:50WANGYongBinLIYanYanLUHaoTAOYingJunLIYuHongWANGLeiandLIANGWenJuan
    Biomedical and Environmental Sciences 2022年6期

    WANG Yong Bin,LI Yan Yan,LU Hao,TAO Ying Jun,LI Yu Hong,WANG Lei,and LIANG Wen Juan,#

    Scarlet fever (SF) is a common communicable disease that results from group AStreptococcus(GAS) infections[1]. SF accounted for the global loss of life among children 5-15 years of age in the 18th and 19th centuries[2]. A rapid reduction in SF morbidity and mortality occurred due to the scale-up of effective antibiotics and improvements in sanitation and nutrition[3]. The unexpected increase in the incidence of SF has attracted a renewed interest in infectious diseases[3]. Because the triggers that cause SF outbreaks are not fully understood and there is a scarcity of available vaccines protecting susceptible populations from GAS infections, effective prevention and control plans are required to stop the continued spread of SF.

    Time series analysis assists in the development of hypotheses to explain the temporal patterns of different diseases and to analyze the spread,therefore, facilitating the creation of a quality forecasting system. The seasonal autoregressive integrated moving average (SARIMA) model has been widely applied to estimate the epidemiological patterns of contagious diseases because this model has a simple structure, fast applicability, and a relatively high forecasting reliability level[4]. It has been shown that the SARIMA model is able to satisfactorily estimate a simple time series[4], but it is difficult to manage complex time series, such as the data with multiple seasonal periods, high-frequency seasonality, non-integer seasonality, and dualcalendar effects. By comparison, the innovation state-space modelling framework that combines Box-Cox transformations, Fourier series with timevarying coefficients, and autoregressive moving average (ARMA) error correction (known as the TBATS method) is customized for use with the patterns included in a complex time series described above[5]. In addition, the TBATS model is used for linearity and some types of non-linearity in a complex time series based on Box-Cox transformations[5], which makes it possible to perform a multistep ahead prediction. Moreover,the TBATS model is able to decompose a complex seasonal time series into its trend, seasonal, and irregular components[5], which is not able to be undertaken by use of the SARIMA model.Importantly, SF morbidity has been shown to display dual seasonal patterns in some countries. Therefore,this study analyzed the long-term epidemic patterns using the TBATS model. The forecasting power under the TBATS model was compared with the SARIMA model.

    We obtained the monthly SF incidence and population data between January 2004 and December 2019 from the Chinese CDC and the Statistical Yearbook of China, respectively. Then, we partitioned the SF morbidity series into two segments comprising a training dataset from January 2004 to December 2017 to construct the SARIMA and TBATS models and a testing dataset from January 2018 to December 2019 to test the generalization of both models. Two additional datasets were provided to test the robustness of both models: the first 180 data sets from January 2004 to December 2018 and 156 data sets from January 2004 to December 2016 were treated as training datasets, respectively; and the remainder were testing datasets. We estimated the changing epidemiologic trends of SF based on annual percentage change (APC) and average APC (AAPC)using the Joinpoint regression program (version 4.8.0.1). We constructed the TBATS model with the“forecast,” “tseries,”, and “FinTS” packages in R software (version 3.4.3). The incidence rate ratio(IRR) with a 95% uncertainty limit (UL) before and after the SF outbreak was calculated using the method proposed by Armitage and Berry[6]. The mean absolute deviation (MAD), root mean square error (RMSE), mean absolute percentage error(MAPE), mean error rate (MER), and root mean square percentage error (RMSPE) were computed to compare the forecasting ability of both models.

    During the study period, a notable increase in SF morbidity was detected, with an AAPC = 8.942 (95%UL: 5.995-11.971;t= 6.697,P< 0.001;Supplementary Figure S1, available in www.besjournal.com), and the highest morbidity(5.930/100,000 persons) occurred in 2019, which increased by a factor of nearly four compared with the lowest level (1.489/100,000 population) in 2004(Supplementary Figure S2, available in www.besjournal.com). The SF epidemics remained relatively steady from 2004-2010 (average,1.937/100,000 persons annually), with an AAPC =-0.840 (95% UL: -7.678 to 6.505;t= -0.231,P=0.817). An unexpected outbreak was witnessed in 2011, and since then a rapidly increasing trend occurred (average, 4.580/100,000 persons annually[excluding 2013]; the exact causes regarding this annual drop are unknown; Supplementary Figure S2), with an AAPC = 5.952 (95% UL: 0.239-11.992;t=2.466,P= 0.043), which showed good agreement with a resurgence of SF in Hong Kong, China[7], but inconsistent with England where the resurgence occurred in 2014[8]. There has been a doubling in the SF incidence during the post-resurgence periods compared with the pre-resurgence periods (IRR =2.364, 95% UL: 2.358-2.370). Nevertheless, the driving force associated with the increased pathogenicity of GAS fails to be elucidated. A possible explanation may be due to the acquisition of novel prophages harboring new hybridizations of toxin genes and antimicrobial resistance genes,which is related to the emergence and expansion of the predominant genotypes ofemm12andemm1in China[3]. Another explanation may be associated with the natural periodicity of the SF incidence (SF epidemics are characterized by a cyclic change of approximately 6 years[3]). A third explanation may be linked to the relaxation of the 2-child policy in 2011[3], which led to an increase in the number of susceptible individuals. A fourth reason may be attributed to improvements in the diagnostic capacity and the increased awareness of medical workers in reporting SF[3]. A fifth reason may be a result of the deterioration of air quality in China[9],despite the gradual improvements in the last 2 years. Finally, there are no vaccines available to prevent infections with GAS until now.

    A marked semi-annual seasonal behavior occurred in the monthly SF incidence, with a strong peak between May and June, and a weak peak between November and December (Supplementary Figures S3-S4, available in www.besjournal.com).We surmised that different climatic features and beginning of spring and autumn semesters contributed to this difference in the margin of peak activities. Our seasonal profile correlates well with previous findings from Hong Kong, China[7]; however,discordant with that in England, which peaked between February and March[8]. This inconsistency may be due to the different school breaks,population density, and different GASemmgene types in east Asia and Europe[1,8]. In addition, the SF epidemics retain the lowest level in February every year (Supplementary Figure S3), attributable to the winter holidays and the Spring Festival.

    The forecasts under the TBATS approach rely largely on the number of harmonics kiapplied for each seasonal pattern. As a result, in selecting the number of harmonics ki, considering one seasonal component each time, we then fitted the model on the target data repeatedlyviagradually increasing the number of harmonics ki, but holding the remaining harmonics constant for each i until the optimal AIC is obtained. In determining the most suitable orders (pandq) of the ARMA model, we used the automatic procedure proposed by Hyndman and colleagues[10]to fit the forecasting residuals. If the selected model with the ARMA (p,q)residual component generates a smaller AIC than the one model without the ARMA (p,q) residual component, this selected specification would be considered as the best possible model; otherwise,the ARMA (p,q) residual component is deleted. After modelling by trial and error, the TBATS (0.04, {4,0},0.882, {<12,5>}) specification was selected as the optimal model in that the minimum AIC (-197.965)was detected in this model, and the identified key parameters of this best TBATS model are reported in Supplementary Table S1, available in www.besjournal.com. Additional statistical diagnoses for the forecast errors are provided in Supplementary Table S2 and Supplementary Figures S5-S6, available in www.besjournal.com. The Ljung-Box Q statistics of the forecast errors produced a Q(18)= 11.442 with aP-value of 0.875, indicating no serial correlations in this residual series. Moreover, the ARCH effect was largely removed because the LM(18)= 23.808 with aP-value of 0.302. These results confirmed the adequacy of the model specifications. Similarly,based on the modelling steps described above, the TBATS (0.01, {0,0}, 0.898, {<12,5>}) and TBATS(0.048, {0,0}, 0.902, {<12,5>}) specifications tended to be the preferred models for forecasting the 12-and 36-holdout periods (Supplementary Tables S3-S4 and Supplementary Figures S7-S10, available in www.besjournal.com).

    Figure 1. Comparative results of the forecasts based on the SARIMA and TBATS models. (A) The comparison between the 24-step ahead forecasts of the SARIMA model and the observed values. (B) The predicted upcoming 36-month values from January 2020 to December 2022 using the SARIMA model.(C) The comparison between the 24-step ahead forecasts of the TBATS model and the observed values.(D) The predicted upcoming 36-month values from January 2020 to December 2022 using the TBATS model.

    Similarly, following the SARIMA modelling steps,the optimal SARIMA models on different datasets were identified (Supplementary Tables S2-S5, and Supplementary Figures S5, S11-S12, available in www.besjournal.com). Subsequently, the best SARIMA and TBATS models could be used to perform multistep ahead predictions (Figure 1 and Supplementary Figures S13-S14, available in www.besjournal.com). Table 1 lists the measurement metrics, which indicate the forecasting reliability levels on different time windows under the preferred SARIMA and TBATS models. The optimal TBATS models provided a smaller MAD, MAPE, RMSE, RMSPE, and MER compared with the optimal SARIMA models, with a performance improvement of almost 50% in the forecasting abilities for estimating both short- and long-term epidemiological trends, albeit the predictive potential showed a slight reduction with the increase in prediction time windows. We further compared the forecasting abilities of both methods for 48- and 72-step ahead predictions, and the comparative results are listed in Supplementary Tables S1, S6-S7, and Supplementary Figures S15-S16 (available in www.besjournal.com), which show a similar finding, but the predictive results deviated from the epidemic trajectories. In addition,we used the SF incidence data in Liaoning,Heilongjiang, and Shandong provinces, and Inner Mongolia (which are the hardest hit areas by SF in China in the last decade[2,3]) to assess the predictive quality of these two methods. Likewise, the TBATS method produced lower error rates in all the datasets (Supplementary Table S8, available in www.besjournal.com). Our recent study indicated that the Error-Trend-Seasonal (ETS) model also has a powerful potential in estimating the long-term epidemic behaviors of diseases[4]. As a result, we further developed the ETS model based on the SF morbidity to predict the epidemiological trends, and the results also showed similar findings (the computed MAPE values were 16.101%vs. 38.511%,21.142%vs. 28.273%, and 23.984%vs. 26.735% in the 12-, 24-, and 36-step ahead forecasts,respectively; Supplementary Table S9, available in www.besjournal.com). These findings further substantiated the utility of the TBATS model. The TBATS model was introduced by adding the trigonometric representation of seasonal components based on the Fourier series into the traditional BATS model, which enabled handling of all complex time series, as well as linear and nonlinear information[5], thus indicating the suitability and adequacy of this model. Considering the attractive advantages of the TBATS model, this model can be recommended as a flexible and useful long-term predictive tool in assessing the epidemic patterns of SF in other countries or other contagious diseases; however, further work is required for validation. Moreover, with the rapid advances in the forecasting domain of time series, many hybrid prediction models (e.g., SARIMA-BPNN, SARIMAGRNN, and SARIMA-LSTM) have also been reported to show an attractive advantage in estimating the long-term epidemic trajectories of diseases.Therefore, what is now needed are studies involving comparisons of the predictive reliable level between the TBATS model and the above-mentioned models.

    Table 1. The comparisons of the predicted results between the SARIMA model and the TBATS model ondifferent testing datasets

    This study had some limitations. First, SF is a mild illness and has rarely led to death since the 20thcentury[3]. Therefore, infected individuals with mild clinical manifestations sometimes fail to seek medical aid, resulting in under-reporting and underdiagnosis. Second, to ensure that the model obtained a satisfactory forecasting result, it is important to note that this model should be updated with new incidence data. Third, to investigate whether our TBATS model was adequate for estimating the SF epidemics in other study regions or other infectious diseases, much work is still needed.Finally, integrating the factors influencing the SF epidemics may improve the predictive power.Nevertheless, we are not able to perform such an analysis due to the unavailability of a multivariate TBATS method and SF-related factors.

    In summary, SF had dual seasonal behaviors,peaking in May-June and November-December,with a recurrence in 2011 in China; since then it started to be increasing in the SF incidence. The TBATS method was advantageous in analyzing the long-term epidemiological seasonality and trends of SF, which can be considered a useful and flexible alternative to aid stakeholders to develop practical solutions to stop the ongoing spread of SF in China.In addition, we re-established the preferred TBATS(0.023, {0,0}, 0.895, {<12,5>}) specification based on the 16 years of data to predict the SF incidence into 2022, although the SF incidence was predicted to reach a plateau in the next 3 years [Supplementary Tables S1 and S10 (available in www.besjournal.com), and Figure 1], the SF incidence remained at a high level, suggesting that additional or comprehensive interventions must be developed to manage this evolving scenario.

    Data AvailabilityAll the data supporting the findings of the work are contained within the Supplementary Material (Supplementary Table S11,available in www.besjournal.com).

    &These authors contributed equally to this work.

    #Correspondence should be addressed to WANG Yong Bin, MD, Tel: 86-373-3831646, E-mail: wybwho@163.com;LIANG Wen Juan, MD, Tel: 86-373-3831646, E-mail: wenwen3_1@126.com

    Biographical notes of the first authors: WANG Yong Bin, male, born in 1989, Professor, MD, majoring in infectious disease epidemiology; LI Yan Yan, female, born in 1996, master’s, majoring in infectious disease epidemiology; LU Hao, male, born in 1999, Undergraduate,majoring in preventive medicine.

    Received: November 12, 2021;

    Accepted: June 2, 2022

    国产在视频线精品| 欧美日韩精品成人综合77777| a级毛片在线看网站| 成人国产麻豆网| 丰满乱子伦码专区| 免费日韩欧美在线观看| 精品人妻一区二区三区麻豆| 人人妻人人澡人人爽人人夜夜| 日本与韩国留学比较| 大码成人一级视频| av不卡在线播放| 中文字幕亚洲精品专区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 一边亲一边摸免费视频| 在线观看免费高清a一片| 亚洲伊人久久精品综合| 午夜日本视频在线| 人妻少妇偷人精品九色| 一区二区三区免费毛片| 欧美国产精品一级二级三级| 精品一区二区免费观看| 男人操女人黄网站| 日韩av在线免费看完整版不卡| 在线精品无人区一区二区三| 一区二区三区乱码不卡18| 人人妻人人添人人爽欧美一区卜| 超碰97精品在线观看| 久久久精品免费免费高清| 成年美女黄网站色视频大全免费 | 久久精品国产a三级三级三级| 亚洲性久久影院| 亚洲激情五月婷婷啪啪| 国产视频首页在线观看| a级毛色黄片| 亚洲精品久久成人aⅴ小说 | 王馨瑶露胸无遮挡在线观看| 国产在线一区二区三区精| 人人妻人人爽人人添夜夜欢视频| 亚洲精品日韩av片在线观看| 国产高清有码在线观看视频| 亚洲人成网站在线播| 伦精品一区二区三区| 日韩av不卡免费在线播放| 黑人高潮一二区| 日韩欧美精品免费久久| 午夜福利视频在线观看免费| 成年美女黄网站色视频大全免费 | 少妇的逼水好多| 人成视频在线观看免费观看| 一级毛片电影观看| 国产 精品1| 在线观看人妻少妇| 丁香六月天网| 亚洲国产精品专区欧美| 国产乱人偷精品视频| 中文字幕久久专区| 在线播放无遮挡| 成人亚洲欧美一区二区av| 交换朋友夫妻互换小说| 国产一区二区三区av在线| 亚洲伊人久久精品综合| 男女高潮啪啪啪动态图| 91精品国产国语对白视频| 日韩 亚洲 欧美在线| 内地一区二区视频在线| 成人午夜精彩视频在线观看| 成人亚洲欧美一区二区av| 国产精品偷伦视频观看了| 多毛熟女@视频| 国产精品99久久99久久久不卡 | 日韩中文字幕视频在线看片| 国产精品三级大全| 国产午夜精品一二区理论片| 国产在线免费精品| 我的老师免费观看完整版| 亚洲天堂av无毛| 日本猛色少妇xxxxx猛交久久| 热re99久久国产66热| 日韩 亚洲 欧美在线| 久久精品国产a三级三级三级| 欧美+日韩+精品| 我的老师免费观看完整版| 国产熟女午夜一区二区三区 | 亚洲精品乱码久久久v下载方式| 久久久久久久亚洲中文字幕| 久热这里只有精品99| 人人妻人人澡人人爽人人夜夜| 亚洲精品日韩在线中文字幕| 日本wwww免费看| 高清av免费在线| 91精品国产国语对白视频| 免费黄色在线免费观看| 国产日韩欧美亚洲二区| 久久久久久久久久成人| 男女免费视频国产| 又大又黄又爽视频免费| 中文字幕最新亚洲高清| 老司机影院成人| 精品亚洲成a人片在线观看| 两个人免费观看高清视频| 亚洲精品自拍成人| 久久精品久久精品一区二区三区| 91成人精品电影| 在线看a的网站| 国产精品欧美亚洲77777| 久久人人爽人人片av| 色5月婷婷丁香| 日本色播在线视频| 春色校园在线视频观看| av视频免费观看在线观看| 汤姆久久久久久久影院中文字幕| 久久韩国三级中文字幕| 男女无遮挡免费网站观看| 亚洲精品视频女| 人人妻人人添人人爽欧美一区卜| 亚洲图色成人| 男女啪啪激烈高潮av片| 日韩成人av中文字幕在线观看| 国产欧美日韩一区二区三区在线 | 热99国产精品久久久久久7| h视频一区二区三区| 亚洲精品日韩在线中文字幕| 亚洲婷婷狠狠爱综合网| 欧美变态另类bdsm刘玥| 少妇丰满av| 在线观看免费高清a一片| tube8黄色片| 22中文网久久字幕| 啦啦啦视频在线资源免费观看| 亚洲av在线观看美女高潮| 夜夜看夜夜爽夜夜摸| 少妇精品久久久久久久| 大陆偷拍与自拍| 国产男人的电影天堂91| 人妻系列 视频| 国产一区二区三区综合在线观看 | 91精品伊人久久大香线蕉| 欧美精品高潮呻吟av久久| 久久久久久久久久久久大奶| 少妇猛男粗大的猛烈进出视频| 亚洲国产精品国产精品| 这个男人来自地球电影免费观看 | 久久99一区二区三区| 国产高清国产精品国产三级| 国产深夜福利视频在线观看| 最新的欧美精品一区二区| 久久久久久久精品精品| 一级爰片在线观看| 午夜av观看不卡| 王馨瑶露胸无遮挡在线观看| 91精品一卡2卡3卡4卡| 五月伊人婷婷丁香| 简卡轻食公司| 女性生殖器流出的白浆| 精品一区在线观看国产| 久久久久久久国产电影| 久久久亚洲精品成人影院| 天堂8中文在线网| av线在线观看网站| 2022亚洲国产成人精品| 天美传媒精品一区二区| 欧美一级a爱片免费观看看| 免费高清在线观看视频在线观看| 插阴视频在线观看视频| 欧美人与善性xxx| 国产精品秋霞免费鲁丝片| 五月天丁香电影| 欧美人与善性xxx| 搡女人真爽免费视频火全软件| 久久人人爽人人爽人人片va| 一级毛片黄色毛片免费观看视频| 日韩视频在线欧美| 国产成人一区二区在线| 亚洲成人av在线免费| 哪个播放器可以免费观看大片| 国产片内射在线| 黄色视频在线播放观看不卡| 又黄又爽又刺激的免费视频.| 国产成人精品在线电影| 男人操女人黄网站| 伦理电影免费视频| 国产 精品1| 日韩精品免费视频一区二区三区 | 国产日韩欧美在线精品| 大香蕉久久网| 少妇的逼好多水| 香蕉精品网在线| 大话2 男鬼变身卡| 国产免费视频播放在线视频| 在线播放无遮挡| 少妇人妻久久综合中文| 热re99久久精品国产66热6| 99视频精品全部免费 在线| 日韩强制内射视频| 欧美精品高潮呻吟av久久| 日韩av不卡免费在线播放| 91久久精品国产一区二区三区| 中文精品一卡2卡3卡4更新| 日韩av在线免费看完整版不卡| 51国产日韩欧美| 欧美成人精品欧美一级黄| 国产不卡av网站在线观看| 天堂中文最新版在线下载| 一本—道久久a久久精品蜜桃钙片| 丝袜美足系列| 久久精品国产a三级三级三级| 久久久久久久久久人人人人人人| 成人国产av品久久久| 久久人人爽人人爽人人片va| 欧美日韩视频高清一区二区三区二| 久久99热6这里只有精品| 欧美日本中文国产一区发布| 搡女人真爽免费视频火全软件| 视频区图区小说| 午夜激情久久久久久久| 婷婷色av中文字幕| 女性生殖器流出的白浆| 欧美bdsm另类| 亚洲精品国产色婷婷电影| 成年人午夜在线观看视频| 中文字幕制服av| 午夜福利,免费看| 国产男女超爽视频在线观看| 亚洲av.av天堂| 日本欧美国产在线视频| 日本欧美视频一区| 两个人的视频大全免费| 国产一区亚洲一区在线观看| 夜夜骑夜夜射夜夜干| 丁香六月天网| 永久网站在线| 爱豆传媒免费全集在线观看| 国产片特级美女逼逼视频| 国产高清三级在线| 免费观看在线日韩| 亚洲综合色网址| 免费日韩欧美在线观看| 久久国产精品大桥未久av| 狂野欧美激情性xxxx在线观看| 久久精品国产鲁丝片午夜精品| 亚洲av国产av综合av卡| 日本欧美国产在线视频| 免费人成在线观看视频色| 国产成人午夜福利电影在线观看| 午夜福利影视在线免费观看| 中文字幕制服av| 久久久久久久久久人人人人人人| 2022亚洲国产成人精品| 99久久中文字幕三级久久日本| 啦啦啦中文免费视频观看日本| 狠狠精品人妻久久久久久综合| 色94色欧美一区二区| 精品久久久久久电影网| 高清欧美精品videossex| 日韩电影二区| 18在线观看网站| 亚洲国产精品一区三区| 欧美成人精品欧美一级黄| 久久女婷五月综合色啪小说| 日韩大片免费观看网站| 亚洲国产色片| 秋霞伦理黄片| 亚洲精品,欧美精品| 天堂8中文在线网| 99热这里只有精品一区| 老司机影院毛片| 久久久久视频综合| 韩国av在线不卡| 人妻 亚洲 视频| 日韩精品有码人妻一区| 国产精品一二三区在线看| 亚洲欧美一区二区三区黑人 | 99热网站在线观看| 亚洲人成网站在线播| 免费高清在线观看视频在线观看| 欧美xxxx性猛交bbbb| 精品国产露脸久久av麻豆| 校园人妻丝袜中文字幕| 中国美白少妇内射xxxbb| 日韩中文字幕视频在线看片| 丝袜喷水一区| 日日撸夜夜添| 自线自在国产av| 国产黄频视频在线观看| 国产视频内射| 精品人妻偷拍中文字幕| 熟女人妻精品中文字幕| 国产成人精品无人区| 好男人视频免费观看在线| 伊人久久精品亚洲午夜| 日本av手机在线免费观看| 少妇的逼水好多| 亚洲综合色网址| 亚洲少妇的诱惑av| 亚洲怡红院男人天堂| 久久精品国产亚洲网站| 国产精品国产三级专区第一集| 女性被躁到高潮视频| 欧美最新免费一区二区三区| 国产免费视频播放在线视频| 精品酒店卫生间| 中国国产av一级| 免费人成在线观看视频色| 国产精品国产三级国产av玫瑰| 午夜精品国产一区二区电影| 26uuu在线亚洲综合色| 99热这里只有是精品在线观看| 大话2 男鬼变身卡| 国产精品久久久久成人av| 91精品三级在线观看| 国国产精品蜜臀av免费| 亚洲国产毛片av蜜桃av| 五月玫瑰六月丁香| 在线观看一区二区三区激情| xxx大片免费视频| 国产乱人偷精品视频| 五月伊人婷婷丁香| 久久久久久久国产电影| 中文天堂在线官网| 视频中文字幕在线观看| 精品久久久久久久久亚洲| 亚洲精品国产色婷婷电影| 韩国av在线不卡| 成年人免费黄色播放视频| 色婷婷av一区二区三区视频| 亚洲精品日本国产第一区| 国产成人一区二区在线| 国产成人免费观看mmmm| 国产精品一区www在线观看| 十八禁网站网址无遮挡| 成人国语在线视频| 三级国产精品片| 色网站视频免费| 狂野欧美激情性xxxx在线观看| 亚洲精品乱码久久久v下载方式| 91久久精品电影网| 黄色毛片三级朝国网站| 久久狼人影院| 日本色播在线视频| 国产片特级美女逼逼视频| 一个人看视频在线观看www免费| 久久99蜜桃精品久久| 亚洲欧美一区二区三区黑人 | 香蕉精品网在线| 蜜桃在线观看..| 亚洲第一区二区三区不卡| www.色视频.com| 国产免费一区二区三区四区乱码| 久热这里只有精品99| 国产极品粉嫩免费观看在线 | av专区在线播放| 哪个播放器可以免费观看大片| 女性被躁到高潮视频| 亚洲精品美女久久av网站| 成人黄色视频免费在线看| 国产亚洲精品久久久com| 中国美白少妇内射xxxbb| 亚洲精品视频女| 99久国产av精品国产电影| 欧美激情国产日韩精品一区| 免费播放大片免费观看视频在线观看| 亚洲综合精品二区| 国产成人一区二区在线| 少妇被粗大猛烈的视频| 好男人视频免费观看在线| 日韩精品免费视频一区二区三区 | 大又大粗又爽又黄少妇毛片口| 国产一区二区三区av在线| 免费观看的影片在线观看| 欧美激情 高清一区二区三区| 日日撸夜夜添| 免费黄色在线免费观看| 美女脱内裤让男人舔精品视频| 国产日韩一区二区三区精品不卡 | 精品国产一区二区三区久久久樱花| av一本久久久久| 久久精品国产亚洲av天美| 男女边摸边吃奶| 最后的刺客免费高清国语| 人妻一区二区av| 大片电影免费在线观看免费| 国产乱人偷精品视频| 亚洲av日韩在线播放| 国产精品嫩草影院av在线观看| 在线看a的网站| 曰老女人黄片| 日韩一本色道免费dvd| 免费黄色在线免费观看| 国产精品无大码| 欧美成人精品欧美一级黄| 日韩伦理黄色片| 亚洲精品国产av蜜桃| 一区二区av电影网| 国产一区有黄有色的免费视频| 黑人高潮一二区| 男人添女人高潮全过程视频| 国产视频首页在线观看| 伊人久久精品亚洲午夜| 丝袜美足系列| 看免费成人av毛片| 欧美日韩国产mv在线观看视频| 高清午夜精品一区二区三区| 久久久久精品性色| 在线观看免费日韩欧美大片 | 18禁裸乳无遮挡动漫免费视频| 午夜影院在线不卡| 男女高潮啪啪啪动态图| 91精品三级在线观看| 高清不卡的av网站| 国产有黄有色有爽视频| 简卡轻食公司| 国产精品成人在线| 欧美成人午夜免费资源| 国产一区亚洲一区在线观看| 少妇的逼水好多| 久久人人爽av亚洲精品天堂| 日韩熟女老妇一区二区性免费视频| 男男h啪啪无遮挡| 99精国产麻豆久久婷婷| 亚洲国产色片| 国产黄频视频在线观看| 亚洲精品乱码久久久v下载方式| 女人精品久久久久毛片| 精品一区二区三卡| 亚洲精品国产色婷婷电影| 高清视频免费观看一区二区| 热re99久久国产66热| 国产免费现黄频在线看| 午夜91福利影院| 人体艺术视频欧美日本| 熟女人妻精品中文字幕| 国产 一区精品| 国产爽快片一区二区三区| 桃花免费在线播放| 精品人妻在线不人妻| 18禁在线播放成人免费| 亚洲经典国产精华液单| 国产精品嫩草影院av在线观看| 一级,二级,三级黄色视频| 欧美3d第一页| 亚洲综合色惰| 人妻 亚洲 视频| 青青草视频在线视频观看| 国产精品.久久久| 最后的刺客免费高清国语| 国产成人精品无人区| 秋霞在线观看毛片| 国产极品粉嫩免费观看在线 | 亚洲欧洲国产日韩| 国产免费又黄又爽又色| 日韩强制内射视频| 伦理电影大哥的女人| 一本大道久久a久久精品| 边亲边吃奶的免费视频| 亚洲av综合色区一区| 久久久久精品久久久久真实原创| 午夜影院在线不卡| 99九九线精品视频在线观看视频| 亚洲中文av在线| 大香蕉97超碰在线| 国产精品国产三级国产av玫瑰| 亚洲精品国产av成人精品| 人妻一区二区av| 亚洲国产欧美在线一区| av在线app专区| 欧美人与性动交α欧美精品济南到 | 大片免费播放器 马上看| a级片在线免费高清观看视频| 日本猛色少妇xxxxx猛交久久| 国产日韩欧美在线精品| 18禁裸乳无遮挡动漫免费视频| 97在线人人人人妻| 国产精品成人在线| 欧美精品国产亚洲| 亚洲国产精品一区三区| 91精品三级在线观看| 日韩中字成人| 亚洲精品中文字幕在线视频| 人人妻人人澡人人爽人人夜夜| 丰满少妇做爰视频| 久久女婷五月综合色啪小说| 亚洲欧美日韩卡通动漫| 日韩,欧美,国产一区二区三区| 9色porny在线观看| 99re6热这里在线精品视频| 综合色丁香网| 91精品三级在线观看| 日本av手机在线免费观看| 不卡视频在线观看欧美| 青春草亚洲视频在线观看| 亚洲丝袜综合中文字幕| 九色成人免费人妻av| 免费人成在线观看视频色| 日韩中文字幕视频在线看片| 日韩视频在线欧美| 国产精品人妻久久久影院| 亚洲av在线观看美女高潮| 久久精品久久久久久噜噜老黄| 欧美成人午夜免费资源| 亚洲国产av新网站| 纯流量卡能插随身wifi吗| 制服诱惑二区| 嘟嘟电影网在线观看| 中文欧美无线码| 久热久热在线精品观看| 午夜av观看不卡| 国产精品久久久久久久久免| 国产熟女午夜一区二区三区 | 满18在线观看网站| 我要看黄色一级片免费的| 高清午夜精品一区二区三区| 中文字幕精品免费在线观看视频 | 亚洲精品亚洲一区二区| 精品一区二区三区视频在线| 亚洲精品aⅴ在线观看| 国产 精品1| 亚洲精品亚洲一区二区| 久久精品国产亚洲网站| 国产黄频视频在线观看| 婷婷色av中文字幕| 草草在线视频免费看| 国产av一区二区精品久久| 国精品久久久久久国模美| 制服丝袜香蕉在线| 超碰97精品在线观看| 爱豆传媒免费全集在线观看| 99国产精品免费福利视频| 我要看黄色一级片免费的| 黄片无遮挡物在线观看| 亚洲国产毛片av蜜桃av| 校园人妻丝袜中文字幕| 国产免费一级a男人的天堂| 欧美成人精品欧美一级黄| 国产成人精品婷婷| 黄色一级大片看看| 国产黄色视频一区二区在线观看| 日本wwww免费看| 久久毛片免费看一区二区三区| 好男人视频免费观看在线| 亚洲av中文av极速乱| 高清在线视频一区二区三区| 亚洲av电影在线观看一区二区三区| 亚洲成人av在线免费| 麻豆精品久久久久久蜜桃| 国产成人免费观看mmmm| 高清视频免费观看一区二区| 热99国产精品久久久久久7| 国产熟女午夜一区二区三区 | 久久精品久久精品一区二区三区| 国产女主播在线喷水免费视频网站| 三上悠亚av全集在线观看| √禁漫天堂资源中文www| 亚洲成色77777| 秋霞在线观看毛片| 一本色道久久久久久精品综合| 亚洲精品一二三| 精品久久久精品久久久| 日本av免费视频播放| 成人综合一区亚洲| 日日爽夜夜爽网站| 男女啪啪激烈高潮av片| 精品人妻一区二区三区麻豆| 天堂8中文在线网| 我的老师免费观看完整版| 亚洲人成网站在线播| 精品一区在线观看国产| 国产有黄有色有爽视频| 国产精品久久久久久久久免| 一级a做视频免费观看| 欧美最新免费一区二区三区| 国产亚洲一区二区精品| 中文精品一卡2卡3卡4更新| 大香蕉久久网| 韩国av在线不卡| 国产欧美另类精品又又久久亚洲欧美| 国产探花极品一区二区| 熟女人妻精品中文字幕| 亚洲av.av天堂| 久久精品国产亚洲av涩爱| 简卡轻食公司| 色婷婷av一区二区三区视频| 欧美人与善性xxx| 丝袜脚勾引网站| 国产成人91sexporn| 91精品三级在线观看| 国产精品一区www在线观看| 色婷婷av一区二区三区视频| 91精品三级在线观看| 熟女人妻精品中文字幕| 七月丁香在线播放| 亚洲精品美女久久av网站| 51国产日韩欧美| 97超视频在线观看视频| 国产有黄有色有爽视频| 国产精品蜜桃在线观看| 一级毛片电影观看| 欧美日韩一区二区视频在线观看视频在线| 91精品国产九色| 激情五月婷婷亚洲| 亚洲成色77777| 国产无遮挡羞羞视频在线观看| 免费久久久久久久精品成人欧美视频 | h视频一区二区三区| 亚洲国产最新在线播放| 日本午夜av视频| av视频免费观看在线观看| 我要看黄色一级片免费的| 久久久久精品久久久久真实原创| 亚洲精品久久成人aⅴ小说 | 伦理电影大哥的女人| 国产精品国产三级国产专区5o| 国产成人精品婷婷| 性高湖久久久久久久久免费观看| 秋霞在线观看毛片| 久久人人爽人人爽人人片va|