嚴(yán)婭,王廣文,孔凡迪,王旭遠(yuǎn),王一涵,李俊平,趙玉輝,李呈軍,陳化蘭,姜麗
NMRAL1對流感病毒復(fù)制的調(diào)控機(jī)制
中國農(nóng)業(yè)科學(xué)院哈爾濱獸醫(yī)研究所/獸醫(yī)生物技術(shù)國家重點(diǎn)實(shí)驗(yàn)室,哈爾濱 150069
【目的】流感病毒是一種人獸共患病原,常引起大流行,給人類健康造成巨大威脅,且流感病毒易發(fā)生變異,能不斷逃逸宿主細(xì)胞的免疫反應(yīng),對現(xiàn)有抗流感藥物產(chǎn)生耐藥性,因此尋找抵抗流感的新方法迫在眉睫。研究通過探索NMRAL1(NmrA-like family domain-containing protein 1)對流感病毒復(fù)制的影響,并揭示其發(fā)揮作用的分子機(jī)制,為抗流感藥物研發(fā)提供潛在靶點(diǎn)?!痉椒ā坎捎胹iRNA干擾技術(shù)在A549細(xì)胞中下調(diào)表達(dá)NMRAL1,并通過Western Blot檢測siRNA干擾后NMRAL1的表達(dá)水平;在下調(diào)表達(dá)NMRAL1的細(xì)胞中,分別感染A/Anhui/2/2005 (AH05) (H5N1)和A/WSN/33 (H1N1) 兩株不同亞型流感病毒,利用蝕斑試驗(yàn)檢測感染病毒后24和48 h細(xì)胞上清中的病毒滴度。為確定NMRAL1影響流感病毒復(fù)制的具體階段,在HEK293T細(xì)胞中瞬時(shí)轉(zhuǎn)染NMRAL1-Myc-pCAGGS質(zhì)粒過表達(dá)NMRAL1,通過雙熒光素酶報(bào)告系統(tǒng)檢測過表達(dá)NMRAL1對流感病毒聚合酶活性的影響;使用免疫熒光技術(shù)對流感病毒NP蛋白進(jìn)行染色,通過激光共聚焦試驗(yàn)觀察下調(diào)表達(dá)NMRAL1對感染病毒后3、4、5、6和8 h NP蛋白在被感染細(xì)胞中的定位情況的影響,判斷下調(diào)表達(dá)NMRAL1是否影響流感病毒的入核和出核過程;利用Western Blot檢測下調(diào)表達(dá)NMRAL1對流感病毒各病毒蛋白表達(dá)的影響和對流感病毒激活I(lǐng)型干擾素通路下游IFN刺激基因(ISGs)表達(dá)的影響,利用間接免疫熒光試驗(yàn)進(jìn)一步研究NMRAL1對流感病毒復(fù)制的影響?!窘Y(jié)果】Western Blot檢測發(fā)現(xiàn)NMRAL1 siRNA能顯著下調(diào)NMRAL1表達(dá),在下調(diào)表達(dá)NMRAL1的A549細(xì)胞中分別感染H5N1和H1N1病毒,并通過蝕斑試驗(yàn)檢測感染病毒后細(xì)胞上清中的病毒滴度,結(jié)果顯示在下調(diào)表達(dá)NMRAL1的細(xì)胞中,感染流感病毒后24和48 h收取的細(xì)胞上清中病毒滴度顯著下降,表明NMRAL1能促進(jìn)不同亞型流感病毒的復(fù)制;為進(jìn)一步探索NMRAL1調(diào)控流感病毒復(fù)制的具體機(jī)制,利用雙熒光素酶報(bào)告系統(tǒng)檢測流感病毒聚合酶活性,發(fā)現(xiàn)過表達(dá)NMRAL1對流感病毒聚合酶活性無明顯影響;激光共聚焦試驗(yàn)結(jié)果顯示下調(diào)NMRAL1表達(dá)不影響NP蛋白的入核和出核過程,同時(shí)Western Blot檢測表明下調(diào)NMRAL1表達(dá)不影響各病毒蛋白的表達(dá);但熒光定量PCR試驗(yàn)結(jié)果顯示下調(diào)NMRAL1表達(dá)能夠促進(jìn)流感病毒感染誘導(dǎo)的IFN-β mRNA水平上升,且Western Blot檢測發(fā)現(xiàn)下調(diào)表達(dá)NMRAL1促進(jìn)I型干擾素通路下游的MxA和IFITM3抗病毒蛋白的表達(dá),與此同時(shí),間接免疫熒光試驗(yàn)結(jié)果顯示下調(diào)NMRAL1表達(dá)可顯著抑制流感病毒復(fù)制?!窘Y(jié)論】在流感病毒感染過程中,NMRAL1不影響流感病毒的入侵以及轉(zhuǎn)錄翻譯過程,而是通過抑制I型干擾素通路激活從而抑制MxA、IFITM3等抗病毒因子的表達(dá),最終促進(jìn)流感病毒復(fù)制。研究證實(shí)宿主因子NMRAL1正調(diào)控流感病毒的復(fù)制,豐富了參與流感病毒復(fù)制的宿主因子網(wǎng)絡(luò)。
NMRAL1; 流感病毒; 病毒復(fù)制; IFN-β; 抗病毒基因
【研究意義】A型流感病毒屬于正黏病毒科流感病毒屬,其基因組由8個(gè)單股負(fù)鏈RNA組成,依次編碼PB2、PB1、PA、HA、NP、NA、M1、M2、NS1和NS2這10種必需蛋白,除此之外,還編碼多種非必需的附件蛋白[1-2]。根據(jù)流感病毒表面的血凝素(HA)和神經(jīng)氨酸酶(NA)的抗原性不同,可分為18種HA亞型和11種NA亞型[3-4]。由于HA和NA易發(fā)生抗原漂移和抗原轉(zhuǎn)變,流感病毒常發(fā)生變異[5],而快速變化的流感病毒給流感的防控帶來了巨大挑戰(zhàn)。流感病毒感染細(xì)胞需要依次經(jīng)過吸附、內(nèi)吞、膜融合、vRNP復(fù)合體入核、轉(zhuǎn)錄翻譯、組裝和釋放過程,而這一系列過程的順利完成離不開眾多宿主因子的作用[6-7]。因此,從宿主因子的角度出發(fā),探索宿主因子在流感病毒復(fù)制過程中發(fā)揮的作用,能夠?yàn)閷ふ铱沽鞲兴幬锾峁撛诎悬c(diǎn),為流感的防控提供理論基礎(chǔ)?!厩叭搜芯窟M(jìn)展】宿主因子NMRAL1是一種氧化還原傳感器蛋白,主要定位于細(xì)胞核。目前已有文獻(xiàn)報(bào)道NMRAL1可以負(fù)調(diào)控TNFα(tumour necrosis factor alpha)和IL-1(Interleukin 1)引發(fā)的NF-κB信號通路[8-10],此外,NMRAL1還可負(fù)調(diào)控細(xì)胞抗病毒RIG-I(retinoic acid inducible gene I)樣受體信號通路[11],但NMRAL1對IFN-β的負(fù)調(diào)控作用主要依賴于其對RIG-I樣受體信號通路的影響[12]。在病毒感染機(jī)體后,NMRAL1可與TRAF3相互作用,并與OTUB1協(xié)同作用,從TRAF3中去除Lys63連接的聚泛素鏈,從而減少IKKε的募集,導(dǎo)致IKKε和IRF3磷酸化水平降低,最終降低IFN-β產(chǎn)生[13-14],NMRAL1正是通過此途徑減弱仙臺病毒(SeV)刺激引起的IFN-β的分泌和細(xì)胞的抗病毒反應(yīng)。Ⅰ型干擾素在抗病毒天然免疫中發(fā)揮重要作用,是宿主對抗病毒感染強(qiáng)大的工具,不僅能誘導(dǎo)大量下游抗病毒基因的表達(dá)、直接抑制病毒復(fù)制、清除病毒感染的細(xì)胞,也能促進(jìn)樹突狀細(xì)胞的成熟,從而促進(jìn)抗病毒適應(yīng)性免疫的產(chǎn)生[15]。(MX dynamin like GTPase 1)和(interferon-induced transmembrane protein 3)屬于干擾素誘導(dǎo)基因,可以被干擾素和病毒誘導(dǎo)表達(dá),發(fā)揮抗病毒作用[16]。MxA蛋白由編碼,通過在受感染的呼吸道上皮細(xì)胞中觸發(fā)快速的炎癥反應(yīng)來抑制流感病毒的復(fù)制[17], 此外,有研究表明MxA可能抑制病毒RNP的核輸入和病毒RNA的合成[18-20];IFITM3可抑制多種囊膜病毒的入侵,包括抑制流感病毒入侵的膜融合階段[21]。由于MxA和IFITM3是被干擾素誘導(dǎo)表達(dá)的抗病毒蛋白,因此檢測兩種蛋白的表達(dá)水平也是驗(yàn)證干擾素通路是否被激活的一個(gè)指標(biāo)。【本研究切入點(diǎn)】NMRAL1可減弱SeV刺激引起的IFN-β的分泌和細(xì)胞的抗病毒反應(yīng),此外,還有文獻(xiàn)報(bào)道過表達(dá)NMRAL1的HEK293T細(xì)胞可削弱MAVS、TBK1、TRAF3和IKKε介導(dǎo)的抗病毒反應(yīng),降低細(xì)胞對水皰性口炎病毒(VSV)感染的抵抗力,導(dǎo)致VSV傳播增加[13];但目前尚無NMRAL1影響流感病毒復(fù)制的相關(guān)報(bào)道?!緮M解決的關(guān)鍵問題】探究NMRAL1對流感病毒復(fù)制的影響,闡明NMRAL1影響流感病毒復(fù)制的分子機(jī)制,豐富流感病毒復(fù)制相關(guān)的宿主因子網(wǎng)絡(luò),為防控流感提供新思路。
A549、HEK293T、MDCK細(xì)胞均購自ATCC公司;DH5α感受態(tài)細(xì)胞由獸醫(yī)生物技術(shù)國家重點(diǎn)實(shí)驗(yàn)室制備;A/Anhui/2/2005 (AH05) (H5N1)和A/WSN/33 (H1N1)毒株由該實(shí)驗(yàn)室保存;NMRAL1-Myc-pCAGGS、WSNPB2-pCAGGS、WSNPB1-pCAGGS、WSNPA- pCAGGS和WSNNP-pCAGGS質(zhì)粒為獸醫(yī)生物技術(shù)國家重點(diǎn)實(shí)驗(yàn)室構(gòu)建保存。本研究于2019—2021年在中國農(nóng)業(yè)科學(xué)院哈爾濱獸醫(yī)研究所生物安全二級和三級實(shí)驗(yàn)室進(jìn)行。
鼠抗PB2、PB1、PA、NP單克隆抗體均由獸醫(yī)生物技術(shù)國家重點(diǎn)實(shí)驗(yàn)室制備,兔抗NMRAL1多克隆抗體、兔抗MxA多克隆抗體購自Proteintech公司,兔抗IFITM3多克隆抗體購自GeneTex公司,Alexa FluorTM488 goat anti- mouse IgG(H+L)、Alexa Fluor 633TMgoat anti-mouse IgG(H+L)購至Thermo Fisher 公司;siRNA由吉瑪公司合成;Lipofectamine ? LTX and Plus Reagent、RNAiMax Transfection Reagent轉(zhuǎn)染試劑購自Invitrogen 公司,2×ChamQ Universal SYBR qPCR Master Mix、HiScript? RII Q RT SuperMix for qPCR (+gDNA wiper)均購自Vazyme公司,Opti-MEM培養(yǎng)基、10×MEM 培養(yǎng)基、Sodium Bicarbonate(7.5%)、MEM Amino Acids、MEM Vitamin、L-Glutamin、PenStrep購自Gibco公司,F(xiàn)-12K 培養(yǎng)基購自WISENT公司,DMEM 培養(yǎng)基購自Sigma公司;質(zhì)粒小量提取試劑盒購自Axygen公司,質(zhì)粒中提試劑盒購自QIAGEN公司,RNA提取試劑盒購自TIANGEN公司,激光共聚焦培養(yǎng)皿購自NEST公司。
引物及siRNA序列詳情見表1。
表1 引物及siRNA序列
在A549細(xì)胞中進(jìn)行siRNA干擾試驗(yàn),將1.5 μL 20 μmol·L-1的Scrambled siRNA或NMRAL1 siRNA與3 μL RNAiMax Transfection Reagent轉(zhuǎn)染試劑在50 μL Opti-MEM中混勻,室溫孵育15 min。將胰酶消化后的A549細(xì)胞均勻鋪于12孔細(xì)胞培養(yǎng)板中,將孵育的混合物均勻滴在細(xì)胞中,置于5% CO2、37℃培養(yǎng)箱中培養(yǎng)。36 h后,用1×蛋白上樣緩沖液裂解細(xì)胞,收取的樣品用95℃金屬浴處理10 min。將變性后的蛋白樣品進(jìn)行Western Blot檢測,使用GenScript快速濕轉(zhuǎn)儀將蛋白轉(zhuǎn)印至NC膜,5%脫脂乳室溫封閉1 h,兔抗NMRAL1多克隆抗體(按1﹕500稀釋)4℃過夜孵育,PBST洗滌3次,再使用DyLight 800-labeled Antibody to Rabbit IgG (H+L)(按1﹕5 000稀釋)二抗室溫孵育1 h,PBST洗滌3次,最后用近紅外掃描系統(tǒng)掃描成像。
在A549細(xì)胞中分別轉(zhuǎn)染Scrambled siRNA、NMRAL1 siRNA,36 h后分別感染A/Anhui/2/2005 (AH05)(H5N1)(MOI=0.1)和A/WSN/33(H1N1)(MOI=0.01)病毒,在24 h和48 h收取上清,于-80℃保存。將MDCK細(xì)胞按合適比例鋪于12孔細(xì)胞培養(yǎng)板,待細(xì)胞密度達(dá)90%—100%時(shí),將上清液用1×MEM/BSA按10倍倍比稀釋至合適濃度,然后加入MDCK細(xì)胞中感染1 h,棄掉病毒液后換成1 mL 1%瓊脂糖/1×MEM/BSA,48 h后用4%多聚甲醛固定,統(tǒng)計(jì)蝕斑數(shù)量。
在HEK293T細(xì)胞中瞬時(shí)轉(zhuǎn)染NMRAL1-Myc- pCAGGS質(zhì)粒24 h后,再轉(zhuǎn)染W(wǎng)SNPB2-pCAGGS、WSNPB1-pCAGGS、WSNPA-pCAGGS、WSNNP-pCAGGS、pHH21-SC09NS F-Luciferase和pRL-TK質(zhì)粒,48 h后用1×Passive lysis buffer裂解細(xì)胞,然后將裂解液加入96孔板,先后加入Luciferase Assay Reagent和Stop&Glo Reagent試劑檢測雙熒光素酶活性。
在A549細(xì)胞中分別轉(zhuǎn)染Scrambled siRNA和NMRAL1 siRNA,36 h后分別以MOI=5感染W(wǎng)SN病毒,在3、4、5、6和8 h用4%多聚甲醛進(jìn)行固定。用PBS清洗兩次共聚焦小皿,每次10 min;用0.5% TritonX-100通透15 min,PBS清洗兩次,每次10 min;用5% BSA封閉1 h,PBS清洗兩次,每次10 min;然后室溫孵育鼠源NP蛋白單克隆抗體(1﹕500稀釋)2 h,PBS清洗兩次,每次10 min;室溫避光孵育Alexa FluorTM633 goat anti-mouse IgG(H+L)(按1﹕400稀釋),1 h后用PBS清洗兩次,每次10 min;使用DAPI染核30 min,PBS清洗兩次后用激光共聚焦顯微鏡觀察樣品,并拍照記錄。
在A549細(xì)胞中用Scrambled siRNA、NMRAL1 siRNA進(jìn)行干擾,36 h后分別以MOI=5感染W(wǎng)SN病毒,在2、4、6和8 h用RZ裂解液裂解細(xì)胞,按照細(xì)胞總RNA提取試劑盒說明書提取RNA。用HiScript? RII Q RT SuperMix for qPCR(+gDNA wiper)將RNA反轉(zhuǎn)錄為cDNA,再以該cDNA為模板,NMRAL1 RT F、NMRAL1 RT R、IFN-β RT F、IFN-β RT R、GAPDH RT F和GAPDH RT R為引物,按照2×ChamQ Universal SYBR qPCR Master Mix試劑盒說明書進(jìn)行PCR反應(yīng),檢測下調(diào)表達(dá)NMRAL1對流感病毒感染后IFN-β mRNA水平的影響。
在A549細(xì)胞中分別轉(zhuǎn)染Scrambled siRNA和NMRAL1 siRNA,36 h后以MOI=0.01感染W(wǎng)SN病毒,分別在12和24 h用1×蛋白上樣緩沖液裂解細(xì)胞,將收取的蛋白樣品95℃變性處理10 min,Western Blot檢測MxA和IFITM3蛋白表達(dá)水平(兔抗MxA多克隆抗體、兔抗IFITM3多克隆抗體均按1﹕1 000稀釋)。
在A549細(xì)胞中用Scrambled siRNA、NMRAL1 siRNA進(jìn)行干擾,36 h后分別以MOI=0.01感染W(wǎng)SN病毒,分別在12和24 h用4%多聚甲醛室溫固定樣品30 min,PBS清洗兩次,每次10 min;用0.5% TritonX- 100通透15 min,用PBS清洗兩次,每次10 min;5% BSA封閉1 h,PBS清洗兩次,每次10 min;然后4℃過夜孵育鼠源NP蛋白單克隆抗體,PBS清洗兩次,每次10 min;室溫避光孵育Alexa FluorTM488 goat anti-mouse IgG(H+L)(按1﹕400稀釋),1 h后用PBS清洗兩次,每次10 min;用DAPI染核30 min,PBS清洗兩次后用倒置熒光顯微鏡觀察樣品,并拍照記錄。
在A549細(xì)胞中進(jìn)行siRNA干擾試驗(yàn),將Scrambled siRNA、NMRAL1 siRNA轉(zhuǎn)染36 h后,裂解細(xì)胞進(jìn)行Western Blot,結(jié)果發(fā)現(xiàn)NMRAL1 siRNA能夠下調(diào)NMRAL1表達(dá)(圖1-A)。將Scrambled siRNA、NMRAL1 siRNA轉(zhuǎn)染至A549細(xì)胞,36 h后分別感染A/Anhui/2/2005(AH05)(H5N1)和A/WSN/33(H1N1)流感病毒,并通過蝕斑試驗(yàn)檢測感染病毒后24和48 h的病毒復(fù)制滴度,結(jié)果顯示,在24和48 h,與空白對照組相比,NMRAL1下調(diào)表達(dá)能夠使H5N1病毒的復(fù)制滴度分別降低4.1倍和12.3倍,WSN病毒的復(fù)制滴度分別降低10.9倍和11.3倍(圖1-B、C),表明下調(diào)NMRAL1表達(dá)抑制流感病毒復(fù)制,故NMRAL1發(fā)揮促進(jìn)流感病毒復(fù)制的作用。
A: Western Blot檢測siRNA下調(diào)NMRAL1表達(dá)效率;B: 下調(diào)表達(dá)NMRAL1對H5N1流感病毒復(fù)制滴度的影響;C: 下調(diào)表達(dá)NMRAL1對H1N1流感病毒復(fù)制滴度的影響
為進(jìn)一步研究NMRAL1促進(jìn)流感病毒復(fù)制的具體機(jī)制,利用雙熒光素酶報(bào)告系統(tǒng)檢測過表達(dá)NMRAL1對WSN聚合酶活性的影響。在HEK293T細(xì)胞中瞬時(shí)轉(zhuǎn)染NMRAL1-Myc-pCAGGS質(zhì)粒,NMRAL1的表達(dá)量顯著增加(圖2-A)。同時(shí)發(fā)現(xiàn),過表達(dá)NMRAL1對PB2、PB1、PA和NP蛋白表達(dá)量無影響(圖2-B)。利用雙熒光素酶報(bào)告系統(tǒng)檢測螢火蟲熒光素酶活性,同時(shí)以海腎熒光素酶活性為內(nèi)參,計(jì)算流感病毒相對聚合酶活性,結(jié)果表明,瞬時(shí)轉(zhuǎn)染過表達(dá)NMRAL1組的相對聚合酶活性與對照組無明顯差異,因此NMRAL1不影響流感病毒的聚合酶活性。
在A549細(xì)胞中用siRNA下調(diào)表達(dá)NMRAL1,36 h后將WSN以MOI=5感染細(xì)胞,分別在感染病毒后的3、4、5、6和8 h用4%多聚甲醛固定,進(jìn)行激光共聚焦試驗(yàn),結(jié)果顯示,下調(diào)表達(dá)NMRAL1后,NP蛋白的入核及出核情況與對照組相比無明顯差異(圖3),故NMRAL1不影響流感病毒NP蛋白的入核和出核過程。
圖2 HEK293T細(xì)胞中過表達(dá)NMRAL1對流感病毒聚合酶活性的影響
為進(jìn)一步研究NMRAL1對流感病毒各個(gè)病毒蛋白的影響情況,利用siRNA下調(diào)表達(dá)NMRAL1,36 h后用WSN以MOI=5感染細(xì)胞,分別在感染病毒后的3、6和9 h用1×蛋白上樣緩沖液裂解細(xì)胞,通過Western Blot檢測各個(gè)病毒蛋白的表達(dá)水平,結(jié)果顯示,下調(diào)表達(dá)NMRAL1的試驗(yàn)組中PB2、PB1、PA、HA、NP、NA、M1、M2和NS1的表達(dá)量與對照組無明顯差異(圖4)。以上結(jié)果表明NMRAL1對流感病毒各個(gè)病毒蛋白的表達(dá)水平無影響。
圖3 A549細(xì)胞中下調(diào)表達(dá)NMRAL1對NP蛋白的入核和出核過程的影響(標(biāo)尺:50 μm)
圖4 A549細(xì)胞中下調(diào)表達(dá)NMRAL1對病毒蛋白表達(dá)的影響
已有文獻(xiàn)報(bào)道NMRAL1可與TRAF3相互作用從而抑制IFN-β的產(chǎn)生[5],因此本研究利用qPCR試驗(yàn)檢測下調(diào)表達(dá)NMRAL1對流感病毒感染后IFN-β mRNA水平的影響,熒光定量結(jié)果顯示,在下調(diào)表達(dá)NMRAL1的A549細(xì)胞中感染W(wǎng)SN后,IFN-β mRNA表達(dá)量較對照組顯著增加(圖5),表明下調(diào)NMRAL1表達(dá)促進(jìn)IFN-β mRNA產(chǎn)生。
在下調(diào)NMRAL1表達(dá)時(shí),以低劑量MOI=0.01感染W(wǎng)SN病毒,12和24 h 樣品中MxA蛋白和IFITM3較對照組明顯增加,而NP蛋白較對照組明顯減少(圖6-A);為了進(jìn)一步驗(yàn)證下調(diào)表達(dá)NMRAL1抑制病毒復(fù)制的現(xiàn)象,利用間接免疫熒光觀察感染低劑量WSN病毒后病毒感染率。結(jié)果發(fā)現(xiàn),無論在12或24 h, 下調(diào)表達(dá)NMRAL1后病毒感染率顯著低于對照組(圖6-B),說明流感病毒復(fù)制受到顯著抑制。以上結(jié)果表明下調(diào)表達(dá)NMRAL1刺激IFN-β mRNA表達(dá),進(jìn)而誘導(dǎo)MxA、IFITM3等蛋白的表達(dá)量增強(qiáng)以發(fā)揮抗病毒作用,從而抑制流感病毒復(fù)制。
圖5 A549細(xì)胞中下調(diào)表達(dá)NMRAL1對感染病毒后IFN-β表達(dá)的影響
流感給畜禽養(yǎng)殖業(yè)發(fā)展造成嚴(yán)重?fù)p失,同時(shí)也給人類健康帶來巨大威脅,加之流感病毒容易發(fā)生變異,現(xiàn)有的防控手段均存在一定的缺陷,因此需要不斷尋找防控流感的新方法。宿主因子在流感病毒的入侵和復(fù)制過程中至關(guān)重要[22],通過研究宿主因子與流感病毒復(fù)制的關(guān)聯(lián),有利于尋找新的抗流感藥物靶點(diǎn),為防控不斷變異的流感病毒提供新思路。
本研究首先在A549細(xì)胞中使用siRNA干擾技術(shù)下調(diào)表達(dá)NMRAL1,再感染Anhui/2/2005(AH05)(H5N1)和A/WSN/33(H1N1)兩株不同亞型的流感病毒,通過蝕斑滴定試驗(yàn)檢測病毒感染24和48 h的病毒復(fù)制滴度,發(fā)現(xiàn)NMRAL1可顯著促進(jìn)這兩種亞型流感病毒的復(fù)制。由于不同的宿主因子在流感病毒復(fù)制周期中的不同階段發(fā)揮作用,如宿主因子SLC35A1(solute carrier family 35 member A1)是流感病毒入侵宿主細(xì)胞所必需的唾液酸轉(zhuǎn)運(yùn)蛋白,在流感病毒的吸附階段發(fā)揮重要作用[23],G蛋白偶聯(lián)受體FFAR2(free fatty acid receptor 2)促進(jìn)流感病毒的內(nèi)化[24];PLSCR1(phospholipid scramblase 1)與流感病毒NP互作,抑制流感病毒入核[25];CD151是流感病毒核輸出過程中的關(guān)鍵宿主因子[26],為探索宿主因子NMRAL1是否也在流感病毒的某一復(fù)制階段發(fā)揮作用,本研究首先通過雙熒光素酶報(bào)告系統(tǒng)驗(yàn)證NMRAL1不影響流感病毒的聚合酶活性,表明NMRAL1不影響流感病毒的轉(zhuǎn)錄與翻譯階段;通過在感染病毒后不同時(shí)間點(diǎn)檢測NP蛋白的定位情況證明NMRAL1不影響流感病毒NP蛋白的入核和出核過程;在感染病毒后3、6和9 h檢測流感病毒的各病毒蛋白表達(dá)是否會(huì)受NMRAL1 表達(dá)水平影響,Western Blot結(jié)果顯示,PB2、PB1、PA、HA、NP、NA、M1、M2和NS1的表達(dá)水平不受NMRAL1表達(dá)調(diào)控,以上結(jié)果表明NMRAL1不影響流感病毒復(fù)制的早期和中期階段。由于NMRAL1可以負(fù)調(diào)節(jié)細(xì)胞抗病毒RIG-I樣受體信號通路,因此本研究通過qRCR檢測感染流感病毒后2、4、6和8 h IFN-β mRNA水平,發(fā)現(xiàn)下調(diào)NMRAL1會(huì)促進(jìn)IFN-β mRNA表達(dá)。眾所周知,I型干擾素和III型干擾素在宿主抵抗病毒感染的先天性免疫反應(yīng)中發(fā)揮重要作用[27],IFN-α和IFN-β與IFN-α/β受體(IFNAR)相互作用,而IFN-λs與IFNL受體(IFNLR)以自分泌或旁分泌方式相互作用,從而激活Janus激酶信號轉(zhuǎn)導(dǎo)子和激活子(JAK-STAT)信號傳導(dǎo)途徑的改變[28]。磷酸化的STAT1和STAT2與IRF9結(jié)合形成復(fù)雜的ISG因子3(ISGF3)[29]。ISGF3易位進(jìn)入細(xì)胞核并與IFN刺激的反應(yīng)元件結(jié)合,從而觸發(fā)眾多ISG的轉(zhuǎn)錄[30],這些基因包括、、、和等[31]。在本研究中,下調(diào)表達(dá)NMRAL1促進(jìn)IFN-β mRNA表達(dá),進(jìn)而導(dǎo)致IFN-β分泌增加,IFN-β通過與細(xì)胞表面的干擾素受體結(jié)合向細(xì)胞內(nèi)傳遞信號,激活I(lǐng)SG,通過Western Blot檢測到MxA、IFITM3的表達(dá)量隨著NMRAL1的下調(diào)而升高,于是這些抗病毒蛋白發(fā)揮抑制病毒復(fù)制的作用,進(jìn)而導(dǎo)致流感病毒感染率顯著減少。此外,NMRAL1被報(bào)道可通過多種途徑抑制NF-κB信號通路的激活,包括通過與USP7相互作用以及抑制IKKγ泛素化來抑制NF-κB信號通路的激活[32],通過增強(qiáng)RelA的泛素化和降解來終止NF-κB激活[33],通過與IKKβ相互作用并且抑制其磷酸化來抑制TNF和IL-1激活NF-κB信號通路[8],因此,NMRAL1也可能通過抑制NF-κB信號通路的激活從而促進(jìn)流感病毒復(fù)制,但該猜想還需要進(jìn)一步試驗(yàn)證實(shí)。
A:A549細(xì)胞中下調(diào)表達(dá)NMRAL1對感染病毒后抗病毒蛋白表達(dá)的影響;B:間接免疫熒光實(shí)驗(yàn)驗(yàn)證下調(diào)表達(dá)NMRAL1對流感病毒感染率的影響(標(biāo)尺:400 μm)
本研究闡明宿主因子NMRAL1通過抑制I型干擾素通路的激活從而抑制MxA、IFITM3等抗病毒蛋白的表達(dá),最終促進(jìn)流感病毒復(fù)制;進(jìn)一步完善了對流感病毒復(fù)制相關(guān)的宿主因子的了解,為抗流感藥物研究提供參考,為流感病毒的防控提供理論基礎(chǔ)。
[1] 司振書, 王守山, 胡冬民. 禽流感病毒基因組及其編碼蛋白的結(jié)構(gòu)與功能. 廣東農(nóng)業(yè)科學(xué), 2012, 39(1): 126-129. doi:10.16768/j.issn. 1004-874x.2012.01.003.
SI Z S, WANG S S, HU D M. Structure and function of genome and its encoding protein of avian influenza virus. Guangdong Agricultural Sciences, 2012, 39(1): 126-129. doi:10.16768/j.issn.1004-874x.2012. 01.003. (in Chinese)
[2] 羅維玉, 朱鵬陽, 張杰, 胡永浩, 孔暉暉, 梁立濱, 周圓, 李呈軍, 姜麗, 陳化蘭. 人源肺細(xì)胞cDNA文庫構(gòu)建及與流感病毒NP互作宿主蛋白的篩選. 中國農(nóng)業(yè)科學(xué), 2016, 49(22): 4451-4459. doi:10. 3864/j.issn.0578-1752.2016.22.017.
LUO W Y, ZHU P Y, ZHANG J, HU Y H, KONG H H, LIANG L B, ZHOU Y, LI C J, JIANG L, CHEN H L. Construction of cDNA library derived from human lung epithelial cell lines and screening for host cellular proteins interacting with influenza virus nucleoprotein. Scientia Agricultura Sinica, 2016, 49(22): 4451-4459. doi:10.3864/ j.issn.0578-1752.2016.22.017. (in Chinese)
[3] KOSIK I, YEWDELL J W. Influenza hemagglutinin and neuraminidase: Yin?Yang proteins coevolving to thwart immunity. Viruses, 2019, 11(4): 346. doi:10.3390/v11040346.
[4] WU Y, WU Y, TEFSEN B, SHI Y, GAO G F. Bat-derived influenza-like viruses H17N10 and H18N11. Trends in Microbiology, 2014, 22(4): 183-191. doi:10.1016/j.tim.2014.01.010.
[5] WU N C, WILSON I A. Influenza hemagglutinin structures and antibody recognition. Cold Spring Harbor Perspectives in Medicine, 2020, 10(8): a038778. doi:10.1101/cshperspect.a038778.
[6] EDINGER T O, POHL M O, STERTZ S. Entry of influenza A virus: Host factors and antiviral targets. The Journal of General Virology, 2014, 95(Pt 2): 263-277. doi:10.1099/vir.0.059477-0.
[7] 趙青青, 李俊平, 梁立濱, 黃山雨, 周陳陳, 趙玉輝, 王倩, 周圓, 姜麗, 陳化蘭, 李呈軍. 流感病毒PA蛋白與宿主蛋白PCBP1的相互作用. 中國農(nóng)業(yè)科學(xué), 2018, 51(17): 3389-3396. doi:10.3864/j.issn. 0578-1752.2018.17.013.
ZHAO Q Q, LI J P, LIANG L B, HUANG S Y, ZHOU C C, ZHAO Y H, WANG Q, ZHOU Y, JIANG L, CHEN H L, LI C J. Interaction between influenza virus PA protein and host protein PCBP1. Scientia Agricultura Sinica, 2018, 51(17): 3389-3396. doi:10.3864/j.issn.0578- 1752.2018.17.013. (in Chinese)
[8] GAN Q N, LI T T, HU B, LIAN M, ZHENG X F. HSCARG inhibits activation of NF-kappaB by interacting with IkappaB kinase-beta. Journal of Cell Science, 2009, 122(Pt 22): 4081-4088. doi:10.1242/jcs. 054007.
[9] WU Y H, CHIU D T Y, LIN H R, TANG H Y, CHENG M L, HO H Y. Glucose-6-phosphate dehydrogenase enhances antiviral response through downregulation of NADPH sensor HSCARG and upregulation of NF-κB signaling. Viruses, 2015, 7(12): 6689-6706. doi:10.3390/v7122966.
[10] ZHANG M, HU B, LI T T, PENG Y Y, GUAN J H, LAI S S, ZHENG X F. A CRM1-dependent nuclear export signal controls nucleocytoplasmic translocation of HSCARG, which regulates NF-κB activity. Traffic, 2012, 13(6): 790-799. doi:10.1111/j.1600-0854.2012. 01346.x.
[11] ZANG W C, ZHENG X F. Structure and functions of cellular redox sensor HSCARG/NMRAL1, a linkage among redox status, innate immunity, DNA damage response, and cancer. Free Radical Biology and Medicine, 2020, 160: 768-774. doi:10.1016/j.freeradbiomed.2020. 09.016.
[12] LEVY D E, GARC??A-SASTRE A. The virus battles: IFN induction of the antiviral state and mechanisms of viral evasion. Cytokine & Growth Factor Reviews, 2001, 12(2/3): 143-156. doi:10.1016/S1359- 6101(00)00027-7.
[13] PENG Y Y, XU R D, ZHENG X F. HSCARG negatively regulates the cellular antiviral RIG-I like receptor signaling pathway by inhibiting TRAF3ubiquitination via recruiting OTUB1. PLoS Pathogens, 2014, 10(4): e1004041. doi:10.1371/journal.ppat.1004041.
[14] LI S, ZHENG H, MAO A P, ZHONG B, LI Y, LIU Y, GAO Y, RAN Y, PO T E, SHU H B. Regulation of virus-triggered signaling by OTUB1- and OTUB2-mediated deubiquitination of TRAF3and TRAF6. Journal of Biological Chemistry, 2010, 285(7): 4291-4297. doi:10.1074/jbc.M109.074971.
[15] GIBBERT K, SCHLAAK J, YANG D, DITTMER U. IFN-α subtypes: Distinct biological activities in anti-viral therapy. British Journal of Pharmacology, 2013, 168(5): 1048-1058. doi:10.1111/bph.12010.
[16] FAN W H, JIAO P T, ZHANG H, CHEN T, ZHOU X T, QI Y, SUN L, SHANG Y L, ZHU H F, HU R L, LIU W J, LI J. Inhibition of African swine fever virus replication by porcine type I and type II interferons. Frontiers in Microbiology, 2020, 11: 1203. doi:10.3389/fmicb.2020. 01203.
[17] LEE S, ISHITSUKA A, NOGUCHI M, HIROHAMA M, FUJIYASU Y, PETRIC P P, SCHWEMMLE M, STAEHELI P, NAGATA K, KAWAGUCHI A. Influenza restriction factor MxA functions as inflammasome sensor in the respiratory epithelium. Science Immunology, 2019, 4(40): eaau4643. doi:10.1126/sciimmunol. aau4643.
[18] XIAO H, KILLIP M J, STAEHELI P, RANDALL R E, JACKSON D. The human interferon-induced MxA protein inhibits early stages of influenza A virus infection by retaining the incoming viral genome in the cytoplasm. Journal of Virology, 2013, 87(23): 13053-13058. doi:10.1128/JVI.02220-13.
[19] HALLER O, STAEHELI P, SCHWEMMLE M, KOCHS G. Mx GTPases: Dynamin-like antiviral machines of innate immunity. Trends in Microbiology, 2015, 23(3): 154-163. doi:10.1016/j.tim.2014.12. 003.
[20] HALLER O, KOCHS G. Mx genes: Host determinants controlling influenza virus infection and trans-species transmission. Human Genetics, 2020, 139(6/7): 695-705. doi:10.1007/s00439-019-02092-8.
[21] DESAI T M, MARIN M, CHIN C R, SAVIDIS G, BRASS A L, MELIKYAN G B. IFITM3 restricts influenza A virus entry by blocking the formation of fusion pores following virus-endosome hemifusion. PLoS Pathogens, 2014, 10(4): e1004048. doi:10.1371/ journal.ppat.1004048.
[22] MEINEKE R, RIMMELZWAAN G F, ELBAHESH H. Influenza virus infections and cellular kinases. Viruses, 2019, 11(2): 171. doi:10.3390/v11020171.
[23] HAN J, PEREZ J T, CHEN C, LI Y, BENITEZ A, KANDASAMY M, LEE Y, ANDRADE J, TENOEVER B, MANICASSAMY B. Genome-wide CRISPR/Cas9 screen identifies host factors essential for influenza virus replication. Cell Reports, 2018, 23(2): 596-607. doi:10.1016/j.celrep.2018.03.045.
[24] WANG G W, JIANG L, WANG J L, ZHANG J, KONG F D, LI Q B, YAN Y, HUANG S Y, ZHAO Y H, LIANG L B, LI J P, SUN N, HU Y Z, SHI W J, DENG G H, CHEN P C, LIU L L, ZENG X Y, TIAN G B, BU Z G, CHEN H L, LI C J. The G protein-coupled receptor FFAR2 promotes internalization during influenza A virus entry. Journal of Virology, 2020, 94(2): e01707-e01719. doi:10. 1128/JVI.01707-19.
[25] LUO W Y, ZHANG J, LIANG L B, WANG G W, LI Q B, ZHU P Y, ZHOU Y, LI J P, ZHAO Y H, SUN N, HUANG S Y, ZHOU C C, CHANG Y, CUI P F, CHEN P C, JIANG Y P, DENG G H, BU Z G, LI C J, JIANG L, CHEN H L. Phospholipid scramblase 1 interacts with influenza A virus NP, impairing its nuclear import and thereby suppressing virus replication. PLoS Pathogens, 2018, 14(1): e1006851. doi:10.1371/journal.ppat.1006851.
[26] QIAO Y K, YAN Y, TAN K S, TAN S S L, SEET J E, ARUMUGAM T V, CHOW V T K, DE YUN WANG, TRAN T. CD151, a novel host factor of nuclear export signaling in influenza virus infection. Journal of Allergy and Clinical Immunology, 2018, 141(5): 1799-1817. doi:10.1016/j.jaci.2017.11.032.
[27] FELGENHAUER U, SCHOEN A, GAD H H, HARTMANN R, SCHAUBMAR A R, FAILING K, DROSTEN C, WEBER F. Inhibition of SARS-CoV-2 by type I and type III interferons. The Journal of Biological Chemistry, 2020, 295(41): 13958-13964. doi:10.1074/jbc.AC120.013788.
[28] COCCIA E M. IFN regulation and functions in myeloid dendritic cells. Cytokine & Growth Factor Reviews, 2008, 19(1): 21-32. doi:10.1016/ j.cytogfr.2007.10.005.
[29] YAMAGAMI M, OTSUKA M, KISHIKAWA T, SEKIBA K, SEIMIYA T, TANAKA E, SUZUKI T, ISHIBASHI R, OHNO M, KOIKE K. ISGF3with reduced phosphorylation is associated with constitutive expression of interferon-induced genes in aging cells. Npj Aging and Mechanisms of Disease, 2018, 4: 11. doi:10.1038/s41514- 018-0030-6.
[30] CHEN X Y, LIU S S, GORAYA M U, MAAROUF M, HUANG S L, CHEN J L. Host immune response to influenza A virus infection. Frontiers in Immunology, 2018, 9: 320. doi:10.3389/fimmu.2018. 00320.
[31] HOLZINGER D, JORNS C, STERTZ S, BOISSON-DUPUIS S, THIMME R, WEIDMANN M, CASANOVA J L, HALLER O, KOCHS G. Induction of MxA gene expression by influenza A virus requires type I or type III interferon signaling. Journal of Virology, 2007, 81(14): 7776-7785. doi:10.1128/JVI.00546-06.
[32] LI T, GUAN J, LI S, ZHANG X, ZHENG X. HSCARG downregulates NF-κB signaling by interacting with USP7 and inhibitingubiquitination. Cell Death & Disease, 2014, 5(5): e1229. doi:10.1038/cddis.2014.197.
[33] LIAN M, ZHENG X F. HSCARG regulates NF-kappaB activation by promoting the ubiquitination of RelA or COMMD1. The Journal of Biological Chemistry, 2009, 284(27): 17998-18006. doi:10.1074/jbc. M809752200.
Mechanism of NMRAL1 Regulating Influenza Virus Replication
State Key Laboratory Veterinary Biotechology/Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069
【Objective】Influenza virus is a zoonotic pathogen that often causes a pandemic and poses a great threat to human health, and the influenza viruses are prone to variants and can constantly escape the host cell immune response and develop resistance to existing anti-influenza drugs, so the search for new ways to fight influenza is imminent. This study aimed to explore the effect of NMRAL1 (NmrA-like family domain-containing protein 1) on influenza virus replication, and to reveal the molecular mechanism by which it functioned, so as to provide a potential target for anti-influenza drugs development. 【Method】In this study, siRNA interference technology was used to down regulate the expression of NMRAL1 in A549 cells, and the expression levels of NMRAL1 were detected by Western Blot. Virus titers in cell supernatants at 24 h and 48 h after infection with two different subtypes influenza viruses, including a/Anhui/ 2/2005(ah05)(H5N1) and a/WSN/33(H1N1), were detected using the plaque assay. To determine the specific stage at which NMRAL1 affected influenza virus replication, NMRAL1 was overexpressed by transiently transfecting NMRAL1-Myc-pCAGGS plasmid in HEK293T cells, and the effect of overexpressing NMRAL1 on influenza virus polymerase activity was examined by luciferase reporter system. The influenza virus NP protein was stained by using immunofluorescence, and the down-regulated expression of NMRAL1 on the localization of NP protein at 3, 4, 5, 6 and 8 h post infection was assessed respectively by confocal assay to determine whether down-regulated expression of NMRAL1 affected the process of influenza virus vRNP import and export. Western Blot was used to detect the effect of NMRAL1 knockdown on the expression of viral proteins and on the expression of IFN stimulated genes (ISGs) downstream of type I interferon pathway activated by influenza virus. Indirect immunofluorescence assay was utilized to further verify the effect of NMRAL1 on influenza virus replication. 【Result】Western Blot assay showed that NMRAL1 siRNA could significantly down regulate NMRAL1 expression in A549 cells. With the down-regulated expression of NMRAL1, A549 cells were infected with H5N1 and H1N1 viruses, respectively. Then the virus titers in the cell supernatant were measured by plaque assay, which showed that the virus titers in the supernatant of cells at 24 and 48 h after infection with H5N1 or H1N1 were significantly decreased, meaning that NMRAL1 could promote the replication of different subtypes influenza viruses. To further explore the specific mechanism by which NMRAL1 regulated influenza virus replication, a luciferase reporter system was used to detect influenza virus polymerase activity, and it was found that the overexpression of NMRAL1 had no effect on influenza virus polymerase activity. The results of confocal assay showed that the down-regulated expression of NMRAL1 did not affect the process of NP nuclear import and export, meanwhile Western Blot assay indicated that down-regulated expression of NMRAL1 did not affect the expression of each viral protein. However, the results of the fluorescence quantitative PCR assay showed that down-regulated expression of NMRAL1 was able to promote the up-regulation of IFN-β mRNA levels induced by influenza virus infection, and Western Blot assay found that down expression of NMRAL1 promoted the expression of MxA and IFITM3 antiviral proteins downstream of type I interferon pathway. Meanwhile, the indirect immunofluorescence assay showed that the down expression of NMRAL1 could significantly inhibit influenza virus replication. 【Conclusion】 Those results demonstrated that, during influenza virus infection, NMRAL1 did not affect the process of influenza virus invasion as well as transcription translation, but rather inhibited the expression of antiviral factors, such as MxA and IFITM3, by inhibiting type I interferon pathway activation, which ultimately promoted influenza virus replication. This study confirmed that the host factor NMRAL1 positively regulated influenza virus replication and enriched the network of host factors involved in influenza virus replication.
NMRAL1; influenza virus; virus replication; interferon β; antiviral gene
2021-03-09;
2021-05-14
國家自然科學(xué)基金創(chuàng)新群體項(xiàng)目(31521005)、中國博士后科學(xué)基金(2019M660897)
嚴(yán)婭,Tel:18845097603;E-mail:yanhs2019@163.com。通信作者姜麗,Tel:0451-51051678;E-mail:jiangli@caas.cn
10.3864/j.issn.0578-1752.2022.10.016
(責(zé)任編輯 林鑒非)