李朝陽,袁 亮,2,張小玲,2*,韋 榮,李雙志
成都碳質(zhì)氣溶膠變化特征及二次有機(jī)碳的估算
李朝陽1,袁 亮1,2,張小玲1,2*,韋 榮1,李雙志1
(1.成都信息工程大學(xué)大氣科學(xué)學(xué)院,高原大氣與環(huán)境四川省重點(diǎn)實(shí)驗(yàn)室,四川 成都 610225;2.成都平原城市氣象與環(huán)境四川省野外科學(xué)觀測研究站,四川 成都 610225)
利用2020年6月~2021年5月在成都市觀測的碳質(zhì)氣溶膠小時(shí)分辨率數(shù)據(jù),分析了氣溶膠中總碳(TC)、有機(jī)碳(OC)、元素碳(EC)和二次有機(jī)碳(SOC)的變化特征.結(jié)果表明:觀測期間(TC)、(OC)、(EC)和(OC/EC)的年均值分別為(9.5±4.4)μg/m3,(6.4±3.2)μg/m3,(3.2±1.1)μg/m3,2.2±0.5.成都(TC)、OC)、EC)均表現(xiàn)冬為季最高((15.8±8.2),(11.1±5.8),(4.6±2.5)μg/m3),春秋次之,夏季最低((6.1±0.9),(4.5±2.0),(2.7±1.4)μg/m3)的特征.(OC/EC)季節(jié)均值(1.9~2.6)以及四個(gè)季節(jié)的(TC)、(OC)、(EC)呈現(xiàn)早(07:00~09:00)晚(22:00~01:00)“雙峰”的日變化特征,表明機(jī)動(dòng)車排放源對(duì)成都碳質(zhì)氣溶膠的影響較大.春夏季OC與EC的相關(guān)性小于秋冬季,表明春夏季OC、EC來源差異較大.由EC示蹤法和最小相關(guān)性法得到(SOC),(SOC/OC)在夏季最大(40.4%),冬季最小(27.3%).春、夏季SOC與O3呈顯著正相關(guān),表明較強(qiáng)的光化學(xué)反應(yīng)對(duì)SOC生成有重要貢獻(xiàn).選取各季節(jié)連續(xù)高(TC)時(shí)段與季節(jié)平均作對(duì)比,發(fā)現(xiàn)碳質(zhì)氣溶膠有明顯夜間積累過程,夏季高濃度時(shí)段二次生成使得(OC)增長顯著高于(EC),(OC/EC)也迅速上升.
碳質(zhì)氣溶膠;有機(jī)碳;元素碳;二次有機(jī)碳
碳質(zhì)氣溶膠是大氣氣溶膠中一類重要的物質(zhì),占PM2.5顆粒物組分的比例為20%~50%[1],主要包含有機(jī)碳(OC)、元素碳(EC)或黑碳(BC)[2],有機(jī)碳和元素碳之和被稱作總碳(TC).EC主要來源于化石燃料和生物質(zhì)燃料等含碳燃料的不完全燃燒,OC由一次有機(jī)碳(POC)和二次有機(jī)碳(SOC)組成,POC主要包括直接排放的顆粒物OC,SOC則通過大氣中的(半)揮發(fā)性有機(jī)化合物(VOCs)的氧化、凝結(jié)及成核后從氣相轉(zhuǎn)化到顆粒相[3-4].碳質(zhì)氣溶膠在環(huán)境健康和全球氣候變化中扮演著重要角色[5].
目前國內(nèi)外學(xué)者針對(duì)大氣中碳質(zhì)氣溶膠進(jìn)行了大量研究,包括其質(zhì)量濃度和來源[6-8],粒徑大小[9-10]以及轉(zhuǎn)化機(jī)制[11-12].EC(BC)是大氣中最主要的光吸收性氣溶膠,會(huì)對(duì)地球大氣造成正的輻射強(qiáng)迫,而OC對(duì)氣候的影響類似于硫酸鹽、硝酸鹽,通過散射可見光對(duì)大氣造成負(fù)的輻射強(qiáng)迫[13-14].其中,SOC作為二次有機(jī)氣溶膠(SOA)的重要組成部分,其貢獻(xiàn)在霾污染期間可能超過POC[15].SOC的形成涉及光化學(xué)氧化、氣體/顆粒分配和成核/冷凝等復(fù)雜的大氣過程,因此準(zhǔn)確估算SOC的濃度是一個(gè)很大的挑戰(zhàn).大氣環(huán)境中SOA濃度的估算一般采用間接方法,常用的估算方法大致可概括為基于觀測數(shù)據(jù)的估算與基于源排放清單的模擬.郭松等[16]總結(jié)比較了示蹤物產(chǎn)率法、非一次源OC法、非生物質(zhì)燃燒水溶性有機(jī)物法和EC示蹤法,其中二次示蹤物產(chǎn)率法僅估算了幾種特定VOCs前體物對(duì)SOC的貢獻(xiàn),非生物質(zhì)燃燒水溶性有機(jī)物法僅估算了水溶性的SOC,這兩種方法都會(huì)低估總的SOC. EC示蹤法的主要不確定性來自于一次源OC/EC比值的確定,傳統(tǒng)的方法包括直接運(yùn)用最小OC/EC比值或者在OC/EC比率數(shù)據(jù)的固定百分位數(shù)內(nèi)(通常為5%~20%)將OC與EC進(jìn)行回歸等,Wu等[17]研究出的最小相關(guān)性法對(duì)一次源OC/EC比值的計(jì)算有明確的定量標(biāo)準(zhǔn),減小了前者的經(jīng)驗(yàn)性.EC示蹤法與在線連續(xù)觀測數(shù)據(jù)結(jié)合可估算高時(shí)間分辨率的SOA濃度[18].
四川盆地位于中國西南部的青藏高原以東,被高山與高原包圍.盆地地形和頻繁停滯的氣象條件導(dǎo)致大氣環(huán)境容量較小[19-20].在收獲季節(jié),大量的農(nóng)作物被焚燒,碳質(zhì)物質(zhì)排放問題十分突出.盆地內(nèi)持續(xù)的高相對(duì)濕度和極低的風(fēng)速使得該地區(qū)的BC質(zhì)量濃度位居中國前列[21].成都位于四川盆地西部,學(xué)者們對(duì)成都地區(qū)碳質(zhì)氣溶膠進(jìn)行了大量研究.吳明等[22]在2017年1月采集成都冬季PM2.5樣品,并對(duì)石英膜樣品中碳組分進(jìn)行測定得到OC和EC質(zhì)量濃度為34.0,6.1μg/m3,分別占PM2.5質(zhì)量濃度的26.8%和4.8%.石慧斌等[23]利用碳同位素組成分析得到成都市冬季PM2.5中碳組分來源與汽油車尾氣排放相關(guān)性最強(qiáng),其次為植物燃燒.然而目前有關(guān)成都碳質(zhì)氣溶膠的觀測研究多集中在污染較嚴(yán)重的冬季,采用濾膜采樣后在實(shí)驗(yàn)室分析的離線方法[22-25],較低的時(shí)間分辨率無法反映出各類碳質(zhì)物質(zhì)的日變化,碳質(zhì)氣溶膠水平(特別是SOC)、碳組分和來源的季節(jié)性差異還沒有得到充分評(píng)估.因此本文利用高分辨率連續(xù)在線的長期碳質(zhì)氣溶膠資料分析OC、EC、SOC質(zhì)量濃度和OC/EC比值的日、季節(jié)變化特征,對(duì)于更好地了解典型污染城市中碳質(zhì)氣溶膠的來源、形成機(jī)制和控制策略具有重要意義.
為了進(jìn)一步揭示成都地區(qū)碳質(zhì)氣溶膠日、季變特征及與人類活動(dòng)和光化學(xué)過程的關(guān)系,本文選取成都平原城市氣象與環(huán)境四川省野外科學(xué)觀測研究站(成都信息工程大學(xué)航空港校區(qū))(圖1)2020年6月1日~2021年5月31日大氣中TC、OC和EC連續(xù)觀測數(shù)據(jù)進(jìn)行分析研究.該觀測點(diǎn)處于居住區(qū)和工業(yè)區(qū)的混合區(qū),觀測數(shù)據(jù)能夠一定反映受交通和工業(yè)排放等人類生活源影響的成都大氣環(huán)境含碳?xì)馊苣z濃度水平.同期的常規(guī)污染物(PM2.5、O3、SO2、NO2、CO)資料來自國控環(huán)境監(jiān)測站點(diǎn),氣象資料來自成都市雙流站的溫度(T)、濕度(RH)、風(fēng)速(WS)逐小時(shí)觀測數(shù)據(jù).
碳質(zhì)氣溶膠小時(shí)濃度數(shù)據(jù)來自碳?xì)馊苣z組分在線分析系統(tǒng)(Carbonaceous Aerosol Speciation System,CASS)(Magee Scientific,USA),CASS由總碳在線分析儀(TCA08)與黑碳儀(AE33)組成,其觀測基本流程如圖2所示.其中,BC的質(zhì)量濃度((BC))由AE33獲得,AE33設(shè)置流量為5L/min,通過連續(xù)測量采集到濾膜上的氣溶膠造成的光衰減來確定BC質(zhì)量濃度.為剔除有機(jī)碳對(duì)光吸收的影響,本文使用880nm波長處測得的(BC),并通過公式(1)計(jì)算得到EC濃度((EC)).
TC的質(zhì)量濃度((TC))由TCA08通過熱學(xué)燃燒法測定,TCA08以16.7?L/min的流量將樣品采集至一個(gè)不銹鋼燃燒爐內(nèi)的石英濾膜上,通過瞬間高溫加熱樣品,將所有的含碳?xì)馊苣z轉(zhuǎn)化成CO2,通過非色散紅外(NDIR)檢測器檢測其含量.測量過程采用低流速的環(huán)境空氣作載氣,加熱前后均對(duì)背景中的CO2進(jìn)行測量,最后將測量的TC濃度值扣除背景CO2等效的碳含量后得到(TC).
通過獲取連續(xù)的(TC)和(EC),根據(jù)公式(2)可得到OC的質(zhì)量濃度((OC)).因此,利用CASS可以實(shí)現(xiàn)TC、OC和EC的連續(xù)測量,觀測數(shù)據(jù)時(shí)間分辨率為1h.剔除觀測期間因電路改造和儀器標(biāo)定檢修等原因?qū)е聰?shù)據(jù)缺測和明顯異常值后,經(jīng)過質(zhì)量控制得到7926組碳質(zhì)氣溶膠質(zhì)量濃度的小時(shí)時(shí)間序列.
圖2 CASS系統(tǒng)基本測量流程
式(1)中為熱光法測得的EC與BC之間的比值,采用廠家建議值為0.8[26].
圖3 各季節(jié)r(OC/EC)pri的估算曲線
POC和SOC質(zhì)量濃度((POC)、(SOC))的估算利用EC示蹤法[27-29],其基本原理為公式(3)和(4).
式中:(OC/EC)pri為一次燃燒源(例如,燃煤源和交通源)排放的OC/EC比值的特征值.該方法認(rèn)為POC和EC通常來自相同的燃燒源,因此可將EC作為一次燃燒源產(chǎn)生OC的示蹤物.基于某一類燃燒源化學(xué)組成恒定的假設(shè),認(rèn)為在相同或類似的燃燒條件下排放的顆粒物中OC/EC比值恒定,通過已知的(EC)來估計(jì)POC含量,然后利用測量的OC總量中減去(POC),得到(SOC).
因此(OC/EC)pri對(duì)利用EC示蹤法估算(SOC)至關(guān)重要.本文利用最小相關(guān)性法(Minimum R- Squared method,MRS)[17]確定各季節(jié)(OC/EC)pri. MRS方法基于EC與SOC本質(zhì)無關(guān)的假設(shè),因此(OC/EC)pri應(yīng)為方程式(3)中估算(SOC)和測量(EC)之間最小相關(guān)性(2)時(shí)的比值,此時(shí)EC與SOC相關(guān)性最差,二次污染最弱,OC/EC比值((OC/EC))超過該值的部分被認(rèn)為是SOC造成的.根據(jù)成都OC/EC比值的具體情況,假定一系列(OC/EC)pri,取序列區(qū)間為0.5~3.0,步長為0.01,對(duì)得到的SOC和EC進(jìn)行相關(guān)性分析,進(jìn)而計(jì)算相關(guān)POC與SOC質(zhì)量濃度.圖3為各季節(jié)(OC/EC)pri的估算曲線.夏、秋、冬和春季(OC/EC)pri分別為1.20、1.41、1.88、1.07.
2.1.1 碳質(zhì)氣溶膠組分逐日和季節(jié)變化特征 圖4為觀測期間碳質(zhì)氣溶膠組分與PM2.5在四個(gè)季節(jié)(6~8月為夏季,9~11月為秋季,12~次年2月為冬季,3~5月為春季)的逐日濃度變化,各個(gè)季節(jié)PM2.5、OC、EC的一致變化表明碳質(zhì)物質(zhì)是PM2.5的重要組成部分.表1統(tǒng)計(jì)分析了PM2.5和碳組分質(zhì)量濃度((PM2.5)、(TC)、(OC)和(EC))的季節(jié)平均,可以看出(PM2.5)、(TC)、(OC)和(EC)的季節(jié)平均值均為冬季最大,其次是秋季和春季,夏季最小,年平均值(標(biāo)準(zhǔn)差)分別為42.8 (29.0)、9.5(4.4)、6.4(3.2)、3.2(1.1)μg/m3.表2為查閱到的國內(nèi)外部分站點(diǎn)碳質(zhì)氣溶膠的濃度,總體上中國碳質(zhì)氣溶膠的濃度呈現(xiàn)北部和內(nèi)陸城市較高,而南部和沿海城市較低的特點(diǎn)[30],從表2可以看出成都的碳質(zhì)氣溶膠濃度要小于一些中國北方工業(yè)發(fā)達(dá)、冬季取暖的城市以及快速城市化和工業(yè)化的國外城市,但與廣州、南京以及發(fā)達(dá)國家的城市相比,成都的碳質(zhì)氣溶膠濃度還較高.值得注意的是,受益于近年來成都地區(qū)的嚴(yán)格排放政策,成都地區(qū)PM2.5濃度在逐年下降,碳質(zhì)氣溶膠濃度也有明顯的降低.
圖4 2020年6月~2021年5月各季節(jié)m(PM2.5)、m(OC)、m(EC)逐日變化(黑色方框?yàn)楦骷竟?jié)挑選的連續(xù)高m(TC)時(shí)段)
圖5為TC與PM2.5((TC/PM2.5))、OC與TC ((OC/TC))、OC與EC((OC/EC))比例的季節(jié)平均.夏、秋、冬三個(gè)季節(jié)的(TC/PM2.5)均在25%左右,春季碳質(zhì)物質(zhì)對(duì)PM2.5的貢獻(xiàn)較小,僅為18%.(OC/TC)在冬季最大為70.3%,春季最小為62.8%. OC/EC比值大小可表示不同污染來源,當(dāng)(OC/EC)處于1.0~4.2時(shí)代表汽油車和柴油車尾氣排放,其中OC在汽油車排放中較高(約占70 %),在柴油車排放中較低(約占40%)[31];處于2.5~10.5表明其來自燃煤排放;處于16.8~40.0之間表示生物質(zhì)燃燒排放;處于32.9~81.6時(shí),則代表烹調(diào)排放[32-35].成都地區(qū)夏、秋、冬和春季(OC/EC)分別為2.1(0.5)、2.1(0.3)、2.6(0.5)、1.9(0.5),年均值為2.2(0.5),表明交通源排放是春、夏、秋三季碳質(zhì)氣溶膠的主要來源,冬季比值較大,說明冬季碳?xì)馊苣z來源除了機(jī)動(dòng)車排放,還受燃煤排放等影響.
表1 各季節(jié)PM2.5、碳質(zhì)氣溶膠組分及氣象要素的基本特征
表2 國內(nèi)外不同季節(jié)碳質(zhì)氣溶膠濃度對(duì)比
注:a表示文章中缺乏OC/EC比值數(shù)據(jù),利用文獻(xiàn)中該地區(qū)(OC)/(EC)計(jì)算得到.
圖5 r(TC/PM2.5)、r(OC/TC)、r(OC/EC)季節(jié)變化
2.1.2 碳質(zhì)氣溶膠組分的日變化特征 由圖6可見,(TC)、(OC)和(EC)四季整體變化趨勢一致,呈“雙峰型”,峰值區(qū)對(duì)應(yīng)早高峰07:00~09:00,冬季早高峰峰值較其他季節(jié)推遲一個(gè)小時(shí)左右,與車流量變化一致.夏季(OC)受到二次生成的影響,日間峰值出現(xiàn)在12:00左右.EC的日變化曲線沒有明顯的季節(jié)依賴性,在上午的高峰時(shí)段過后,EC質(zhì)量濃度開始下降,大約在下午16:00時(shí)出現(xiàn)最低濃度,反映當(dāng)?shù)亟煌J降挠绊?各季節(jié)OC/EC比值的日變化也呈現(xiàn)出“雙峰型”,與(TC)等不同的是,(OC/EC)的峰值出現(xiàn)在04:00和14:00左右.在交通早晚高峰時(shí),受機(jī)動(dòng)車一次排放影響,(OC/EC)處于低值狀態(tài).日出后,大氣邊界層逐漸抬升,太陽輻射增加,地面溫度逐漸升高,SOC濃度增加,(OC/EC)也迅速上升.夏季光化學(xué)反應(yīng)較強(qiáng)烈,SOC產(chǎn)率較高,使其在08:00~18:00這個(gè)時(shí)間段的(OC/EC)要高于秋季和春季,當(dāng)晚高峰來臨時(shí),比值又一次降低.說明交通源排放對(duì)(TC)、(OC)、(EC)與(OC/EC)日變化的影響相反.
此外,將各季節(jié)逐日(TC)從高到低排列,在前10%數(shù)列中選取連續(xù)的高濃度時(shí)段(夏季(8月26~28日)、秋季(11月14~16日)、冬季(12月26~28日)、春季(3月14~16日))與各季節(jié)平均作對(duì)比.從表1和表3的數(shù)據(jù)對(duì)比分析可以看出,各季節(jié)高濃度時(shí)段(PM2.5)是對(duì)應(yīng)季節(jié)平均濃度的1.6~2.4倍,(TC)、(OC)、(EC)是季節(jié)平均濃度的1.8~2.3倍.高濃度時(shí)段中的碳組分及(OC/EC)的日變化特征與季節(jié)平均的日變化特征差別比較大.(TC)、(OC)、(EC)日變化在各季節(jié)高濃度時(shí)段呈“多峰”分布,夏、秋、春季碳質(zhì)組分在凌晨有明顯累積過程,早高峰后質(zhì)量濃度緩慢下降;冬季夜間峰值(22:00)要遠(yuǎn)大于早高峰峰值(11:00),除受夜間邊界層降低影響外,成都冬季常常處于小風(fēng)速靜穩(wěn)天氣下(多層逆溫的發(fā)生概率可達(dá)51.6%[47]),使得碳質(zhì)氣溶膠在夜間積累.高濃度時(shí)段的(OC/EC)在08:00-19:00呈現(xiàn)夏季>冬季>秋季>春季的情形,夏季最大值(3.68)出現(xiàn)在午后15:00(圖7).夏季(OC)的增長遠(yuǎn)遠(yuǎn)大于(EC),OC在TC里的占比也從平均值的65%增加到71%,表明夏季高濃度時(shí)段二次生成加劇使得(OC)增長顯著, OC/EC比值也迅速增大.
圖6 各季節(jié)m(TC)、m(OC)、m(EC)以及r(OC/EC)日變化
表3 各季節(jié)高m(TC)時(shí)段PM2.5、碳組分濃度及TC/PM2.5、OC/TC、OC/EC比值均值
2.1.3 OC與EC的相關(guān)性O(shè)C和EC的關(guān)系 能夠在一定程度上評(píng)估碳質(zhì)氣溶膠的同源性[3].若OC和EC相關(guān)性較好可以說明OC與EC有相似的排放源,若相關(guān)性差則表明兩者來源差異較大或具有二次污染.圖8展示了四個(gè)季節(jié)的OC與EC相關(guān)性,秋季(2=0.77)和冬季(2=0.81)的相關(guān)性比較好,表明秋冬兩季OC和EC來自于相似的排放源,例如機(jī)動(dòng)車尾氣和煤料燃燒等;而夏季和春季的污染源相對(duì)較為復(fù)雜,夏季2僅為0.57,說明OC除一次源排放外,其他來源(二次生成)在夏季也占有相當(dāng)大的比例.
圖7 各季節(jié)高m(TC)時(shí)段m(TC)、m(OC)、m(EC)以及r(OC/EC)日變化
圖8 夏季、秋季、冬季與春季OC與EC的相關(guān)性
2.2.1 成都地區(qū)SOC的估算 OC/EC比值可以評(píng)價(jià)二次污染的程度,一般將OC/EC>2作為判斷生成SOC的依據(jù)[48].根據(jù)1.3節(jié)所介紹的EC示蹤法和最小相關(guān)性法計(jì)算成都地區(qū)SOC濃度.將各季節(jié)(OC/EC)pri代入式(3)、(4)中,即可得到各月(SOC)及SOC在OC中的占比((SOC/OC)),如圖9所示.(SOC/OC)呈現(xiàn)“V”分布,春夏季(SOC/OC)普遍大于秋冬兩季.由表4可以看出(SOC)為冬季(3.1μg/m3)>秋季(1.9μg/m3)>春季(1.7μg/m3)>夏季(1.6μg/m3),而(SOC/OC)在夏季最高為40.4%,春季為39.4%,秋季為31.0%,冬季則最低為27.3%.考慮到成都常年處于一個(gè)高濕(表1)的環(huán)境,相對(duì)濕度偏大時(shí),往往會(huì)抑制光化學(xué)反應(yīng)的發(fā)生,并且大部分SOC具有水溶性[49],都會(huì)使得成都地區(qū)SOC濃度較低.夏季較高的比率說明受光化學(xué)反應(yīng)的影響,二次有機(jī)碳生成較多,SOC是夏季有機(jī)碳的重要組成成分,這也是夏季OC和EC相關(guān)性較差的原因.秋冬季(SOC/OC)較低,與秋冬季光照時(shí)間和強(qiáng)度不足,溫度低導(dǎo)致SOC前體物的轉(zhuǎn)化率下降有關(guān).
Saylor等[50]在研究用于EC示蹤法的二次有機(jī)氣溶膠估計(jì)的線性回歸技術(shù)時(shí)提到OC、EC回歸曲線斜率可被視為(OC/EC)pri,但普通最小二乘法的線性回歸技術(shù)不適合在兩個(gè)回歸變量都存在測量不確定性的情況下使用.Pio等[28]認(rèn)為在未主要受生物質(zhì)燃燒影響時(shí),MRS提供了更穩(wěn)健的POC和SOC估計(jì)和區(qū)分,并且運(yùn)用逐時(shí)數(shù)據(jù)相對(duì)于逐幾時(shí)或者逐日采樣得到的OC、EC數(shù)據(jù)集來說,得到的(OC/ EC)pri更加準(zhǔn)確[51].值得注意的是,本文運(yùn)用MRS方法估算出的(OC/EC)pri與圖8中各個(gè)季節(jié)回歸方程的斜率基本一致.在兩種方法相互映證的同時(shí),也進(jìn)一步證明本文碳質(zhì)氣溶膠數(shù)據(jù)來源的可靠性.
圖9 m(SOC)以及r(SOC/OC)逐月變化特征
箱線圖從上至下依次為:最大值、75%分位數(shù)、中位數(shù)、25%分位數(shù)、最小值
2.2.2 SOC與氣態(tài)污染物濃度的相關(guān)性 O3作為一種強(qiáng)氧化劑是晴天SOC形成的因素之一[56].對(duì)各季節(jié)SOC與臭氧日最大8小時(shí)平均(MDA8_O3)做相關(guān)性分析,結(jié)果顯示在=0.05的雙側(cè)顯著性檢驗(yàn)下,只有夏季和春季通過了顯著性檢驗(yàn),其中夏季SOC與MDA8_O3的相關(guān)性(0.54)要大于春季(0.37).
對(duì)觀測期間夏季SOC和O3濃度((O3))及其前體物的日變化進(jìn)行分析表明SOC和O3整體上有較好的一致性(圖10),且與圖6中OC/EC比值的日變化有著很好的相關(guān)性.從圖10中可以看出,SOC和O3在08:00達(dá)到最低值,隨后二者基本是同步上升和降低,午后出現(xiàn)峰值,反映了光化學(xué)作用對(duì)SOC生成的重要影響.夜間沒有O3光化學(xué)生成過程,氮氧化物對(duì)O3的滴定作用會(huì)導(dǎo)致O3濃度持續(xù)下降,但SOC在此期間可能通過低揮發(fā)性有機(jī)化合物的水相氧化、半揮發(fā)性有機(jī)化合物的氣粒轉(zhuǎn)化等生成[11,52], SOC質(zhì)量濃度偶爾有上升的現(xiàn)象.整個(gè)觀測期間,CO、NO2與SO2質(zhì)量濃度((CO)、(NO2)(SO2))變化基本一致,呈“雙峰型”,與O3和SOC變化呈明顯的負(fù)相關(guān)變化.日出后人類活動(dòng)尤其是交通運(yùn)輸和工業(yè)源等排放的污染物增加,三種污染物大致都在08:00~10:00達(dá)最大值,由于NO2的光解作用,其早晨的峰值較夜間更小.早高峰過后邊界層的抬升以及光化學(xué)反應(yīng)加劇消耗前體物,CO等污染物濃度逐漸下降,直到晚高峰來臨,NO2和CO開始迅速上升,SO2濃度上升較緩慢.
表4 m(SOC)、m(POC)以及r(SOC/POC)、r(POC/OC)和r(SOC/OC)季節(jié)均值
3.1 采樣期間(TC)、(OC)、(EC)和(OC/EC)年平均值分別為9.5±4.4、6.4±3.2、3.2±1.1(μg/m3)和2.2±0.5.各種顆粒物濃度都呈現(xiàn)冬季最大,春秋次之,夏季最小的特征.(TC)、(OC)、(EC)以及(OC/EC)四季日變化均呈現(xiàn)“雙峰型”,交通源和光化學(xué)反應(yīng)對(duì)(TC)、(OC)、(EC)和(OC/EC)日變化均有影響.分別在各季節(jié)挑選高(TC)時(shí)段與季節(jié)平均做對(duì)比發(fā)現(xiàn)高濃度時(shí)段夜間積累過程明顯,夏季高濃度時(shí)段的二次生成增強(qiáng),導(dǎo)致(OC)顯著增長,(OC/EC)也迅速增大.
3.2 OC與EC的相關(guān)性呈現(xiàn)冬季>秋季>春季>夏季的特征,表明春夏季節(jié)OC、EC來源有較大差異.利用EC示蹤法和最小相關(guān)性法對(duì)各個(gè)季節(jié)(SOC)進(jìn)行估算,結(jié)果為冬季(3.1μg/m3) >秋季(1.9μg/m3) >春季(1.7μg/m3)>夏季(1.6μg/m3),而(SOC/OC)為夏季(40.4%)>春季(39.4%)>秋季(31.0%)>冬季(27.3%),表明二次生成可能是導(dǎo)致春夏季OC與EC相關(guān)性較小的原因.
3.3 春季和夏季SOC與MDA8_O3呈顯著正相關(guān)性,光化學(xué)反應(yīng)對(duì)SOC生成有重要貢獻(xiàn).夏季SOC與O3日變化基本一致,具有典型的午后峰值特征,與CO、NO2、SO2日變化呈負(fù)相關(guān)變化.
[1] Duan F, He K, Ma Y, et al. Characteristics of carbonaceous aerosols in Beijing, China [J]. Chemosphere, 2005,60(3):355-364.
[2] Cao J J, Lee S C, Chow J C, et al. Spatial and seasonal distributions of carbonaceous aerosols over China [J]. Journal of geophysical research: atmospheres, 2007,112(D22).
[3] Turpin B J, Huntzicker J J. Secondary formation of organic aerosol in the Los Angeles Basin: a descriptive analysis of organic and elemental carbon concentrations [J]. Atmospheric Environment. Part A. General Topics, 1991,25(2):207-215.
[4] Hallquist M, Wenger J C, Baltensperger U, et al. The formation, properties and impact of secondary organic aerosol: current and emerging issues [J]. Atmospheric chemistry and physics, 2009,9(14):5155-5236.
[5] Xu Z, Wen T, Li X, et al. Characteristics of carbonaceous aerosols in Beijing based on two–year observation [J]. Atmospheric Pollution Research, 2015,6(2):202-208.
[6] Ji D, Gao M, Maenhaut W, et al. The carbonaceous aerosol levels still remain a challenge in the Beijing-Tianjin-Hebei region of China: Insights from continuous high temporal resolution measurements in multiple cities [J]. Environment international, 2019,126:171-183.
[7] Kristensson A, Ausmeel S, Pauraite J, et al. Source contributions to rural carbonaceous winter aerosol in North-Eastern Poland [J]. Atmosphere, 2020,11(3):263.
[8] Yu Y, Ding F, Mu Y, et al. High time-resolved PM2.5composition and sources at an urban site in Yangtze River Delta, China after the implementation of the APPCAP [J]. Chemosphere, 2020,261:127746.
[9] 繆 青,張澤鋒,李艷偉,等.黃山夏季大氣顆粒物中碳粒徑分布特征及其輸送潛在源區(qū)[J]. 中國環(huán)境科學(xué), 2015,35(7):1938-1946.
Miao Q, Zhang Z F, Li Y W, et al. Size distributions of carbonaceous aerosol and their potential sources at Mt. Huang during summer [J]. China Environmental Science, 2015,35(7):1938-1946.
[10] Boreddy S K R, Hegde P, Aswini A R. Chemical characteristics, size distributions, and aerosol liquid water in size-resolved coastal urban aerosols allied with distinct air masses over tropical peninsular India [J]. ACS Earth and Space Chemistry, 2021,5(3):457-473.
[11] Tang R, Wu Z, Li X, et al. Primary and secondary organic aerosols in summer 2016 in Beijing [J]. Atmospheric Chemistry and Physics, 2018,18(6):4055-4068.
[12] Mayorga R J, Zhao Z, Zhang H. Formation of secondary organic aerosol from nitrate radical oxidation of phenolic VOCs: Implications for nitration mechanisms and brown carbon formation [J]. Atmospheric Environment, 2021,244:117910.
[13] Yu X, Ma J, An J, et al. Impacts of meteorological condition and aerosol chemical compositions on visibility impairment in Nanjing, China [J]. Journal of Cleaner Production, 2016,131:112-120.
[14] Chen P, Kang S, Gul C, et al. Seasonality of carbonaceous aerosol composition and light absorption properties in Karachi, Pakistan [J]. Journal of Environmental Sciences, 2020,90:286-296.
[15] 韓 茜,鐘玉婷,陸 輝,等.烏魯木齊市碳質(zhì)氣溶膠季節(jié)變化及其對(duì)霾形成的影響[J]. 干旱區(qū)研究, 2016,33(6):1174-1180.
Han X, Zhong Y T, Lu H, et al. Seasonal variation of carbonaceous aerosol and its effect on haze formationin in Urumqi [J]. Arid Zone Research, 2016,33(6):1174-1180.
[16] 郭 松,胡 敏,郭慶豐,等.二次有機(jī)氣溶膠估算方法比較研究 [J]. 化學(xué)學(xué)報(bào), 2014,72(6):658-666.
Guo S, Hu M, Guo Q F, et al. Comparison of secondary organic aerosol estimation methods [J]. Journal of Chemistry, 2014,72(6):658-666.
[17] Wu C, Yu J Z. Determination of primary combustion source organic carbon-to-elemental carbon (OC/EC) ratio using ambient OC and EC measurements: secondary OC-EC correlation minimization method [J]. Atmospheric Chemistry and Physics, 2016,16(8):5453-5465.
[18] 鄭 玫,閆才青,李小瀅,等.二次有機(jī)氣溶膠估算方法研究進(jìn)展 [J]. 中國環(huán)境科學(xué), 2014,34(3):555-564.
Zheng M, Yan C Q, Li X Y, et al. A review of methods for quantifying secondary organic aerosol [J]. China Environmental Science, 2014,34 (3):555-564.
[19] Liao T, Gui K, Jiang W, et al. Air stagnation and its impact on air quality during winter in Sichuan and Chongqing, southwestern China [J]. Science of the Total Environment, 2018,635:576-585.
[20] Wang X, Dickinson R E, Su L, et al. PM2.5pollution in China and how it has been exacerbated by terrain and meteorological conditions [J]. Bulletin of the American Meteorological Society, 2018,99(1):105-119.
[21] Li L, Che H, Derimian Y, et al. Retrievals of fine mode light- absorbing carbonaceous aerosols from POLDER/PARASOL observations over East and South Asia [J]. Remote Sensing of Environment, 2020,247:111913.
[22] 吳 明,吳 丹,夏俊榮,等.成都冬季PM2.5化學(xué)組分污染特征及來源解析 [J]. 環(huán)境科學(xué), 2019,40(1):76-85.
Wu M, Wu D, Xia JR, et al. Analysis of pollution characteristics and sources of PM2.5chemical components in Chengdu in winter [J]. Environmental Science, 2019,40(1):76-85.
[23] 石慧斌,黃 藝,程 馨,等.成都市冬季PM2.5中碳組分污染特征及來源解析 [J]. 生態(tài)環(huán)境學(xué)報(bào), 2021,30(7):1420-1427.
Shi H B, Huang Y, Cheng X, et al. Pollution characteristics and sources of carbonaceous components in PM2.5during winter in Chengdu [J]. Journal of Ecology and Environment, 2021,30(7):1420-1427.
[24] 史芳天,羅 彬,張 巍,等.成都平原PM2.5中碳質(zhì)組分時(shí)空分布特征與來源 [J]. 環(huán)境科學(xué), 2020,41(2):520-528.
Shi F T, Luo B, Zhang W, et al. Spatial-temporal variations and sources apportionment of carbonaceous species in PM2.5across multiple sampling locations in the Chengdu Plain [J]. Environmental Science, 2020,41(2):520-528.
[25] Tao J, Gao J, Zhang L, et al. PM2.5pollution in a megacity of southwest China: source apportionment and implication [J]. Atmospheric Chemistry and Physics, 2014,14(16):8679-8699.
[26] Total Carbon Analyzer TCA08User’s Manual [EB/OL]. http://www. mageescientific.com.
[27] Turpin B J, Huntzicker J J. Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS [J]. Atmospheric Environment, 1995, 29(23):3527-3544.
[28] Pio C, Cerqueira M, Harrison R M, et al. OC/EC ratio observations in Europe: Re-thinking the approach for apportionment between primary and secondary organic carbon [J]. Atmospheric Environment, 2011, 45(34):6121-6132.
[29] Wu C, Wu D, Yu J Z. Estimation and uncertainty analysis of secondary organic carbon using 1year of hourly organic and elemental carbon data [J]. Journal of Geophysical Research: Atmospheres, 2019,124(5): 2774-2795.
[30] Cui H, Mao P, Zhao Y, et al. Patterns in atmospheric carbonaceous aerosols in China: emission estimates and observed concentrations [J]. Atmospheric Chemistry and Physics, 2015,15(15):8657-8678.
[31] Chow J C. Measurement methods to determine compliance with ambient air quality standards for suspended particles[J]. Journal of the Air & Waste Management Association, 1995, 45(5): 320-382..
[32] Schauer J J, Kleeman M J, Cass G R, et al. Measurement of emissions from air pollution sources.5.C1-C32 organic compounds from gasoline-powered motor vehicles [J]. Environmental science & technology, 2002,36(6):1169-1180.
[33] Chen Y, Zhi G, Feng Y, et al. Measurements of emission factors for primary carbonaceous particles from residential raw-coal combustion in China [J]. Geophysical Research Letters, 2006,33(20).
[34] Schauer J J, Kleeman M J, Cass G R, et al. Measurement of emissions from air pollution sources.3.C1-C29organic compounds from fireplace combustion of wood [J]. Environmental science & technology, 2001, 35(9):1716-1728.
[35] He L Y, Hu M, Huang X F, et al. Measurement of emissions of fine particulate organic matter from Chinese cooking [J]. Atmospheric Environment, 2004,38(38):6557-6564.
[36] 徐雪梅,馮小瓊,陳軍輝,等.成都市主城區(qū)PM2.5碳組分污染特征分析[J]. 環(huán)境化學(xué), 2021,40(8):2481-2492.
Xu X M, Feng X Q, Chen J H, et al. Pollution characteristics of carbonaceous components in PM2.5in the Chengdu City [J]. Environmental Chemistry, 2021,40(8):2481-2492.
[37] 楊 樂.長春市PM2.5中EC/OC的污染特征分析 [D]. 長春:吉林大學(xué), 2018.
Yang L. Analysis of pollution characteristics of EC/OC in PM2.5in Changchun City [D]. Changchun: Jilin University, 2018.
[38] 錢若芷,田 密,陳 陽,等.華北平原典型工業(yè)城市秋、冬季大氣細(xì)顆粒物污染特征[J]. 地球化學(xué), 2021,50(1):1-11.
Qian R Z, Tian M, Chen Y, et al. Characteristics of fine particle matter during autumn and winter in a typical industrial city in the North China Plain [J]. Geochemistry, 2021,50(1):1-11.
[39] 劉晶晶,胡獻(xiàn)舟,黃鳳蓮,等.廣州PM2.5中有機(jī)碳和元素碳的污染特征 [J]. 湖南科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2019,34(4):111-117.
Liu J J, Hu X Z, Huang F L, et al. Characteristics of organic carbon(OC) and elemental carbon(EC) in PM2.5in Guangzhou, China [J]. Journal of Hunan University of Science and Technology (Natural Science Edition), 2019,34(4):111-117.
[40] 葉 香,王 振,趙亞芳,等.常州市大氣中有機(jī)碳和元素碳分布特征分析[J]. 環(huán)??萍? 2020,26(1):1-7.
Ye X, Wang Z, Zhao YF, et al. Distribution characteristics of organic and elemental carbon in atmosphere of Changzhou City [J]. Environmental Protection Science and Technology, 2020,26(1):1-7.
[41] Cesari D, Merico E, Dinoi A, et al. Seasonal variability of carbonaceous aerosols in an urban background area in Southern Italy [J]. Atmospheric Research, 2018,200:97-108.
[42] Ichikawa Y, Naito S, Ishii K, et al. Seasonal variation of PM2.5components observed in an industrial area of Chiba Prefecture, Japan [J]. Asian Journal of Atmospheric Environment, 2015,9(1):66-77.
[43] Galindo N, Yubero E, Clemente A, et al. Insights into the origin and evolution of carbonaceous aerosols in a mediterranean urban environment [J]. Chemosphere, 2019,235:636-642.
[44] Djossou J, Léon J F, Akpo A B, et al. Mass concentration, optical depth and carbon composition of particulate matter in the major southern West African cities of Cotonou (Benin) and Abidjan (C?te d'Ivoire) [J]. Atmospheric Chemistry and Physics, 2018,18(9):6275-6291.
[45] Chen P, Kang S, Gul C, et al. Seasonality of carbonaceous aerosol composition and light absorption properties in Karachi, Pakistan [J]. journal of environmental sciences, 2020,90:286-296.
[46] Gawhane R D, Rao P S P, Budhavant K B, et al. Seasonal variation of chemical composition and source apportionment of PM2.5in Pune, India [J]. Environmental Science and Pollution Research, 2017, 24(26):21065-21072.
[47] 危詩敏,馮鑫媛,王式功,等.四川盆地多層逆溫特征及其對(duì)大氣污染的影響 [J]. 中國環(huán)境科學(xué), 2021,41(3):1005-1013.
Wei S M, Feng X Y, Wang S G, et al. Characteristics of multi-layer inversions in Sichuan Basin and their influences on air pollution [J]. China Environmental Science, 2021,41(3):1005-1013.
[48] Castro L M, Pio C A, Harrison R M, et al. Carbonaceous aerosol in urban and rural European atmospheres: estimation of secondary organic carbon concentrations [J]. Atmospheric Environment, 1999, 33(17):2771-2781.
[49] 葉招蓮,劉佳澍,李 清,等.常州夏秋季PM2.5中碳質(zhì)氣溶膠特征及來源 [J]. 環(huán)境科學(xué), 2017,38(11):4469-4477.
Ye Z L, Liu J S, Li Q, et al. Characteristics and source identification of carbonaceous aerosols in PM2.5measurements during summer and fall in Changzhou [J]. Environmental Science, 2017,38(11):4469- 4477.
[50] Saylor R D, Edgerton E S, Hartsell B E. Linear regression techniques for use in the EC tracer method of secondary organic aerosol estimation [J]. Atmospheric Environment, 2006,40(39):7546-7556.
[51] Xu X, Zhang W, Zhu C, et al. Regional sources and the economic cost assessment of PM2.5in Ji'nan, eastern China [J]. Atmospheric Pollution Research, 2021,12(2):386-394.
[52] Gonzalez I. Characteristics of organic and elemental carbon in particulate matter on the US East Coast: a case study at metropolitan Newark in New Jersey [D]. Rutgers University-Graduate School- Newark, 2021.
致謝:感謝京津冀環(huán)境氣象預(yù)報(bào)預(yù)警中心提供的黑碳?xì)馊苣z觀測儀器(AE33);感謝成都信息工程大學(xué)康平老師對(duì)本研究的前期指導(dǎo)工作.
Characteristics of carbonaceous aerosols and estimation of secondary organic carbon in Chengdu.
LI Zhao-yang1, YUAN Liang1,2, ZHANG Xiao-ling1,2*, WEI Rong1, LI Shuang-zhi1
(1.Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, China; 2.Chengdu Plain Urban Meteorology and Environment Observation and Research Station of Sichuan Province, Chengdu 610225, China)., 2022,42(6):2504~2513
To investigate the diurnal and seasonal characteristics of carbonaceous aerosols in Chengdu, mass concentrations of total carbon (TC), organic carbon (OC), elemental carbon (EC), and secondary organic carbon (SOC) were continuous hourly measured from June 2020 to May 2021. The results showed that the annual mean values of(TC),(OC) and(EC) during the observation periods were (9.5±4.4) μg/m3, (6.4±3.2) μg/m3and (3.2±1.1) μg/m3, respectively, with the ratio of(OC/EC) at 2.2±0.5. The(TC),(OC) and(EC)in Chengdu peaked in winter ((15.8±8.2), (11.1±5.8), (4.6±2.5) μg/m3), followed by spring and autumn, and reached to the lowest level in summer ((6.1±0.9), (4.5±2.0), (2.7±1.4) μg/m3).The seasonal means of(OC/EC) were in the range of 1.9~2.6, and the diurnal variations in(TC),(OC) and(EC) followed the "bimodal" pattern which peaked in the morning (07:00~09:00) and the evening (22:00~01:00).This indicated significant contributions of motor vehicle emissions on carbonaceous aerosols in Chengdu. The correlation between OC and EC wasweaker in spring and summer than in autumn and winter, indicating that the sources of OC and EC were quite different in spring and summer. The(SOC), which was estimated by the EC-tracer method and the Minimum R-Squared method, and the(SOC/OC) was the largest in summer (40.4%) and the smallest in winter (27.3%). The significant positive correlation between SOC and O3in spring and summer revealed that photochemical reactions contributed significantly to the formation of SOC. The continuous high(TC) periods in each season were selected for comparison with the seasonal averages. The results showed that carbonaceous aerosols had obvious nocturnal accumulation process. The(OC) increased significantly higher than that of(EC) due to the secondary production during the high concentration periods in summer, and the(OC/EC) also increased rapidly during these times.
carbonaceous aerosol;organic carbon;element carbon;secondary organic carbon
X513
A
1000-6923(2022)06-2504-10
李朝陽(1997-),女,江西九江人,成都信息工程大學(xué)碩士研究生,主要從事大氣環(huán)境研究.
2021-11-18
國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018YFC0214002);國家自然科學(xué)基金項(xiàng)目(42005072);成都市科技局重點(diǎn)研發(fā)支撐計(jì)劃課題(2020- YF09-00031-SN);成都信息工程大學(xué)引進(jìn)人才科研啟動(dòng)項(xiàng)目(KYTZ202127)
* 責(zé)任作者, 教授, xlzhang@ium.cn