• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Assembly and marker analysis of mitochondrial genomes provide insights into origin,evolution and spread of Brassica juncea (L.)Czern.et Coss.

    2022-06-30 03:06:18LingYouLiuYngFngyingLiuLeiKngHoChenBinYngQinYngZhongsongLiu
    The Crop Journal 2022年3期

    Ling You,Liu Yng,Fngying Liu,Lei Kng,Ho Chen,Bin Yng,b,Qin Yng,Zhongsong Liu,*

    a College of Agronomy,Hunan Agricultural University,Changsha 410128,Hunan,China

    b Guizhou Institute of Oil Crops,Guizhou Academy of Agricultural Sciences,Guiyang 550000,Guizhou,China

    Keywords:Brassica juncea Mitochondrial genome Mitotypes Molecular markers Migration routes

    ABSTRACT The release of mitochondrial genome sequences provides the basis for characterizing interspecific and intraspecific variation in Brassica mitochondrial genomes.However,few B.juncea (mustard) mitochondrial genomes have been published.We assembled the mitochondrial genomes of three B.juncea subspecies and compared them with previously published genomes.The genomes were phylogenetically classified into A,B,C,and Bna clades.Two variant sites,a transversion (C →A) at nt 79,573 and a 31-bp copy-number variation between nts 65,564 and 65,596,were identified.Based on these variant sites,mitotype-specific sequence markers were developed to characterize the variation among worldwide 558 B.juncea accessions.Three mitochondrial genome types(mitotypes MT1–MT3)were identified.In terms of geographical distribution,MT1 and MT2 accessions were distributed mainly to the north and MT3 to the south of 34°N.Root mustards carried only MT1,leaf and stem mustards carried mainly MT3,and seed mustards carried all three mitotypes,implying that the mitotypes underwent selection during B.juncea domestication.A new form of oil mustard evolved by hybridization between two gene pools in southwest China.

    1.Introduction

    Mustard (Brassica juncea (L.) Czern.et Coss.) is grown as an oilseed,vegetable,and condiment crop worldwide,and is taxonomically classified into four subspecies:napiformis(root),juncea(seed),integrifolia (leaf) and tsatsai (stem) [1,2].B.juncea (2n=4x=36,AABB)is an allotetraploid that originated from natural hybridization between B.rapa (2n=20,AA) as a maternal parent and B.nigra(2n=16,BB).Mustard was grown 6000–7000 years ago in China[3],and Indian mustard was used by the Indus Valley civilization in the form of oil mustard as early as 2300 to 1750 BCE[4].

    Because the cytoplasm is inherited from the maternal parent in Brassica juncea and all others,variation in the cytoplasmic genome can be used to investigate species origin and domestication.The release of organellar genome sequences has provided new insights into the genetic relationships of Brassica crop species [5–13].Comparison showed that B.juncea and B.rapa carry identical mitochondrial (mt) genomes,in agreement with the fact that B.rapa is the cytoplasmic donor of B.juncea [6,9,13].Likewise,mt genome sequencing confirmed that B.nigra is the maternal parent of B.carinata [8].

    Intraspecific variation in the mt genome has been frequently observed in Brassica species.There was variation in size and structure of mt genomes between B.oleracea accessions [6,7].An InDel variation was detected between B.nigra mt genomes [8].A SNP variation,C to A,was identified between two B.rapa varieties,Chinese cabbage and Mizuna.This variation also appears in B.juncea[10].Based on 42 mt genes,B.napus accessions were clustered into two clades:B.rapa and B.oleracea clades [14],which were proposed to correspond to pol (Polima) and nap (Napus) cytoplasm,respectively [13].In mustard,mt genome sequences of three subspecies:leaf [6],stem [9] and seed mustards (GenBank ID:MT675103) have been released.The mt genome sequence of root mustard has not been reported.

    Mitotype-specific sequence (MSS) markers have been developed to classify mt genomes and permit identification of cytoplasmic types,phylogenetic analysis,and breeding of cytoplasmic male sterility (CMS) lines in Brassica species [15,16].In B.napus,the cytoplasmic types nap,cam(Campestris),pol,and ogu(Ogura)have been distinguished.For accurate and rapid identification of these different cytoplasms,corresponding MSS markers have been developed,and provide a reliable method for the identification of CMS rapeseed hybrids[15].Recently[16],MSS markers were developed from B.napus mitotype-specific sequences and used to identify breeding lines.

    With the rapid development of sequencing technologies,mt genome sequences can be assembled using long-read thirdgeneration technologies [17–20].The aim of the present study was to assemble the mt genomes of root,seed,and leaf mustards using PacBio sequencing and to develop MSS markers to characterize B.juncea accessions and mitotypes and to investigate the diversification and spread of B.juncea mitotypes.

    2.Materials and methods

    2.1.Plant materials

    Three Brassica juncea accessions:Datoucai (ssp.napiformis),Sichuan Yellow (SY,ssp.juncea),and CR 2493 (ssp.integrifolia)were used for genome sequencing.A panel of 558 B.juncea accessions from 38 countries or regions were used for mitotyping.Their geographic origins are presented in Table S1.The other accessions,including 51 B.napus accessions,5 B.rapa accessions,4 B.oleracea accessions,and 1 accession each of B.nigra and B.carinata(Table S2) were used to investigate mt genome variation.F1and F2progenies from reciprocal crosses between SY and Huayejie and their pooled seed samples(Table S3)were used to test the reliability and accuracy of MSS markers.

    2.2.DNA extraction and species identification of Brassica accessions

    Total DNA was isolated from 2-week-old leaves or mature seeds by the CTAB method [21].Species identification of Brassica accessions was performed by multiplex PCR using genome-specific primers [22].

    2.3.Assembly and sequence analysis of mt genomes

    The genomes of Datoucai,Sichuan Yellow,and CR 2493 were sequenced using the PacBio Sequel platform [23] (Table S4).The error correction module in Falcon (github.com/PacificBiosciences/falcon) was used to correct reads.The error-corrected reads were aligned with default parameters against the B.juncea mt genome sequence(JF920288)using blat software(v.3.2.1) [24].Reads with over 80-fold coverage,length >30 kb,and identity of 90%or more were taken as candidate reads from the mt genome.For de novo assembly of the mt genomes of these accessions,the candidate reads were assembled into contigs with Celera Assembler 8.3rc2[25],using default parameters.The longest contigs were aligned(blast.ncbi.nlm.nih.gov/Blast.cgi) against JF920288 to identify the start position of the mt genome.The circular genome was constructed after the overlap at the start and end of the sequence was verified.Finally,SNPs and InDels between the new and the reference (JF920288) mt sequences were identified by Basic Local Alignment Search Tool (BLAST,blast.ncbi.nlm.nih.gov/Blast.cgi)alignment and validated by sequencing of PCR products.

    The mt genomes were annotated by BLAST searches against nr/nt (blast.ncbi.nlm.nih.gov/Blast.cgi) to identify known mt protein genes,rRNA genes,and repetitive sequences.To identify tRNA genes,tRNAscan-SE (lowelab.ucsc.edu/tRNAscan-SE/) was used.OGDraw 1.3.1 [26] was used to draw circular mt genome maps.

    2.4.Phylogenetic analysis of mt genomes of Brassicaceae

    Twenty-one Brassica mt genome sequences were retrieved from NCBI (www.ncbi.nlm.nih.gov/) and used for clustering with the three sequences assembled above.Each mt genome sequence was simulated by the ART software [27] into 30-fold paired-end sequences (Illumina,San Diego,CA,USA) with an library of 200 bp and reads length of 150 bp.BWA 0.7.16[28]was then used to align the simulated reads against JF920288.SNPs and InDels between the sequences were identified by GATK [29].The identified variant sites were extracted,concatenated,and aligned with ClustalW in MEGA 7.0 [30],The maximum likelihood method was used to construct the phylogenetic tree,with 1000 bootstraps.The phylogenetic tree was drawn with EvolView(www.evolgenius.info/evolview).

    2.5.PCR validation of mt genome variants in B.Juncea

    To validate mt genome variants,the primers sequences of MSS markers MT.CNV and MT.SNP were redesigned as described previously [23] (Table S5).The PCR reactions contained 10 μL 2× Fast LongTaq PCR PreMix (Innovagene,Changsha,China),100 ng DNA template,and 0.4 μL forward and reverse primers (10 μmol L-1),and were made to 20 μL with sterilized water.The PCR protocol was as follows:94°C for 3 min;34 cycles of 94°C for 30 s,annealing for 30 s with the annealing temperature shown in Table S5,72°C for 30 s;and a final extension at 72°C for 5 min.For detecting MT.SNP markers,PCR amplicon could be digested by the endonuclease EarI when the nucleotide is C at position no.79,573 according to JF920288,whereas it could not be digested when the nucleotide C had undergone transversion to A.All PCR products,whether or not digested,were separated by electrophoresis on 2.0% agarose gels.

    3.Results

    3.1.The mt genomes of Brassica juncea

    The read N50s for the three assembled accessions Datoucai,Sichuan Yellow,and CR 2493 were 16.2,13.6,and 16.0 kb,respectively (Table S4).Their final assembled mt genomes were respectively 219,775 (GenBank ID:MZ671991),219,806 (MZ671990),and 219,775 bp(MZ671992)in length(Table 1).Like the reference(JF920288)[6],these genomes all harbored 55 genes,including 34 protein-coding genes,3 rRNA genes,and 18 tRNA genes.The mt genome of B.juncea Datoucai is shown in Fig.S1.

    Table 1 Size of mt genomes in Brassica juncea.

    3.2.Phylogenetics of the mt genomes in Brassicaceae

    A total of 2710 SNPs and 1371 InDels were detected in 24 Brassica mt genome sequences.These variant sites were used to construct a phylogenetic tree with Arabidopsis thaliana as an outgroup.The mt genomes of Brassicaceae were divided into clades A,B,C,and Bna.All the mt genomes of B.rapa and B.juncea and three mt genomes of pol-like B.napus were clustered in clade A,while clade B included the mt genomes of B.nigra,B.carinata,and Sinapis arvensis.Four B.oleracea mt genomes constituted clade C.Two nap-like B.napus mt genomes formed clade Bna (Fig.1).These results showed that there is divergence among the mt genomes of six Brassica species,and indicate that pol-like B.napus and nap-like B.napus have different cytoplasmic origins.

    Fig.1.Phylogenetic tree of Brassicaceae mt genomes.The purple circle size represents the number of 31-bp repeat sequences.The red square indicates that the nucleotide is A,whereas the green and blue squares represent C and T,respectively.The species and serial numbers of the mt genomes used for phylogenetic analysis are Arabidopsis thaliana (NC_001284), Sinapis arvensis(KM851044), Brassica rapa (JF920285,AP017996,AP017997), B.nigra (AP012989,KP030753), B.oleracea (AP012988,KU831325,JF920286,KJ820683), B.juncea(MT675103,KF736093,MZ671990,MZ671991,MZ671992,JF920288,KJ461445),B.napus (FR715249,KM454975,KM454974,AP006444,KP161618),and B.carinata(JF920287)).

    3.3.Variation in Brassica juncea mt genomes

    One copy-number variation (CNV),four SNPs,and ten InDels were identified among the three new mt genome sequences and the reference JF920288 in B.juncea (Fig.2a;Table S6).All these variant sites were validated by PCR amplification.However,only four variant sites were found among the three new B.juncea mt genome sequences.Compared to Datoucai,SY had a transversion(T →G) at nt 40,702 and two 31-bp repeat sequences between nts 65,564 and 65,596,while CR 2493 had two transversions,G/T at nt 43,641 and C/A at nt 79,573.Sequencing of the PCR amplicons from 30 B.juncea accessions showed that the polymorphic nucleotide G at nt 40,702 kept together with the 31-bp repeats between nts 65,564 and 65,596 (Fig.2b;Table S7),but the variable nucleotide T at nt 43,641 was found only in CR 2493.Accordingly,only MT.CNV (nts 65,564–65,596) and MT.SNP (nt 79,573) were used to develop MSS markers.

    A total of 620 Brassica accessions(Tables S1,S2)were identified by genomic-specific markers [22].Among them,558 accessions belong to the species B.juncea.Three types of mt genomes (mitotypes,MT) in these B.juncea accessions were distinguished with the MSS markers MT.CNV and MT.SNP (Table S5):MT1 (one 31-bp repeat,nucleotide C),MT2 (two 31-bp repeats,nucleotide C),and MT3 (one 31-bp repeat,nucleotide A) (Fig.2b).MT1,MT2,and MT3 accounted for 16.3% (91/558),39.6% (221/558),and 44.1% (246/558) (Table S1),respectively.Among the remaining 62 accessions,51 B.napus and 5 B.rapa accessions were distinguished by these MSS markers (Table S2),as shown by the differences in the mt genome sequences of these species (Fig.1).

    3.4.Distribution of mitotypes among subspecies of Brassica juncea

    All 29 root mustards carried only MT1,whereas all 13 stem mustards and 96% (102/106) of leaf mustards carried MT3.Four hundred ten seed mustards carried all three mitotypes,with the three mitotypes accounting for 14.1%,53.9%,and 31.9%,respectively (Fig.3).Seed mustards from different geographic regions carried different mitotypes.Seed mustards from northwest China carried MT2,while those from South Asia carried MT3.The latitude 34°N appeared to be a geographical dividing line distinguishing the mitotypes of 492 B.juncea accessions with known geographical origins (Fig.4;Table S1).MT1 and MT2 occurred more frequently in the north,while MT3 predominated in the south.

    3.5.Utility of MSS markers for breeding and seed production of Brassica juncea

    The F1and F2progenies from the reciprocal crosses between Sichuan Yellow (MT2) and Huayejie (MT3) displayed the same mitotype as their female parent (Fig.5a).When 13 mixed seed samples of both parents were mitotyped to detect the sensitivity of the MSS markers,the markers MT.CNV and MT.SNP detected at least 5% of seed contamination and could detect contamination in a wide dynamic range of mixed proportion (5%–95%) (Fig.5b).

    4.Discussion

    4.1.MT1 is the primitive mitotype of Brassica juncea

    The clustering of the mt genomes of all B.juncea subspecies with those of B.rapa confirmed that the cytoplasm of B.juncea was directly inherited from the diploid progenitor species B.rapa.We confirmed that B.rapa and B.juncea showed intraspecific divergence in mt genomes[10]and found that MT3,though common to many B.juncea accessions (Tables S1,S2;Fig.1),was present in B.rapa only in the subspecies Nipposinica Mizuna,a unique vegetable cultivated in Kyoto since the 18th and early 19th centuries [32].Like potherb mustard (B.juncea var.multiceps),which dates back to the 16th century [33],Mizuna has deeply lobed,narrow leaves,high tillering ability,and small seeds.Contrary to Hatono et al.[10],we propose that the mt genome of Mizuna was introgressed from mustard.MT1 of B.rapa is phylogenetically the closest to that of B.juncea and thus can be considered the primitive mitotype of B.juncea.

    4.2.Brassica juncea spread via three routes

    Fig.2.Variation in Brassica juncea mt genomes.(a)The positions of fifteen variants identified among three new mt genome sequences and the reference JF920288 of B.juncea.The orange and blue dotted lines represent the variant sites used for genotyping and not used for genotyping,respectively.(b)The variation and genotype of four mt genomes.Red and green lettering indicate respectively the CNV between nts 65,564 and 65,596 and the single-nucleotide variation at nt 79,573.MT1,mitotype 1;MT2,mitotype 2;MT3,mitotype 3.

    Fig.3.Proportions of mitotypes in various subspecies of Brassica juncea. N,root mustard;J,seed mustard;I,leaf mustard;T,stem mustard;MT1,mitotype 1;MT2,mitotype 2;MT3,mitotype 3.

    The mt genome evolved from MT1 to MT2 and MT3 via respectively a repeat insertion and a base transversion in B.juncea.B.juncea accessions from northern China,Central Asia,and Europe carried mainly MT1 and MT2,while those from Southern China and South Asia carried MT3 (Fig.4).We propose that B.juncea spread via several routes(Fig.6).The B.juncea accessions carrying MT1 spread eastward into East Asia.Those carrying MT2 spread into Central Asia and northwest China along the northern route suggested by Chen et al.[34].This route partially overlaps with the migration route of MT1.Accessions carrying MT3 spread into South Asia and further southwestern China along the southern route.MT1 and MT2 from northern China and MT3 from southwest China were introduced into the Yangtze River basin,where all three mitotypes of B.juncea are located and new forms of B.juncea evolved.

    4.3.A new form of oil mustard evolved from the hybridization between two gene pools

    Fig.4.Geographical distribution of Brassica juncea mitotypes.The green circle,orange circle,and red triangle represent MT1,MT2,and MT3,respectively.**,significant difference at P <0.01 between MT1,MT2 and MT3.MT1,mitotype 1;MT2,mitotype 2;MT3,mitotype 3.The world map was downloaded at the website http://bzdt.ch.mnr.gov.cn,and the map content approval number is GS(2016)1666.

    Fig.5.Electrophoregrams of PCR products amplified from mitotype-specific sequence markers in Brassica juncea.(a) Identification of cytoplasmic donor parents of hybrid offspring.(b)Identification of seed mixtures.M,DNA molecular weight ladder;D,a direct cross;R,the reciprocal cross.Lanes 1–2,P1(Sichuan Yellow);Lanes 3–4,F1(P1×P2);Lanes 5–6,F2(P1×P2);Lanes 7–8,P2(Huayejie);Lanes 9–10,F1(P2×P1);Lanes 11–12,F2(P2×P1);Lanes 13–25,100%,99%,95%,90%,80%,70%,50%,30%,20%,10%,5%,1%,and 0% of Sichuan Yellow seed,respectively.

    Fig.6.Evolution and migration of Brassica juncea mt genomes.

    Taxonomic[35],biochemical[36],and DNA marker[34]studies have shown that the seed mustards fall into two groups:the India-Pakistan and the China-Eastern Europe group.The India-Pakistan group typically has brown seed,is long day-insensitive,and carries the MT3 mitotype,while the China-Eastern Europe group is characterized by both yellow and brown seed,long-day sensitivity,and the MT2 mitotype.Oilseed mustard in southwest China carries all three mitotypes,with MT2 prevalent (Fig.4;Table S1),and shares the yellow-seed characteristic of oilseed mustard in northern China and the early-maturity character of India-Pakistan oilseed mustard.We speculate that a new form of oilseed mustard evolved in southwest China from hybridization between China-Eastern and India-Pakistan gene pools.

    4.4.The Brassica juncea MSS markers have potential for practical application

    Based on the distribution of mitotypes among subspecies,the MSS markers developed in this study may be applied to subspecies identification of B.juncea varieties or accessions;identification of the cytoplasmic donors of hybrid progenies of B.juncea,and determination of seed purity in B.juncea.Besides,the MT.CNV marker distinguished the pol-like from the nap-like mt genome in B.napus(Table S2),indicating that this MSS marker can be used for mitotyping not only in B.juncea but in other Brassica species.

    5.Conclusions

    The mt genome of root mustard was assembled.Based on CNV and SNP variation in mt genomes,two MSS markers were developed and three mitotypes identified in B.juncea.Analysis of the geographical and subspecies distributions of these mitotypes showed that B.juncea spread via three routes and that a new form of early maturing yellow-seeded oil mustard evolved in southwestern China by inter-gene-pool hybridization.

    CRediT authorship contribution statement

    Liang You:Methodology,Validation,Investigation,Data curation,Software,Visualization,Writing– original draft.Liu Yang:Investigation,Data curation,Writing– original draft.Fangying Liu:Software.Lei Kang:Methodology,Resources.Hao Chen:Software.Bin Yang:Resources.Qian Yang:Software.Zhongsong Liu:Conceptualization,Data curation,Formal analysis,Resources,Supervision,Writing– review &editing,Funding acquisition.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by China Agriculture Research System(CARS-12) and National Natural Science Foundation of China(U20A2029).

    Appendix A.Supplementary data

    Supplementary data for this article can be found online at https://doi.org/10.1016/j.cj.2021.10.004.

    91老司机精品| 国产亚洲精品av在线| 黑人操中国人逼视频| 老汉色∧v一级毛片| 国产一级毛片七仙女欲春2 | 人成视频在线观看免费观看| 亚洲av电影在线进入| 91av网站免费观看| 性欧美人与动物交配| 国产激情偷乱视频一区二区| 亚洲精品一卡2卡三卡4卡5卡| 女人高潮潮喷娇喘18禁视频| 国产一区二区三区在线臀色熟女| 国产成人精品无人区| 首页视频小说图片口味搜索| 校园春色视频在线观看| 我的亚洲天堂| 成年版毛片免费区| 一a级毛片在线观看| 香蕉丝袜av| 精品一区二区三区四区五区乱码| 精品久久久久久成人av| 日本成人三级电影网站| 国产精品久久久久久精品电影 | 熟女电影av网| 久久99热这里只有精品18| 最近最新中文字幕大全免费视频| 国产单亲对白刺激| 欧美日韩瑟瑟在线播放| 婷婷六月久久综合丁香| 午夜福利在线观看吧| 亚洲男人的天堂狠狠| 欧美精品啪啪一区二区三区| 中文字幕人成人乱码亚洲影| 欧美zozozo另类| 精品久久蜜臀av无| 又黄又粗又硬又大视频| 18禁黄网站禁片免费观看直播| 久久久精品欧美日韩精品| 一进一出抽搐动态| 91在线观看av| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲七黄色美女视频| 亚洲一区高清亚洲精品| 757午夜福利合集在线观看| 欧美av亚洲av综合av国产av| 99国产精品一区二区蜜桃av| 国产激情久久老熟女| 欧美日韩瑟瑟在线播放| 欧美黑人精品巨大| 午夜免费激情av| 亚洲欧洲精品一区二区精品久久久| 精品福利观看| 丰满的人妻完整版| 大香蕉久久成人网| 亚洲精品av麻豆狂野| 99久久久亚洲精品蜜臀av| 深夜精品福利| 后天国语完整版免费观看| 91老司机精品| 午夜福利在线在线| 亚洲人成77777在线视频| 女警被强在线播放| 国产伦在线观看视频一区| 日本五十路高清| 一个人免费在线观看的高清视频| 97超级碰碰碰精品色视频在线观看| 精品久久久久久久久久免费视频| 亚洲全国av大片| 欧美性猛交黑人性爽| 黄色片一级片一级黄色片| 成人精品一区二区免费| 免费看a级黄色片| 久久人妻福利社区极品人妻图片| 亚洲男人的天堂狠狠| 黄色成人免费大全| 久久久水蜜桃国产精品网| 国产av又大| 啦啦啦韩国在线观看视频| 国产一区二区三区视频了| 亚洲熟妇熟女久久| 三级毛片av免费| 国产亚洲精品av在线| 亚洲成人精品中文字幕电影| 麻豆av在线久日| 久久午夜综合久久蜜桃| 天天躁夜夜躁狠狠躁躁| 亚洲av第一区精品v没综合| 中出人妻视频一区二区| 午夜两性在线视频| 国产精品九九99| 欧美日韩精品网址| 国产又爽黄色视频| 嫁个100分男人电影在线观看| 精品第一国产精品| 神马国产精品三级电影在线观看 | 亚洲欧美激情综合另类| 99久久99久久久精品蜜桃| 欧美日本亚洲视频在线播放| 日本 欧美在线| 国产又黄又爽又无遮挡在线| 亚洲专区中文字幕在线| 亚洲av熟女| 色尼玛亚洲综合影院| 亚洲成人免费电影在线观看| 国产精品日韩av在线免费观看| 人人妻人人澡人人看| 在线观看舔阴道视频| 在线视频色国产色| 亚洲精品久久国产高清桃花| 国内精品久久久久精免费| 国产爱豆传媒在线观看 | 两人在一起打扑克的视频| 国产免费男女视频| 日韩欧美三级三区| 很黄的视频免费| 亚洲国产日韩欧美精品在线观看 | 亚洲人成网站高清观看| 国产av在哪里看| 天天添夜夜摸| 可以免费在线观看a视频的电影网站| 少妇熟女aⅴ在线视频| 草草在线视频免费看| 日本 欧美在线| 亚洲天堂国产精品一区在线| ponron亚洲| 国内毛片毛片毛片毛片毛片| 欧美日韩亚洲国产一区二区在线观看| 国产亚洲av高清不卡| 欧美黑人欧美精品刺激| aaaaa片日本免费| 亚洲国产日韩欧美精品在线观看 | 欧美久久黑人一区二区| 男女午夜视频在线观看| 国产精华一区二区三区| 亚洲专区字幕在线| 色综合亚洲欧美另类图片| 国产av又大| 色综合婷婷激情| 91成人精品电影| 国产高清有码在线观看视频 | 久久青草综合色| 久久久久亚洲av毛片大全| 成在线人永久免费视频| 国产又黄又爽又无遮挡在线| 伊人久久大香线蕉亚洲五| 国产亚洲精品久久久久5区| 日韩欧美在线二视频| 动漫黄色视频在线观看| 国产亚洲精品久久久久5区| 国产精品永久免费网站| www.自偷自拍.com| 日日干狠狠操夜夜爽| 亚洲第一电影网av| 亚洲精品在线观看二区| 嫁个100分男人电影在线观看| 亚洲精品av麻豆狂野| 无遮挡黄片免费观看| 99久久无色码亚洲精品果冻| 成人精品一区二区免费| 国产一卡二卡三卡精品| 在线看三级毛片| 免费无遮挡裸体视频| 国产成年人精品一区二区| 国内精品久久久久久久电影| 白带黄色成豆腐渣| a级毛片a级免费在线| 欧美一级毛片孕妇| 久久久久久人人人人人| 欧美激情高清一区二区三区| 天堂影院成人在线观看| 亚洲自拍偷在线| 国产精品久久视频播放| 亚洲国产日韩欧美精品在线观看 | 99国产精品99久久久久| 亚洲第一av免费看| 男人操女人黄网站| 精品福利观看| 国产精品精品国产色婷婷| 亚洲国产中文字幕在线视频| 神马国产精品三级电影在线观看 | 国产av一区在线观看免费| 丝袜在线中文字幕| 亚洲五月天丁香| 窝窝影院91人妻| 18禁黄网站禁片免费观看直播| 男人的好看免费观看在线视频 | 91成人精品电影| 麻豆av在线久日| 久久国产亚洲av麻豆专区| 精品国产一区二区三区四区第35| bbb黄色大片| 日韩精品中文字幕看吧| 一二三四社区在线视频社区8| 亚洲片人在线观看| av在线天堂中文字幕| 正在播放国产对白刺激| 美女免费视频网站| 无人区码免费观看不卡| 一二三四在线观看免费中文在| 久久香蕉国产精品| 中文在线观看免费www的网站 | 天天添夜夜摸| xxx96com| 亚洲片人在线观看| 精品一区二区三区四区五区乱码| 亚洲五月色婷婷综合| 国产精品日韩av在线免费观看| 亚洲男人的天堂狠狠| 日韩免费av在线播放| 国产高清有码在线观看视频 | 搞女人的毛片| 美女高潮到喷水免费观看| 午夜福利成人在线免费观看| 婷婷精品国产亚洲av在线| 最近最新免费中文字幕在线| 老司机深夜福利视频在线观看| 18禁国产床啪视频网站| 成人亚洲精品av一区二区| 亚洲成人久久性| 亚洲七黄色美女视频| 怎么达到女性高潮| 他把我摸到了高潮在线观看| 亚洲免费av在线视频| 成人特级黄色片久久久久久久| 俄罗斯特黄特色一大片| 中文字幕av电影在线播放| 亚洲中文字幕一区二区三区有码在线看 | 法律面前人人平等表现在哪些方面| 日韩免费av在线播放| 99久久无色码亚洲精品果冻| 国产成+人综合+亚洲专区| 久久天堂一区二区三区四区| 精品午夜福利视频在线观看一区| 韩国精品一区二区三区| 最近在线观看免费完整版| 欧美日韩瑟瑟在线播放| 国产精品日韩av在线免费观看| 国产精品 欧美亚洲| 亚洲av成人不卡在线观看播放网| tocl精华| 女同久久另类99精品国产91| 国产成人精品无人区| 波多野结衣巨乳人妻| 香蕉av资源在线| 国产97色在线日韩免费| 男人舔女人的私密视频| 欧美乱妇无乱码| 亚洲国产精品合色在线| 少妇裸体淫交视频免费看高清 | 免费在线观看视频国产中文字幕亚洲| 欧美激情 高清一区二区三区| 性欧美人与动物交配| 亚洲成人久久性| 最近最新免费中文字幕在线| 色老头精品视频在线观看| 久久久久久国产a免费观看| 高清在线国产一区| 一区福利在线观看| 色综合欧美亚洲国产小说| 一边摸一边做爽爽视频免费| 久久久久久久精品吃奶| 99久久99久久久精品蜜桃| 美女高潮喷水抽搐中文字幕| 午夜成年电影在线免费观看| www日本黄色视频网| 日本一区二区免费在线视频| 国产精品亚洲一级av第二区| 一夜夜www| 啦啦啦观看免费观看视频高清| 亚洲精品久久成人aⅴ小说| 两人在一起打扑克的视频| 黄色 视频免费看| a级毛片在线看网站| 欧美乱色亚洲激情| 国产一区二区激情短视频| 亚洲天堂国产精品一区在线| 国产主播在线观看一区二区| 亚洲av电影不卡..在线观看| 国产成人系列免费观看| 99久久国产精品久久久| 日韩欧美 国产精品| 久久亚洲真实| 色老头精品视频在线观看| 嫩草影院精品99| 夜夜躁狠狠躁天天躁| 国产主播在线观看一区二区| 成人三级做爰电影| 无遮挡黄片免费观看| 国产国语露脸激情在线看| 亚洲中文字幕日韩| 高清毛片免费观看视频网站| 日本成人三级电影网站| 1024视频免费在线观看| 国语自产精品视频在线第100页| 欧美日韩亚洲综合一区二区三区_| 人妻丰满熟妇av一区二区三区| 久久精品国产亚洲av香蕉五月| 两人在一起打扑克的视频| 老熟妇仑乱视频hdxx| 日韩高清综合在线| 一级a爱视频在线免费观看| 18禁美女被吸乳视频| 国产成人精品久久二区二区免费| 欧美日韩中文字幕国产精品一区二区三区| 亚洲精品av麻豆狂野| 在线免费观看的www视频| 法律面前人人平等表现在哪些方面| 亚洲自拍偷在线| 三级毛片av免费| 免费在线观看影片大全网站| 亚洲色图 男人天堂 中文字幕| 免费无遮挡裸体视频| 欧美日韩乱码在线| 欧美 亚洲 国产 日韩一| 19禁男女啪啪无遮挡网站| 91老司机精品| 亚洲国产欧洲综合997久久, | 午夜福利免费观看在线| 亚洲精品av麻豆狂野| 国产精品二区激情视频| 精品一区二区三区av网在线观看| 久久国产乱子伦精品免费另类| 美女 人体艺术 gogo| 夜夜看夜夜爽夜夜摸| 母亲3免费完整高清在线观看| 一本大道久久a久久精品| 90打野战视频偷拍视频| 精品高清国产在线一区| 久久久久久久午夜电影| 99国产精品99久久久久| 亚洲av电影在线进入| 国产激情偷乱视频一区二区| 久久久国产精品麻豆| 夜夜躁狠狠躁天天躁| 亚洲,欧美精品.| 婷婷丁香在线五月| 国产又色又爽无遮挡免费看| 欧美中文综合在线视频| 久久精品aⅴ一区二区三区四区| 免费看日本二区| av中文乱码字幕在线| 欧美日韩一级在线毛片| 悠悠久久av| 欧美成狂野欧美在线观看| 欧美成人午夜精品| 久久久久九九精品影院| 国产一级毛片七仙女欲春2 | 巨乳人妻的诱惑在线观看| 欧美丝袜亚洲另类 | 悠悠久久av| 制服诱惑二区| 久久久久久九九精品二区国产 | 一区二区三区国产精品乱码| 午夜福利免费观看在线| 午夜日韩欧美国产| 俄罗斯特黄特色一大片| 亚洲自偷自拍图片 自拍| 极品教师在线免费播放| 99国产精品一区二区三区| 久久人妻福利社区极品人妻图片| 超碰成人久久| 色播亚洲综合网| 欧美国产精品va在线观看不卡| 欧美日韩亚洲综合一区二区三区_| 韩国av一区二区三区四区| 亚洲精品粉嫩美女一区| 一级毛片精品| 国产精品爽爽va在线观看网站 | 老汉色av国产亚洲站长工具| 人妻丰满熟妇av一区二区三区| 男女床上黄色一级片免费看| 免费观看精品视频网站| 美女大奶头视频| 欧美色视频一区免费| 不卡一级毛片| av超薄肉色丝袜交足视频| 看黄色毛片网站| 久久精品影院6| 啦啦啦韩国在线观看视频| 啦啦啦 在线观看视频| 久久 成人 亚洲| 国产精品日韩av在线免费观看| 丁香六月欧美| 国产精品av久久久久免费| 久久精品国产综合久久久| 日韩视频一区二区在线观看| 又黄又粗又硬又大视频| 免费人成视频x8x8入口观看| 激情在线观看视频在线高清| 一个人观看的视频www高清免费观看 | 一本一本综合久久| 少妇粗大呻吟视频| 老司机午夜十八禁免费视频| 久久国产精品男人的天堂亚洲| 97超级碰碰碰精品色视频在线观看| 最好的美女福利视频网| 婷婷丁香在线五月| 他把我摸到了高潮在线观看| 我的亚洲天堂| 午夜福利免费观看在线| 亚洲自偷自拍图片 自拍| 满18在线观看网站| 国产精品99久久99久久久不卡| 午夜福利在线观看吧| 国产亚洲精品久久久久久毛片| a在线观看视频网站| 国产亚洲精品久久久久久毛片| 国产色视频综合| 午夜视频精品福利| 精品一区二区三区四区五区乱码| 精品电影一区二区在线| 亚洲一区高清亚洲精品| 国产主播在线观看一区二区| 日本一本二区三区精品| 亚洲精品国产精品久久久不卡| 久久久久久久久中文| 国产精品av久久久久免费| 亚洲自偷自拍图片 自拍| 久久久久久久精品吃奶| 成人特级黄色片久久久久久久| 1024手机看黄色片| 日本五十路高清| 老司机午夜福利在线观看视频| 久久狼人影院| 午夜久久久久精精品| 99精品欧美一区二区三区四区| 成人欧美大片| 免费观看人在逋| 婷婷亚洲欧美| 亚洲五月婷婷丁香| 91字幕亚洲| 欧美丝袜亚洲另类 | 欧美av亚洲av综合av国产av| 久久伊人香网站| 亚洲av美国av| 免费一级毛片在线播放高清视频| 欧美日韩亚洲综合一区二区三区_| 色婷婷久久久亚洲欧美| 一边摸一边抽搐一进一小说| 老熟妇仑乱视频hdxx| 久久久久九九精品影院| 久久精品91蜜桃| 大香蕉久久成人网| 韩国精品一区二区三区| 91麻豆av在线| 免费电影在线观看免费观看| 一级毛片精品| 搡老妇女老女人老熟妇| 又紧又爽又黄一区二区| 在线观看免费日韩欧美大片| 此物有八面人人有两片| 老司机福利观看| 欧美黑人精品巨大| 免费在线观看日本一区| 国内毛片毛片毛片毛片毛片| 一级a爱视频在线免费观看| 欧美成狂野欧美在线观看| 此物有八面人人有两片| 亚洲av电影不卡..在线观看| 深夜精品福利| 搡老熟女国产l中国老女人| 欧美在线一区亚洲| 精品一区二区三区视频在线观看免费| x7x7x7水蜜桃| 久久精品aⅴ一区二区三区四区| 久久久久久久久免费视频了| 天天添夜夜摸| 一二三四在线观看免费中文在| 麻豆国产av国片精品| 日本五十路高清| 国产激情久久老熟女| 国产成年人精品一区二区| 一区二区三区国产精品乱码| cao死你这个sao货| 老司机靠b影院| 久久久久久亚洲精品国产蜜桃av| 久久精品国产亚洲av香蕉五月| 午夜免费鲁丝| 欧美日韩乱码在线| 亚洲中文字幕日韩| aaaaa片日本免费| av欧美777| 50天的宝宝边吃奶边哭怎么回事| 丝袜美腿诱惑在线| 国产亚洲精品久久久久久毛片| bbb黄色大片| 美女午夜性视频免费| 久久午夜综合久久蜜桃| 国产一区二区三区在线臀色熟女| av免费在线观看网站| 国产真实乱freesex| 久久久国产欧美日韩av| 国产精品久久电影中文字幕| 免费高清视频大片| 久久久久免费精品人妻一区二区 | 99国产精品一区二区三区| 桃红色精品国产亚洲av| 2021天堂中文幕一二区在线观 | 视频区欧美日本亚洲| 又黄又爽又免费观看的视频| 男人操女人黄网站| 97人妻精品一区二区三区麻豆 | 国内揄拍国产精品人妻在线 | 1024香蕉在线观看| 精品国产国语对白av| a级毛片在线看网站| 国产精品综合久久久久久久免费| 99久久综合精品五月天人人| 深夜精品福利| 亚洲自偷自拍图片 自拍| 一区二区三区精品91| 人人妻人人澡欧美一区二区| 中文在线观看免费www的网站 | 两人在一起打扑克的视频| 国产精品久久久久久精品电影 | 夜夜爽天天搞| 男人舔女人的私密视频| 午夜成年电影在线免费观看| 久久久久久久午夜电影| 国产精品98久久久久久宅男小说| 人人妻人人澡人人看| 日本 av在线| 免费一级毛片在线播放高清视频| 免费人成视频x8x8入口观看| 午夜福利高清视频| 亚洲国产精品久久男人天堂| 琪琪午夜伦伦电影理论片6080| 岛国在线观看网站| 欧美日韩福利视频一区二区| 男人舔女人下体高潮全视频| 中文字幕av电影在线播放| 亚洲aⅴ乱码一区二区在线播放 | 色综合站精品国产| 国语自产精品视频在线第100页| 免费在线观看黄色视频的| 中文字幕人成人乱码亚洲影| 日日爽夜夜爽网站| 啪啪无遮挡十八禁网站| 久久精品人妻少妇| 高清在线国产一区| 欧美性猛交╳xxx乱大交人| 一边摸一边做爽爽视频免费| 夜夜夜夜夜久久久久| 国产一卡二卡三卡精品| 成人永久免费在线观看视频| 午夜精品在线福利| 午夜福利欧美成人| 国产精品电影一区二区三区| 夜夜爽天天搞| 欧美又色又爽又黄视频| 日韩欧美国产在线观看| 香蕉丝袜av| 亚洲精品中文字幕在线视频| 色av中文字幕| 成人免费观看视频高清| 日本成人三级电影网站| 欧美丝袜亚洲另类 | 国产精品久久久久久精品电影 | 免费看十八禁软件| 欧美日本亚洲视频在线播放| 亚洲在线自拍视频| 大型av网站在线播放| 大型黄色视频在线免费观看| 在线播放国产精品三级| 嫩草影院精品99| 亚洲 欧美 日韩 在线 免费| 欧美一级毛片孕妇| 国产精品日韩av在线免费观看| 久久国产精品影院| 成年免费大片在线观看| 国产成年人精品一区二区| 成人永久免费在线观看视频| 欧美色视频一区免费| 亚洲精品久久成人aⅴ小说| 亚洲av片天天在线观看| 久久久久九九精品影院| www日本黄色视频网| 麻豆一二三区av精品| 中国美女看黄片| 亚洲自拍偷在线| 国产精品电影一区二区三区| 精品久久久久久久末码| 色在线成人网| 50天的宝宝边吃奶边哭怎么回事| 免费人成视频x8x8入口观看| 99国产极品粉嫩在线观看| 成人18禁高潮啪啪吃奶动态图| 18禁美女被吸乳视频| 天天躁夜夜躁狠狠躁躁| 一本精品99久久精品77| 午夜亚洲福利在线播放| 久久久久久九九精品二区国产 | 在线观看www视频免费| 精品午夜福利视频在线观看一区| videosex国产| 国产精品亚洲一级av第二区| 精品欧美一区二区三区在线| videosex国产| 久久久久久免费高清国产稀缺| 狂野欧美激情性xxxx| 久久久久久国产a免费观看| 一边摸一边做爽爽视频免费| 91麻豆av在线| 亚洲人成77777在线视频| 国产一区二区三区视频了| 午夜成年电影在线免费观看| 嫩草影院精品99| 老汉色∧v一级毛片| 国产精品久久电影中文字幕| 亚洲av电影在线进入| 黄网站色视频无遮挡免费观看| 99热只有精品国产| 亚洲最大成人中文| 很黄的视频免费|