• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Selective Laser Sintering of SiC Green Body with Low Binder Content

    2022-06-28 02:22:42HUANGLongzhiYINJieCHENXiaoWANGXinguangLIUXuejianHUANGZhengren
    無機材料學報 2022年3期
    關(guān)鍵詞:生坯造粒選區(qū)

    HUANG Longzhi, YIN Jie, CHEN Xiao, WANG Xinguang, LIU Xuejian, HUANG Zhengren,4

    Selective Laser Sintering of SiC Green Body with Low Binder Content

    HUANG Longzhi1,2, YIN Jie1,2, CHEN Xiao1,2, WANG Xinguang3, LIU Xuejian1, HUANG Zhengren1,4

    (1. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 2. College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100864, China; 3. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; 4. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China)

    Belonging to the family of SiC-based composites, Al/SiC has excellent mechanical and thermal properties, making it irreplaceable in high-power electronic devices, key cooling components of 5G base station, electric vehicles, high-speed brake pads, space probe operation devices, and other related fields featured by high technologies. The melt infiltration method, which can achieve near-net forming, has been recognized to be a favorable method for preparing Al/SiC composites to overcome the disadvantages of traditional processing. How to obtain a high-quality silicon carbide (SiC) ceramic green body is a key for the perfect melt infiltration method. Selective laser sintering (SLS) technology provides a new opportunity for a top grade ceramic forming process, which is rapid and efficient in realizing large-scale and complicated-shape without cast molding. Here, the SiC green body was obtained by SLS technique with thermoplastic phenolic resin as binder and its content lower than 15% (in volume) for the subsequent procedure to fabricate composite materials. However, low binder content results in low flexural strength. As the resin content increases to 25% (in volume), the strength of the SiC green body reaches 3.77 MPa with a strength increment of 702.1% for the SLS SiC green body. Spray drying was applied to form more spherical powder. Nevertheless, the porosity of the SiC green body is still high (71.18%), due to porous microstructure remaining in spray-dried powder, which leads to deteriorated strength of the green body.

    Al/SiC; selective laser sintering; green body;microstructure

    With the development of high-power electronic devices,key cooling elements in 5G base stations, electric vehicles, high-speed brake pads, running gear of space probe, and other related fields, metal matrix composites play an irreplaceable role[1]. SiC-based composites[2-3](Al/SiC) have exc-e-llent mechanical and thermal properties, low cost, enabling SiC composites to have unique advantages in the applications mentioned above. However, with the increa-se of SiC volume fraction, the processing of mat-erial becomes difficult, hence the near-net forming proc-ess which does not require machining becomes attractive for the preparation of Al/SiC composites. The melt infil-tration method[4-5]is one of the most cost-effective techn-ologies for preparing Al/SiC composites, which is chara-ct-erized by a simple process, stable perfor-mance, low cost, and near net forming. How to obtain a high-quality SiC green body is one of the keys to the melt infiltration method. However, up to now, conve-ntional molding is still applied for preparing components world-wide, which has a long manufacturing cycle, mold depe-n-dence, espec-ially difficulty when manufacturing complex-shaped parts[6].

    Additive manufacturing technology[7-8]provides a new opportunity for a high-quality ceramic forming process. Selective laser sintering (SLS)[9]is a rapid manufacturing technology based on powder bed technology, by adopting thermoplastic polymer, using laser selective curing molding. In the SLS process, components are made layer by layer. With the molded parts supported by the surrounding powders, no additional support structure is required, and the supported powders are easy for removal[10-11]. Therefore, it is rapid and efficient to realize large-scale and comp-licated- shape without cast molding. However, up to the present, the ceramic material of the SLS process is still on the research stage. For example, Sun,.[12]used phenolic resin as a binder to obtain resin-coated SiC powder through the process of dissolution, drying, and dispersion, but the high (38% in volume) binder dosage introduced excess carbon and influenced the final performance. Zhou,.[13]used PVB as a binder to prepare SiC/PVB composite powder by ball milling, yet the prepared composite powder showed poor fluidity. Xiong,.[14]applied multiple binders of Nylon 6 and NH4H2PO4to enhance the strength of sintered parts, but inorganic binder remained after high-temperature treatment, affecting the molding accuracy and strength of the end products.

    In this study, binder content as low as 15% (in volume) was adopted for selective laser sintering of SiC ceramic green bodies, and the effect of different contents of binder- phenolic resin on the density, porosity, and bending strength of SiC green body was studied. The microstructure of the SiC green body was analyzed.

    1 Experimental

    1.1 Materials

    Commercially available powders were used in this experiment. SiC (50=50 μm, Shanghai Shangmo elect-ro--mechanical company) with a purity of 99.11%, phe-n-olic resin (50=19.5 μm) with a purity of 99.85%.

    1.2 Mechanical mixing of composite powders

    SiC and resin raw powders were added to the ball mill tank in proportion and mechanically homogenization for 1 h. The mechanical mixed composite powders with a resin content of 15%, 20%, 25% (in volume) were obtained afterward, which were defined as RP15, RP20, RP25, respectively.

    1.3 Spray drying of composite powders

    For comparison, composite powders of SiC and resin were prepared by spray granulation. The synthesis process was as follows. The phenolic resin powder was dissolved in a certain amount of anhydrous ethanol to obtain a yellow solution. Then, the resin solution was poured into the ball mill tank, and SiC powder was then added to prepare a slurry with a solid content of 33% (in volume). Finally, the slurry was spray-dried under the outlet temperature of 75 ℃, the composite powders of 75% (in volume) SiC and 25% (in volume) resin were finally obtained. The SiC@resin composite granulated powder was defined as GP.

    1.4 Preparation of the SiC ceramic green body

    SiC green bodies were prepared by selective laser sintering. Powders were poured into the supply tank, and the printing parameters were determined based on our previous study with the preheating temperature of 60 ℃, the thickness of the printing layer of 0.1 mm, the laser power of 45 W, the scanning speed of 7260 mm/s, and the line spacing of 0.08 mm.

    1.5 Characterization

    where,is the actual measured size, accurate to 0.01 mm, and0is the constant in the computer-aided design model.

    2 Results and discussion

    2.1 Composite spherical powder

    Suitable particle size and excellent shape of powder printing material are important factors to obtain high-quality printing[15]. Too small particle size of the powder will make the powder agglomeration seriously because of electrostatic force, which affects the powder spreading in the laser printing process. Irregular powder morphology increases the friction between powder particles, affecting the performance of the printed parts. Therefore, powders for laser 3D printing should be studied first. The GP modified by spray drying process was prepared and compared with the SiC raw powder.

    Fig. 1(a, b) shows SEM images of the commercial raw SiC powders and the resin powders. The shape of the original SiC particles was irregular. Fig. 1(c) shows the morphology of a single ball of GP which is composed of original SiC powder, and the original SiC powder particles are bonded by resin. The resin between SiC grains is visible as shown in the local enlargement image. Fig. 1(d) shows the SEM image of GP. It can be seen that GP after spray drying is spherical with good dispersion. The micro-spherical morphology makes the fluidity of GP composite powder better. Fig. 1(e) shows the particle size distribution of spray granulated powder and original SiC powder. The median diameter of spray granulation powder is50=113 μm. The median diameter of the original SiC powder is50=43 μm. For comparison, the particle size of spray granulated powder increases, which is consistent with SEM results.

    Fig. 1 SEM images and particle size distributions of powder and particles

    (a) SEM image of raw SiC particles; (b) SEM image of raw phenolic resin particles; (c) SEM image of a single granulated ball; (d) SEM image of GP; (e) Particle size distributions of raw SiC powder and granulated powder

    The slurry used to prepare the GP contains 25% (in volume) phenolic resin (the ratio of resin to SiC). The nature of the chemical bond between inorganic SiC and organic resin is different[16]. To analyze the coating content of resin on granulated powder, we performed the thermal analysis of resin and GP. As shown in Fig. 2(b), the test result shows a mass loss of resin of 68.35% when heating to 1100 ℃ at 0.5 ℃/min, and the actual mass loss of resin is 66%, excluding the adsorbed water. Fig. 2(a) shows the mass loss of granulated powder. Excluding the adsorbed water mass loss, the actual mass loss of GP is 7.4% when heating to 1100 ℃ at the same heating rate. After calculation, the value of resin coating content in the granulated powder is 11.21% in mass (24.9% in volume), which is almost equal to the initial amount of phenolic resin. Further research is underway to investigate in detail the coating feature of resin.

    2.2 SiC green body

    We used GP modified by spray drying technology and RP composite powders (RP15, RP20, RP25) to perform Selective laser sintering. After binder removal, SiC green body was obtained, and the RP25 green body digital image is shown in Fig. 3(a). The dimensional accuracies of printed SiC green bodies before and after debinding were tested, and at least 10 groups of tests were carried out under each condition. The results showed that the dimensional deviation rates (DDR) of SiC green bodies were less than 2%.

    The microstructure of the SiC green body, including density and porosity, affected whether the molten infiltrationprocess can form a high-performance SiC-based composite. Fig. 3(b) shows the bulk densities and apparent porosities of different SiC green bodies. For RP composite powders, with the increase of binder content, the bulk density of SiC green body increases and the apparent porosity decreases. It is worth noting that the green body prepared by GP has a bulk density of only 0.88 g/cm3and apparent porosity of 71.18%. The mercury injection method was used to test the pore size distribution of GP green body and RP25 green body. Fig. 3(c) shows the pore size distribution of GP green body and RP25 green body with the same binder content. The median pore size inside RP25 green body is 28 μm. The pore size of the GP green body is mainly concentrated at 50 μm, with a small peak at 14.5 μm. This result is assumed to be caused by large pores formed by the stacking of GP and small pores formed by the agglomeration of primary powders.

    Fig. 2 Thermal analyses of resin and GP

    (a) TG-DTA curves of granulated powder; (b) TG-DTA curves of phenolic resin

    We conducted bending tests on RP15, RP20, RP25, and GP samples to observe their fracture micromorphology. As shown in Fig. 4(a–c), there is an increasing trend for residual carbon content as binder content increased. It is evident for the RP15 sample that there are many SiC-SiC connections in Fig. 4(a), while apparent SiC-C-SiC connection can be seen in Fig. 4(c). In Fig. 4(e), we find that the green body prepared by GP has many pores. And big pores formed by the stacking of GP are clear and abounding in Fig. 4(d).

    Fig. 3 Photos of RP25 samples prepared by SLS, the bulk density and open porosity of different SiC green bodies, and the pore size distribution of GP and RP25 green body with the same binder content

    (a) Digital images of RP25 samples prepared by SLS, print part (left), green body (right); (b) Influence of different samples on the bulk density and open porosity; (c) Pore size distribution of the green body formed by RP25 and GP

    Fig. 4 SEM images of fracture surfaces and bending strength of different samples

    (a) RP15; (b) RP20; (c) RP25; (d, e) GP; (f) Bending strength of different green body

    Fig. 4(e) shows the variation of bending strength of SiC green body with different binders. The mechanical properties of SiC green bodies are very important to the integrity of SiC green bodies during post-treatment. For RP samples, the bending strength of the SiC green body increases from 0.47 MPa to 3.77 MPa with the increase of resin content from 15% to 25% (in volume). After binder removal of the SiC green body, SiC particles are connected with each other by residual carbon (C). With the increase of binder content, the residual C content between SIC particles increased, hence, the bonding is enhanced. It is worth noting that the bending strength of the GP green body is only 0.3 MPa, which is inseparable from the large particle size of GP and higher porosity of the GP green body.

    From Fig. 4(f), as the resin content increased from 15% to 20% (in volume), the strength of the green body increases significantly by 425.5%. While, as the resin content increased from 20% to 25% (in volume), the strength increment was only 52.6%. The result indicates that the threshold value of resin addition should be >15% (in volume), or adjacent particles would be SiC-SiC instead of SiC-C. Direct contact between SiC powders is fragile, which would not be strengthened and thus deteriorate the mechanical strength, as shown in Fig. 5.

    Fig. 5 Bonding principle of SiC particles and residual C

    Blue irregular block: SiC particles; Yellow block: C

    3 Conclusions

    SiC green bodies with binder content as low as 15% (in volume) are prepared by SLS, using mechanical homogenized composite powder, which prov-ides a novel method for the preparation of SiC-based composite material. As the phenolic resin content is higher than 15% (in volume), SiC powders can be “adhered” well by the thermoplastic binder. When the binder content increases to 25% (in volume), bending strength as high as (3.77±0.37) MPa is realized.

    Compared with the mechanical homogenizing method, SiC green body prepared by granulating powder has lower density, higher open porosity, and flexural strength of only 0.3 MPa. The reasons for inferior performance are mainly related to a large number of pores inside the spherical powders originating from the spray drying process and the SLS processing parameters un-optimized. The present investigation may inspire researchers to further devoting to near-net-shaping of low-impurity-content SiC ceramic composites.

    [1] PRADEEP K R, KUMAR P A, NAGARAJ M C,Soli-dification processing of cast metal matrix composites over the last 50 years and opportunities for the future., 2020, 72(8): 2912–2926.

    [2] GARG P, JAMWAL A, KUMAR D,Advance research progresses in aluminium matrix composites: manufacturing & applications., 2019, 8(5): 4924–4939.

    [3] LI N, LIU W, WANG Y,Laser additive manufacturing on metal matrix composites: a review., 2021, 34(1): 38.

    [4] BAO J X, ZHANG G, CAO Q,Influence of TiO2dopant on spontaneous infiltration to fabricate high volume fraction SiCp/Al cermets., 2020, 46(4): 5459–5464.

    [5] DONG S M, ZHANG X Y, YANG J S,Optimizing micro-structure and properties of SiCf/SiC composites prepared by reactive melt infiltration., 2021, 36(10): 1103–1110.

    [6] MAURYA M, KUMAR S, BAJPAI V. Assessment of the mech-anical properties of aluminium metal matrix composite: a review., 2018, 38(6): 267–298.

    [7] HE R J, ZHOU N P, ZHANG K Q,Progress and challenges towards additive manufacturing of SiC ceramic., 2021, 10(4): 637–674.

    [8] HASSANIN H, ESSA K, ELSHAER A,Micro-fabrication of ceramics: additive manufacturing and conventional technologies., 2021, 10(1): 1–27.

    [9] LIU G, ZHANG X F, CHEN X L,Additive manufacturing of structural materials., 2021, 145: 100596.

    [10] TRAVITZKY N, BONET A, DERMEIK B,Additive manufacturing of ceramic-based materials., 2014, 16(6): 729–754.

    [11] CHEN Z W, LI Z Y, LI J J,3D printing of ceramics: a review., 2019, 39(4): 661–687.

    [12] SUN Z Q, Lü Y, LI S Q,Ceramic/resin composite powders with uniform resin layer synthesized from SiO2spheres for 3D technology., 2019, 34(5): 567–572.

    [13] ZHOU P, QI H, ZHU Z,Development of SiC/PVB composite powders for selective laser sintering additive manufacturing of SiC., 2018, 11(10): 9.

    [14] XIONG B W, YU H, XU Z F,Study on dual binders for fabricating SiC particulate preforms using selective laser sintering., 2013, 48(1): 129–133.

    [15] GOODRIDGE R D, TUCK C J, HAGUE R J M. Laser sintering of polyamides and other polymers., 2012, 57(2): 229–267.

    [16] SHANG X J, ZHU Y M, LI Z H. Surface modification of silicon carbide with silane coupling agent and hexadecyl iodiele., 2017, 394(1): 169–177.

    低黏結(jié)劑含量SiC素坯的選區(qū)激光燒結(jié)

    黃龍之1,2, 殷杰1,2, 陳曉1,2, 王新廣3, 劉學建1, 黃政仁1,4

    (1. 中國科學院 上海硅酸鹽研究所, 上海 200050; 2. 中國科學院大學 材料科學與光電技術(shù)學院, 北京 100864; 3. 中國科學院 金屬研究所, 沈陽 110016; 4. 中國科學院 寧波材料技術(shù)與工程研究所, 寧波 315201)

    Al/SiC是SiC基復合材料, 具有優(yōu)異的力學性能和熱學性能, 在大功率電子器件、5G基站關(guān)鍵冷卻組件、電動汽車、高速剎車片、空間探測器操作裝置等相關(guān)領(lǐng)域具有不可替代的作用。傳統(tǒng)制備工藝的局限性使得近凈成形的無壓浸滲法成為制備Al/SiC復合材料的一種較好的方法。得到高質(zhì)量的碳化硅(SiC)陶瓷素坯是熔滲技術(shù)的先決條件, 選區(qū)激光燒結(jié)技術(shù)是獲得高質(zhì)量陶瓷素坯的一種新方法。該方法具有快速、高效的優(yōu)點, 無需模具即可成型制備大規(guī)模、復雜形狀部件。本研究以熱塑性酚醛樹脂為黏結(jié)劑, 利用機械混合與噴霧造粒的方法制備了復合粉體, 采用選區(qū)激光燒結(jié)技術(shù)制備SiC素坯, 制備了黏結(jié)劑體積分數(shù)低至15%的樣品, 并對其力學性能和微觀結(jié)構(gòu)進行表征。當樹脂含量增大到體積分數(shù)25%時, SiC坯體的強度增量為702.1%。對于噴霧造粒粉體制備的樣品而言, 噴霧干粉的多孔結(jié)構(gòu)使得SiC生坯的孔隙率較高(71.18%), 導致生坯強度下降。

    Al/SiC; 選區(qū)激光燒結(jié); 素坯; 微結(jié)構(gòu)

    TQ174

    A

    2021-11-11;

    2021-12-27;

    2022-01-24

    National Natural Science Foundation of China (52073299, 52172077, 51602325, 91960102); Youth Innovation Promotion Association, Chinese Academy of Sciences (2018289)

    HUANG Longzhi (1996–), male, Master candidate. E-mail: sichlz@163.com

    黃龍之(1996–), 男, 碩士研究生. E-mail: sichlz@163.com

    YIN Jie, associate professor. E-mail: jieyin@mail.sic.ac.cn; LIU Xuejian, professor. E-mail: xjliu@mail.sic.ac.cn

    殷杰, 副研究員. E-mail: jieyin@mail.sic.ac.cn; 劉學建, 研究員. E-mail: xjliu@mail.sic.ac.cn

    1000-324X(2022)03-0347-06

    10.15541/jim20210699

    猜你喜歡
    生坯造粒選區(qū)
    快堆MOX燃料中模浮動壓制生坯性能與缺陷研究
    分散劑對99.8%高純氧化鋁噴霧造粒粉的影響
    山東陶瓷(2021年5期)2022-01-17 02:35:44
    河南心連心公司10萬t/a尿素鋼帶造粒項目投產(chǎn)
    磷肥與復肥(2021年3期)2021-12-26 06:03:43
    砂性肥料造粒關(guān)鍵技術(shù)國際領(lǐng)先
    快堆燃料芯塊壓制成型技術(shù)研究
    鋁合金激光選區(qū)熔化成型能力研究
    中航工業(yè)成功研發(fā)大尺寸多激光選區(qū)熔化增材制造設(shè)備
    芯塊成型工藝技術(shù)改進
    造粒塔內(nèi)部乙烯基脂防腐施工
    安鶴煤田煤層氣開發(fā)選區(qū)評價研究
    中國煤層氣(2015年1期)2015-08-22 03:05:47
    国产精品福利在线免费观看| 天堂√8在线中文| 亚洲国产欧美在线一区| 听说在线观看完整版免费高清| 国产av不卡久久| 91久久精品国产一区二区三区| 欧美性猛交黑人性爽| 精品免费久久久久久久清纯| 三级国产精品片| 婷婷色av中文字幕| 亚洲人成网站高清观看| 亚洲成人av在线免费| 边亲边吃奶的免费视频| 亚洲av成人精品一二三区| 麻豆乱淫一区二区| 99热这里只有是精品在线观看| 国产高清三级在线| 高清午夜精品一区二区三区| 国产一区二区在线观看日韩| 久久人人爽人人爽人人片va| av卡一久久| 精品一区二区三区视频在线| 一级爰片在线观看| 女人久久www免费人成看片 | 国语对白做爰xxxⅹ性视频网站| 亚洲欧美中文字幕日韩二区| 男人和女人高潮做爰伦理| 又爽又黄a免费视频| 国产免费又黄又爽又色| 国产伦一二天堂av在线观看| 亚洲欧美精品专区久久| 国产成人精品婷婷| 国产精品久久久久久精品电影小说 | 性插视频无遮挡在线免费观看| 亚洲一级一片aⅴ在线观看| 欧美成人免费av一区二区三区| 国产黄a三级三级三级人| 黄片wwwwww| av免费在线看不卡| 日日撸夜夜添| 爱豆传媒免费全集在线观看| 婷婷色综合大香蕉| av.在线天堂| 内射极品少妇av片p| 成人欧美大片| 99久国产av精品| 国产91av在线免费观看| 成年免费大片在线观看| 在现免费观看毛片| 亚洲婷婷狠狠爱综合网| 中文字幕熟女人妻在线| 亚洲av福利一区| 亚洲欧洲日产国产| 少妇人妻一区二区三区视频| 色吧在线观看| 国产老妇伦熟女老妇高清| 成人鲁丝片一二三区免费| 亚洲欧美成人精品一区二区| 身体一侧抽搐| 日本五十路高清| 淫秽高清视频在线观看| 99久国产av精品国产电影| 久久人妻av系列| 中文资源天堂在线| 人人妻人人澡人人爽人人夜夜 | 男女那种视频在线观看| 国产成人午夜福利电影在线观看| 韩国高清视频一区二区三区| 免费av不卡在线播放| 国产伦理片在线播放av一区| 国产探花极品一区二区| 国产极品精品免费视频能看的| 亚洲欧美精品自产自拍| 欧美日韩一区二区视频在线观看视频在线 | 久久精品影院6| 亚洲伊人久久精品综合 | 国国产精品蜜臀av免费| 国产午夜精品久久久久久一区二区三区| 国产精品1区2区在线观看.| 在线播放无遮挡| 看片在线看免费视频| 麻豆一二三区av精品| 免费大片18禁| 亚洲自拍偷在线| av在线亚洲专区| 不卡视频在线观看欧美| 精品酒店卫生间| 你懂的网址亚洲精品在线观看 | av线在线观看网站| 久久热精品热| av在线亚洲专区| 热99re8久久精品国产| 毛片一级片免费看久久久久| av在线天堂中文字幕| 舔av片在线| 久久久久久伊人网av| 久久精品影院6| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | .国产精品久久| 日本免费一区二区三区高清不卡| 免费观看在线日韩| 天堂中文最新版在线下载 | 婷婷色麻豆天堂久久 | 国产不卡一卡二| 久久久久久久久大av| 九九久久精品国产亚洲av麻豆| 久久久成人免费电影| 亚洲欧美精品专区久久| 欧美成人一区二区免费高清观看| 高清毛片免费看| 国产精品一区二区在线观看99 | 欧美最新免费一区二区三区| 亚洲乱码一区二区免费版| 天美传媒精品一区二区| 三级国产精品片| 日本三级黄在线观看| 精品不卡国产一区二区三区| 国产成人91sexporn| 最后的刺客免费高清国语| 亚洲欧美精品综合久久99| 一级爰片在线观看| 自拍偷自拍亚洲精品老妇| 天堂√8在线中文| 免费看美女性在线毛片视频| 国产精品一二三区在线看| 久久人妻av系列| 一个人看视频在线观看www免费| 日本五十路高清| 听说在线观看完整版免费高清| 天美传媒精品一区二区| 乱系列少妇在线播放| 国产成人午夜福利电影在线观看| av.在线天堂| 有码 亚洲区| 午夜福利视频1000在线观看| 成人欧美大片| 成人毛片a级毛片在线播放| 色哟哟·www| 美女cb高潮喷水在线观看| 国产精品久久久久久久久免| 国产熟女欧美一区二区| 久久99热这里只有精品18| 精品久久国产蜜桃| 欧美成人免费av一区二区三区| 国产精品人妻久久久久久| av播播在线观看一区| 成年女人永久免费观看视频| 综合色丁香网| 99久久人妻综合| 人妻制服诱惑在线中文字幕| 日韩欧美三级三区| 一区二区三区乱码不卡18| 精品无人区乱码1区二区| 天天一区二区日本电影三级| 少妇人妻一区二区三区视频| 国产精品一区二区三区四区久久| 青春草国产在线视频| 一级毛片aaaaaa免费看小| 国产精品国产三级专区第一集| 国产男人的电影天堂91| 免费看美女性在线毛片视频| 亚洲人成网站高清观看| 尾随美女入室| 只有这里有精品99| 免费观看的影片在线观看| 一卡2卡三卡四卡精品乱码亚洲| 99视频精品全部免费 在线| eeuss影院久久| 插阴视频在线观看视频| 免费观看精品视频网站| 网址你懂的国产日韩在线| 免费不卡的大黄色大毛片视频在线观看 | 麻豆久久精品国产亚洲av| 国产一区二区三区av在线| 国产黄片视频在线免费观看| 18禁动态无遮挡网站| 国产亚洲av片在线观看秒播厂 | kizo精华| 精品人妻偷拍中文字幕| 欧美精品一区二区大全| 国产视频首页在线观看| 禁无遮挡网站| 国产精品嫩草影院av在线观看| 少妇的逼水好多| 亚洲精品aⅴ在线观看| 亚洲国产精品专区欧美| av女优亚洲男人天堂| 亚洲人成网站高清观看| 看非洲黑人一级黄片| 一区二区三区四区激情视频| 午夜福利成人在线免费观看| 日韩精品青青久久久久久| 国国产精品蜜臀av免费| 成年av动漫网址| 少妇高潮的动态图| 久久国产乱子免费精品| 久久久久九九精品影院| 日韩欧美国产在线观看| 日本与韩国留学比较| 国产视频首页在线观看| 午夜激情欧美在线| 天天一区二区日本电影三级| 亚洲美女视频黄频| 简卡轻食公司| 亚洲无线观看免费| 97超视频在线观看视频| 亚洲国产精品成人久久小说| 精品国产一区二区三区久久久樱花 | 五月伊人婷婷丁香| 嫩草影院入口| 国产精品电影一区二区三区| 自拍偷自拍亚洲精品老妇| 午夜老司机福利剧场| videos熟女内射| 亚洲激情五月婷婷啪啪| 免费大片18禁| 男人狂女人下面高潮的视频| 三级男女做爰猛烈吃奶摸视频| 一边亲一边摸免费视频| 国产精品国产三级国产专区5o | 国产亚洲午夜精品一区二区久久 | 免费观看a级毛片全部| 亚洲欧美清纯卡通| 国产白丝娇喘喷水9色精品| 国产成人精品婷婷| 国产在视频线在精品| 午夜福利在线在线| 老司机影院成人| 两性午夜刺激爽爽歪歪视频在线观看| 成人特级av手机在线观看| 精品久久久久久成人av| 国产亚洲5aaaaa淫片| 丰满少妇做爰视频| 女人久久www免费人成看片 | 欧美不卡视频在线免费观看| 国产精品女同一区二区软件| 亚洲人成网站在线播| 人人妻人人澡人人爽人人夜夜 | 亚洲精品日韩在线中文字幕| 精品国产三级普通话版| 国产黄色视频一区二区在线观看 | 欧美性猛交╳xxx乱大交人| 欧美3d第一页| 国产熟女欧美一区二区| 丰满乱子伦码专区| 久久久a久久爽久久v久久| 欧美区成人在线视频| 欧美日韩精品成人综合77777| 国产人妻一区二区三区在| 成人欧美大片| 国产精品国产三级国产av玫瑰| 国产精品嫩草影院av在线观看| 成人美女网站在线观看视频| 日本wwww免费看| 男人的好看免费观看在线视频| 不卡视频在线观看欧美| 亚洲av男天堂| 丰满乱子伦码专区| 99久久成人亚洲精品观看| 99视频精品全部免费 在线| 中文字幕熟女人妻在线| 一级黄片播放器| 成人午夜精彩视频在线观看| 看非洲黑人一级黄片| 嫩草影院精品99| 国产乱人偷精品视频| 精品不卡国产一区二区三区| 成人午夜高清在线视频| 天堂网av新在线| 边亲边吃奶的免费视频| 久久午夜福利片| 一级爰片在线观看| 国产免费福利视频在线观看| 99在线人妻在线中文字幕| 国产中年淑女户外野战色| 欧美区成人在线视频| 有码 亚洲区| 国产在线一区二区三区精 | 亚洲美女视频黄频| 婷婷色av中文字幕| 久久久久免费精品人妻一区二区| 少妇的逼好多水| 午夜爱爱视频在线播放| 免费av不卡在线播放| 亚洲18禁久久av| 中文字幕免费在线视频6| 亚洲欧美精品自产自拍| 99在线人妻在线中文字幕| av黄色大香蕉| 国产高潮美女av| 欧美xxxx黑人xx丫x性爽| 国产精品麻豆人妻色哟哟久久 | 欧美又色又爽又黄视频| 国产成人91sexporn| 黑人高潮一二区| 男人和女人高潮做爰伦理| 久久精品久久久久久久性| 久久精品国产鲁丝片午夜精品| 中文字幕免费在线视频6| 久久久久国产网址| 亚洲国产精品合色在线| 国产免费一级a男人的天堂| 欧美精品一区二区大全| 久久精品久久久久久噜噜老黄 | 亚洲人成网站在线播| 赤兔流量卡办理| 神马国产精品三级电影在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产亚洲最大av| 尤物成人国产欧美一区二区三区| 午夜福利在线在线| 日韩一区二区三区影片| 久久精品91蜜桃| 成人午夜高清在线视频| 啦啦啦观看免费观看视频高清| 七月丁香在线播放| 亚洲人与动物交配视频| 久久精品国产亚洲av涩爱| 七月丁香在线播放| 精品欧美国产一区二区三| av福利片在线观看| 色综合站精品国产| 欧美97在线视频| 日产精品乱码卡一卡2卡三| 欧美色视频一区免费| 麻豆成人av视频| 亚洲国产精品sss在线观看| 三级国产精品片| 国产精品一区二区在线观看99 | 国产精品一区二区三区四区久久| 桃色一区二区三区在线观看| 国产女主播在线喷水免费视频网站 | 日日啪夜夜撸| 日本av手机在线免费观看| 国产成人午夜福利电影在线观看| 久久久久久久久大av| 日本三级黄在线观看| 22中文网久久字幕| 亚洲国产最新在线播放| 一级毛片aaaaaa免费看小| 亚洲国产精品sss在线观看| 男插女下体视频免费在线播放| 又黄又爽又刺激的免费视频.| 日日啪夜夜撸| 最近的中文字幕免费完整| 亚洲最大成人中文| 观看美女的网站| 极品教师在线视频| 成人亚洲欧美一区二区av| 精品久久久久久久久av| 在现免费观看毛片| 午夜福利在线观看免费完整高清在| 狂野欧美激情性xxxx在线观看| 成人一区二区视频在线观看| 精品熟女少妇av免费看| 毛片女人毛片| 亚洲人成网站在线观看播放| 日韩精品青青久久久久久| 国产一区二区亚洲精品在线观看| 久久久精品94久久精品| 91精品伊人久久大香线蕉| 久久久色成人| 久久精品夜色国产| 久久鲁丝午夜福利片| 免费观看a级毛片全部| 国产黄片视频在线免费观看| 又爽又黄无遮挡网站| 国产淫语在线视频| 久久久久久久久久久免费av| 亚洲av免费在线观看| 成人漫画全彩无遮挡| 国产精品久久久久久av不卡| 国产精品久久久久久久久免| 天堂中文最新版在线下载 | 久久精品夜色国产| 国产在线男女| 日产精品乱码卡一卡2卡三| 偷拍熟女少妇极品色| 久热久热在线精品观看| 美女被艹到高潮喷水动态| 热99在线观看视频| 欧美xxxx黑人xx丫x性爽| 一级毛片aaaaaa免费看小| av免费在线看不卡| 国产精品美女特级片免费视频播放器| 中文字幕av成人在线电影| 精品免费久久久久久久清纯| 亚洲色图av天堂| 综合色av麻豆| 久久久久久久久久成人| 变态另类丝袜制服| 99热这里只有精品一区| 自拍偷自拍亚洲精品老妇| 久久99热6这里只有精品| 国产午夜福利久久久久久| 国产精品嫩草影院av在线观看| 国内精品一区二区在线观看| 国产精品久久视频播放| 熟妇人妻久久中文字幕3abv| 亚洲欧美日韩卡通动漫| 赤兔流量卡办理| 菩萨蛮人人尽说江南好唐韦庄 | 看十八女毛片水多多多| 国产精品女同一区二区软件| 人妻制服诱惑在线中文字幕| 舔av片在线| 欧美人与善性xxx| 天堂√8在线中文| 麻豆一二三区av精品| 国产成人免费观看mmmm| 成人美女网站在线观看视频| 亚洲美女视频黄频| 51国产日韩欧美| 国产成人一区二区在线| 全区人妻精品视频| 人人妻人人看人人澡| 色噜噜av男人的天堂激情| 欧美xxxx性猛交bbbb| 波多野结衣巨乳人妻| 国产私拍福利视频在线观看| 天美传媒精品一区二区| 99久国产av精品| 欧美不卡视频在线免费观看| 日韩制服骚丝袜av| 亚洲高清免费不卡视频| 久久久久久久久久久丰满| 亚洲真实伦在线观看| 狠狠狠狠99中文字幕| 精品99又大又爽又粗少妇毛片| 午夜福利在线观看免费完整高清在| av在线播放精品| 九九爱精品视频在线观看| 三级男女做爰猛烈吃奶摸视频| 久久久久久久久久黄片| 精品人妻熟女av久视频| 少妇的逼水好多| 国产 一区精品| 天美传媒精品一区二区| 国产淫片久久久久久久久| 久久精品熟女亚洲av麻豆精品 | 亚洲精华国产精华液的使用体验| 成人三级黄色视频| 人妻系列 视频| 哪个播放器可以免费观看大片| 午夜激情欧美在线| 国产精品无大码| 亚洲人与动物交配视频| 成人亚洲欧美一区二区av| 最近中文字幕高清免费大全6| 久久久久久久国产电影| 在线免费观看的www视频| 老司机福利观看| 国产私拍福利视频在线观看| 日本三级黄在线观看| 久久久久久久久久黄片| 高清在线视频一区二区三区 | 国产精品久久视频播放| 久久精品国产亚洲av涩爱| 亚洲高清免费不卡视频| 亚洲成色77777| 久久久色成人| 夫妻性生交免费视频一级片| 久久久色成人| 国产午夜福利久久久久久| 51国产日韩欧美| 国产精品一区二区性色av| 韩国av在线不卡| 麻豆久久精品国产亚洲av| 成人特级av手机在线观看| 一个人看视频在线观看www免费| 国产精品爽爽va在线观看网站| 天天一区二区日本电影三级| 我要搜黄色片| 国产白丝娇喘喷水9色精品| 校园人妻丝袜中文字幕| 又黄又爽又刺激的免费视频.| 国产伦精品一区二区三区视频9| 久久精品国产亚洲网站| 久久这里只有精品中国| 欧美丝袜亚洲另类| av免费观看日本| 成年免费大片在线观看| 精品国内亚洲2022精品成人| 欧美日韩在线观看h| 精品人妻熟女av久视频| 精品久久久久久久久亚洲| 亚洲精品乱码久久久v下载方式| 亚洲成人精品中文字幕电影| 干丝袜人妻中文字幕| 日韩av不卡免费在线播放| 亚洲一区高清亚洲精品| 欧美激情国产日韩精品一区| 男女视频在线观看网站免费| 中文字幕制服av| 婷婷六月久久综合丁香| 色综合站精品国产| 日韩成人伦理影院| 97在线视频观看| 久久精品国产亚洲av涩爱| 九九热线精品视视频播放| 天天一区二区日本电影三级| 最近视频中文字幕2019在线8| 国产成人freesex在线| 综合色丁香网| 亚洲av二区三区四区| 视频中文字幕在线观看| 99视频精品全部免费 在线| 青春草亚洲视频在线观看| 99久久九九国产精品国产免费| 最近中文字幕高清免费大全6| 精品不卡国产一区二区三区| 亚洲va在线va天堂va国产| 欧美一级a爱片免费观看看| 国产精品av视频在线免费观看| 中文字幕免费在线视频6| 亚洲乱码一区二区免费版| 日韩欧美国产在线观看| 日日撸夜夜添| 欧美变态另类bdsm刘玥| a级毛片免费高清观看在线播放| 国产久久久一区二区三区| АⅤ资源中文在线天堂| 久久精品熟女亚洲av麻豆精品 | 欧美日韩在线观看h| 欧美色视频一区免费| 国产精品野战在线观看| 三级男女做爰猛烈吃奶摸视频| 天美传媒精品一区二区| 亚洲,欧美,日韩| 丰满少妇做爰视频| 欧美区成人在线视频| 欧美性猛交╳xxx乱大交人| 国产老妇女一区| 一区二区三区免费毛片| 久久久久久久久久成人| 校园人妻丝袜中文字幕| 免费av观看视频| av卡一久久| 久久久久久久亚洲中文字幕| 国产私拍福利视频在线观看| 色5月婷婷丁香| 免费大片18禁| 国产成人精品久久久久久| 欧美成人一区二区免费高清观看| 特级一级黄色大片| 老司机影院成人| 国产精品人妻久久久久久| 一边摸一边抽搐一进一小说| 熟女电影av网| 国产单亲对白刺激| 精品久久久久久久久亚洲| 国产亚洲av片在线观看秒播厂 | 又粗又爽又猛毛片免费看| 99久国产av精品| 少妇被粗大猛烈的视频| 国产激情偷乱视频一区二区| 久久久久久大精品| 国产白丝娇喘喷水9色精品| 亚洲高清免费不卡视频| 日日啪夜夜撸| 在线免费观看不下载黄p国产| 亚洲国产精品专区欧美| 精品99又大又爽又粗少妇毛片| 国产精品日韩av在线免费观看| 乱码一卡2卡4卡精品| 超碰av人人做人人爽久久| 国产午夜精品论理片| 亚洲av免费高清在线观看| 欧美最新免费一区二区三区| 日韩高清综合在线| 欧美区成人在线视频| 久久精品夜色国产| 欧美日韩在线观看h| 成年av动漫网址| 久久精品影院6| 看黄色毛片网站| 亚洲综合精品二区| 麻豆久久精品国产亚洲av| 中文字幕亚洲精品专区| 国产精品av视频在线免费观看| 亚洲精华国产精华液的使用体验| 久久综合国产亚洲精品| 成人毛片60女人毛片免费| 国产高清有码在线观看视频| 日韩欧美 国产精品| 久久国内精品自在自线图片| 成人三级黄色视频| 极品教师在线视频| 久久久精品94久久精品| 精品国内亚洲2022精品成人| 亚洲高清免费不卡视频| 亚洲精品久久久久久婷婷小说 | 国产淫语在线视频| 少妇猛男粗大的猛烈进出视频 | 九色成人免费人妻av| 午夜免费男女啪啪视频观看| 搡老妇女老女人老熟妇| 三级男女做爰猛烈吃奶摸视频| 免费看av在线观看网站| 日本猛色少妇xxxxx猛交久久| 精品久久久噜噜| 国产精品一区二区三区四区久久| 看十八女毛片水多多多| 韩国高清视频一区二区三区| 国产精品久久久久久精品电影| 女的被弄到高潮叫床怎么办| 久久久久久大精品| 亚洲第一区二区三区不卡| 精品久久久久久成人av| 日韩强制内射视频| 九草在线视频观看| 韩国av在线不卡| 亚洲av成人av| 国产老妇女一区| 特大巨黑吊av在线直播|