• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spatial Patterns and Drivers of Chinese Lizard Richness among Multiple Scales

    2022-06-25 06:33:02TaoLIANGLuZHOUWenyaDAIZiZHANGandLeiSHI
    Asian Herpetological Research 2022年2期

    Tao LIANG ,Lu ZHOU,Wenya DAI,Zi ZHANG and Lei SHI

    1 College of Life Sciences,Xinjiang Agricultural University,Urumqi 830052,Xinjiang,China

    2 College of Life Sciences,Hainan Normal University,Haikou 571158,Hainan,China

    3 College of Forestry,Nanjing Forestry University,Nanjing 230037,Jiangsu,China

    Abstract Species richness is one of the focuses of the preponderance of ecological studies.Latitudinal and altitudinal gradients of species richness are two wellknown macroecological patterns.Most studies on the macroecology of species richness and its determinants are mainly focused on a single scale,although a few include multiple scales.Across multiple scales,we can better understand the diversity gradients and the potential causes.Here,we gathered the maps of distribution for 212 species of Chinese lizards from published studies,and to describe the overall Chinese lizard richness patterns.We studied the relationships between the latitudinal and altitudinal patterns of species richness among Chinese lizards at the assemblage level.We further tested the relationship between lizard richness and environmental factors among multiple studied scales (large scale:1.5°× 1.5°,medium scale:1° × 1°,and small scale:0.5° × 0.5°).Regions with higher species richness occurs in in south China,and we found negative latitudinal richness gradients.We found a low-altitude plateau pattern between species richness and altitude,and lizard richness decreased with altitude above 2500 m.Lizard richness was positively correlated with temperature and net primary productivity,but negatively correlated with actual evapotranspiration,temperature,and precipitation seasonality at all three scales.However,lizard species richness was positively correlated with heterogeneity only at the 1° scale.Based on the results across multiple scales,we confirmed that the species richness patterns of Chinese lizards were driven by multiple factors,which consistent with the predictions of the ambient energy,seasonality,and productivity hypotheses.However,the relationship between lizard richness and heterogeneity differed among studied scales owing to the different levels of altitude heterogeneity within grids at different scales.

    Keywords altitudinal,assemblage,diversity,environmental factors,latitudinal,reptile

    1.Introduction

    “The distribution of organisms is not random.” --[Carsten Rahbek,1997].

    Species richness is the number of species in a given area(Ricklefs,2004).It is one of the focuses of the preponderance of ecological studies (Astudillo-Scalia and Albuquerque,2020;Dillon and Conway,2021;Huanget al.,2011;Whiting and Fox,2021;Zhanget al.,2021).Therefore,recording and exploring the spatial pattern of species richness have been central topics of macroecology and biogeography since their origin.

    Latitudinal and altitudinal gradients of species richness are two well-known macroecological patterns.The pattern that shows an overall decrease in species richness from the equator to the poles is referred to as the latitudinal gradient (Dobzhansky,1950;Pianka,1966).Similarly,the decrease in species richness with increasing altitude is widely accepted as a general pattern of altitudinal gradients (Rahbek,1995).Moreover,altitudinal gradient has the following four detailed patterns (Rahbek,1995;1997):(1) decreasing richness with increasing altitude,(2) lowaltitude plateau,(3) low-altitude plateau with a mid-altitude peak,and (4) mid-altitude peak (McCain,2010,and Figure 1).

    Figure 1 Four detailed relationships between species richness and altitude described in previous studies (Rahbek,1995;1997).A:Decreasing;B:Low-altitude plateau;C:Low-altitude plateau with a mid-altitude peak;D:Midaltitude peak.

    There are many studies on the mechanistic drivers of spatial patterns in species richness among several taxa (such as mammals,birds,and reptiles).Climate is considered as a major driver of the broad geographical scaled patterns of species richness.multiple factors,such as temperature (Lewinet al.,2016),precipitation (Currie,1991),habitat heterogeneity (Hortalet al.,2013),productivity (Evanset al.,2005),altitude (Dillon and Conway,2021),and latitude (Whiting and Fox,2021),could shape the spatial patterns of-and cause variations in-species richness.

    Similar to other ecological patterns,species richness patterns are also scale-dependent (Evanset al.,2008).The determinants of richness pattern may differ with scale.This is true for reptiles;for example,net primary productivity played a stronger role(1° vs ecoregions) in shaping African reptile species richness at a finer scale (Lewinet al.,2016).For European reptiles,precipitation was significantly correlated with species richness at a 0.5° scale (Whittakeret al.,2007),However,at a 1° scale,precipitation was no longer correlated with species richness(Rodríguezet al.,2005).Therefore,the spatial patterns of species richness formation,strength,and the underlying determinants vary with the scale.Thus,elucidating richness gradients and their determinants requires further study of their variations in relation to the spatial scale.

    Understanding species richness patterns is a prerequisite for maintaining species diversity.Studies on reptiles,however,are relatively rare compared to those on other taxa,such as mammals and birds (Pollocket al.,2017;Rosaueret al.,2017).Reptiles are different from other terrestrial vertebrates because their distributions usually show their adaptation to arid regions (Rollet al.,2017).Reptile richness patterns are associated with ambient energy (Hawkinset al.,2003;Qianet al.,2007;Rodríguezet al.,2005) and vary within specific lineages.For example,water and ambient energy can predict snake and turtle richness,while lizard richness is more correlated with energy (Hawkinset al.,2003;Schall and Pianka,1978;Terribileet al.,2010).Increasing evidence suggests that species richness is driven by multiple factors (e.g.,lizards,snakes,Huanget al.,2011,Caiet al.,2012).

    China provides a good environment for studies on the spatial pattern of Chinese reptile species richness and its determinants.And Chinese reptile species richness has been well studied in the past 15 years (Huanget al.,2011;Qianet al.,2007;Zhaoet al.,2006).Huanget al.(2011) found that multiple factors explain Chinese lizard species richness at the assemblage level.However,this conclusion was based on a 100-km scale (~1°),and a detailed discussion of the underlying determinants of species richness across multiple scales is still lacking (Evanset al.,2008).

    In this study,in order to explore scale dependency in the influence of climatic factors among Chinese lizards,we gathered the maps of distribution for 212 species of Chinese lizards from published studies,and to describe Chinese lizard richness patterns.We focused on three different scales:1.5° ×1.5° (large),1° × 1° (medium),and 0.5° × 0.5° (small).We aimed to(1) explore the latitudinal and altitudinal richness gradients for Chinese lizards,(2) explore the spatial patterns of lizard species richness and the potential determinants among three scales,and (3) examine whether scale could influence climate-species richness correlations among Chinese lizards.

    2.Material and methods

    2.1.Data collectionA total of 212 species were included in this study,and these species represent 90% of Chinese lizard species(239 species,update to 2021-11,see Appendix S1).We obtained a distribution map of Chinese lizards for these 212 species,which from a recent paper (Lianget al.,2021).Of these 212 species,we note that 165 species maps were from the Global Assessment of Reptile Distributions (GARD,http://www.gardinitiative.org/)(Rollet al.,2017).We followed the taxonomy of the May 2021 Reptile Database (http://www.reptile-database.org/) (Uetzet al.,2021) and the checklists of reptiles of China (Wanget al.,2020).

    We added the 212 species ranges to three scaled grids (large scale:1.5° × 1.5°,medium scale:1° × 1°,and small scale:0.5° × 0.5°)using the “l(fā)etsR” package (Vilela and Villalobos,2015) and calculated the species numbers in each grid.We excluded grid cells with less than 60% land cover owing to the national boundary and coastline.Finally,we removed 100,109,and 240 grids,respectively.The species richness pattern of lizards driven by climate may differ among the insular and mainland regions(e.g.,anolis lizards,Velascoet al.,2018).One important study on Chinese lizard species richness excluded all island grids to avoid the effects of insularity (Huanget al.,2011);here we kept all island grids and performed analyses with and without them to explore the influence of insularity (see below).

    We used nine climatic factors based on previous studies(Huanget al.,2011;Qianet al.,2007;Zhaoet al.,2006) to explore the climate-species richness (five hypotheses,also see Table 1) relationships within scales.Specific,(1) Ambient energy:The mean annual temperature;(2) Water-energy dynamic:annual precipitation;(3) Seasonality:temperature seasonality,and precipitation seasonality;(4) Productivity:net primary productivity (NPP) and the actual evapotranspiration (AET);(5) Heterogeneity:Altitude range and standard deviation (SD).We noted that all five climatic data were obtained from highresolution climatologies (1901-2016) at high resolution for the earth’s land surface areas (CHELSA;http://chelsa-climate.org/),whereas the NPP data were obtained from the Moderate Resolution Imaging Spectroradiometer database (MODIS;http://www.ntsg.umt.edu/project/mod17).The AET data was taken from Trabucco and Zomer (2010),and the altitude data was obtained from http://edcintl.cr.usgs.gov.We calculated the altitudinal range using the highest altitude minus the lowest altitude of each grid,and we further calculated the standard deviation (SD) of the altitude of each grid (Table 1).

    Table 1 All nine environmental variables included in our study,with their abbreviations and hypotheses.

    2.2.Data analysisWe first computed species richnesslatitude regressions to determine if each scale exhibited similar latitudinal richness gradient.We tested the residuals for spatial autocorrelation with Moran’sⅠcorrelograms (the ‘pgirmess’ R package,Giraudoux,2018).Then,we explored the relationship between species richness and altitude using generalized additive models (GAM,mgcv package,Wood,2017).We further regarded latitude as a factor in the GAMs to account for the latitudinal gradients of species richness.

    We performed multiple spatial autoregressive (SAR) models(Dormannet al.,2007) to account for spatial autocorrelation.We used species richness as the response variable,and the nine environmental variables as predictors (errorsarlmfunction in the “spdep” package) (Bivand and Wong,2018) to explore the relationships between richness and climatic factors.All analyses were performed within the three scales with and without island grids to explore whether insularity would affect the climatespecies richness relationships.

    Repeated species co-occurrences could generate unreliable relationships between richness and climate (Hawkinset al.,2017),and thus indicate a departure from actual relationships.Consequently,we used a null modeling approach by randomizing richness among grid cells and generating 100 random lizard richness gradients.Modeling of these 100 randomized richness gradients was performed using the aforementioned SAR models and we further evaluated the difference between the observed and 100 random Nagelkerke pseudo-R2values based on single-samplet-tests.If the 100 random Nagelkerke pseudo-R2values were significantly lower than the observed values,we considered the observed pattern to be reliable (Hawkinset al.,2017).Lizard species richness and climates were log10-transformed.Statistical tests were performed using R software (R core team,2019).We also used the packages“raster”,“maps”,“spatialreg” (Bivandet al.,2013;Bivand and Wong,2018;Hijmans,2020).

    3.Results

    There were 415,980,and 3889 grid cells at the large (1.5°),medium (1°),and small (0.5°) scales,respectively;with all island cells removed,these numbers changed to 411,976,and 3879,respectively.The richness of each grid varied from 2 to 47,1 to 46,and 1 to 44 at the large,medium,and small scales,respectively.Lizards with high richness (species richness ≥30) were the major inhabitants in south China (e.g.,Guangxi,Guangdong,Hainan,and Taiwan provinces),whereas those with low richness (species richness ≤ 5) were mainly found on the Qinghai-Tibet Plateau and in northeast China.

    We found an effect of latitude on species richness across Chinese lizards (P< 0.001 at all three scales;Figure 2A,B,C).Residual spatial autocorrelations (Moran’s Ⅰ index) were less than 0.5 for all three scales (Figure 2D,E,F).

    We found a new species richness-altitude pattern,based on all three scales,in which the lizard richness decreased with increasing altitude when the altitude was less than 600 m,increased with increasing altitude from 600 to 2500 m,and decreased at altitudes above 2500 m (Figure 3A,B,C cf.Figure 1).However,we found a low-altitude plateau pattern between the species richness and altitude (P< 0.001 in all cases) at all three scales when we accounted for the latitude.Additionally,the lizard richness decreased at altitudes above 2500 m (Figure 3D,E,F).

    Figure 2 Latitudinal richness gradient of lizards at 1.5° × 1.5° (A),1° × 1° (B),and 0.5° × 0.5° (C) scales.Residual spatial autocorrelogram for the lizard latitudinal richness gradients at 1.5° × 1.5° (D),1° × 1° (E),and 0.5° × 0.5° (F) scales.

    Figure 3 Spatial gradients of species richness with altitude among Chinese lizards.A,D:1.5° × 1.5°;B,E:1° × 1°;and C,F:0.5° × 0.5°.

    Multiple SAR models revealed that multiple climatic variables explained the spatial patterns of Chinese lizard species richness at all three scales.For example,temperature and NPP were positively correlated with lizard richness,while seasonality (both temperature and precipitation) and AET were negatively correlated with lizard richness.We further found that some determinants of lizard richness varies among the different scales,e.g.,precipitation was positively correlated with richness only at the large scale,and altitudinal SD was positively correlated with richness only at the medium scale (Table 2).The results of environmental factors -species richness correlations were similar when with and without all island grid cells,expect for precipitation at the large scale,which was no longer positively correlated with richness (P> 0.05) when removing island grids (Table 2).The null model approach performed here revealed that the observed Nagelkerke pseudo-R2values were significantly larger than the random values (Table 2 cf.Appendix S2).We therefore considered that the detected richness-climate correlations were reliable,and environmental variables indeed can influence the observed species richness pattern across Chinese lizards.

    Table 2 Multiple spatial autoregressive (SAR) model results of relationships between lizard richness and climate among Chinese lizards with(A) and without (B) island grid cells.

    4.Discussion

    We found that the latitudinal diversity gradient of Chinese lizards with species richness decreased with increasing latitude,whereas the relationship between the species richness and altitude showed a low-altitude plateau pattern overall.We further found that the determinants of the spatial patterns of Chinese lizard richness varied slightly within different scales.In agreement with previous studies (Huanget al.,2011;Qianet al.,2007;Zhaoet al.,2006),the spatial patterns of Chinese lizard species richness were driven by multiple factors.

    Many studies have focused on species richness patterns and their determinants on a single scale (Dillon and Conway,2021;Pontarpet al.,2019;Whiting and Fox,2021),and few have focused on multiple scales (but see Evanset al.,2008).Different scales contain different levels of climate heterogeneity within grids.Thus,the degree of correlation between richness patterns and determinants may vary within different scales.The determinants of richness patterns could also differ among scales(Fieldet al.,2010).For example,Rodríguezet al.(2005) found that annual potential evapotranspiration and temperature drive reptile richness at a large scale,while Whittakeret al.(2007)found a strong correlation between precipitation and reptile richness at a small scale.

    In the current study,we found that two determinants of lizard richness pattern varied within different scales.First,precipitation was positive correlated with lizard richness only at the large scale.However,we did not detect significant correlation between precipitation and lizard richness after we omitted the island grids.This suggested that the correlation between lizard richness and precipitation is influenced by insularity at the largest scale (1.5°).Precipitation is a stronger predictor for ectotherms-especially amphibians because they need water to keep their skin wet-than for endotherms(Pincheira-Donosoet al.,2019;Whittakeret al.,2007).Lizard richness,however,is rarely correlated with precipitation (Schall and Pianka,1978).This is because they are adapted to arid environments (Powneyet al.,2010),and do not rely on water to keep their skin wet.Indeed,arid regions (northwest China) is not the lowest region of lizard richness in this study.Moreover,the distribution of amphibians and reptiles in the arid regions of China is influenced by a combination of climatic and geographical factors,not just one factor (Zhou,2019).Therefore,we concluded that precipitation cannot predict the richness patterns of Chinese lizards.

    Second,the altitudinal SD was correlated with lizard richness at a medium scale,and this result was consistent after we removed the island grids.This suggests that lizard richness increases with increasing altitude heterogeneity,which is consistent with the prediction of heterogeneity (Rahbek and Graves,2001).In southwest China,the Hengduan Mountains region has a complex environment,and produces a high diversity of both species and ecological regions (Zhanget al.,2021) for lizards to inhabit.Although the Pamirs and Qinghai-Tibet Plateau in western China have high altitudes,their altitudinal heterogeneity and climatic diversity are low,and their species richness is not high,which is consistent with ourresults.Different scales contain different levels of altitudinal heterogeneity within grids.This may lead to the heterogeneity hypothesis not being supported at the small and large scales.

    We found a new pattern of altitudinal gradients of richness in this study.In regions where the altitude was less than 600 m(mainly in eastern China),the lizard richness decreases with increasing latitude and altitude,lizard richness increased with increasing altitude from 600 to 2500 m,and decreased at altitudes above 2500 m.To our knowledge,such a pattern has not been observed before with regard to altitudinal gradients of species richness (this study cf.McCain,2010).However,this new pattern was no longer supported after we considered the latitude.Because we further found a low-altitude plateau pattern when accounting for latitude,where lizards maintained a high richness at altitudes of less than 2500 m.This suggests that the relationship between species richness and altitude was influenced by latitude.However,the lizard richness decreased with increasing altitude from 600 to 2500 m.This may be because more species inhabit the Hengduan Mountains owing to their complex environments (see above).At the same time,this region is at a low latitude,with high temperatures and shorter seasonality (see below).High altitudinal heterogeneity creates complex habitats and varying degrees of isolation,which in turn affects evolutionary diversity.At the same time,this habitat diversity also produces many transition zones between different environments,where species richness is usually high (Zhou and Shi,2015).

    We found evidence of a low-altitude plateau in Chinese lizard richness overall.However,at the local scale,multiple altitudinal species richness patterns existed.For example,reptile richness decreases with increasing altitude in the Altay prefecture (Taoet al.,2018),this pattern also hold in tropical lizards (Jinset al.,2021),whereas Zhenget al.(2014) found that reptile richness followed a mid-altitude peak in the Qinling range.Altitudinal gradients of species richness are influenced by multiple variables (Dillon and Conway,2021;McCain,2010).Therefore,the overall pattern may not be informative in exploring the altitudinal gradients of Chinese lizard richness(also see Ignacioet al.,2018).

    In agreement with Qianet al.(2007),we also found that temperature was positively correlated with lizard richness in this study.Ectotherms (e.g.,lizards) are more closely associated to ambient energy (Hawkinset al.,2003;McCain,2010;Rodríguezet al.,2005),and energy variability controls species richness.This may explain the latitudinal species richness gradient (i.e.,species richness decreases with increasing latitude)of lizards across China.

    Previous studies have suggested that productivity is associated with species richness (Lewinet al.,2016).Both AET and NPP can represent productivity (Huanget al.,2011),However,we suggest that NPP is more representative of productivity than AET is in this study.We found that Chinese lizard richness increased with increasing NPP but decreased with increasing AET at all three scales.Lizard richness was the greatest in south China.The northward decrease in lizard richness in China is likely to be related to a decrease in productivity;however,the potential mechanism of this is still unknown.Productivity as a main drive of lizard richness spatial patterns could perhaps be related to insects (e.g.,birds,Dalbyet al.,2014);regions with sparse vegetation might provide fewer insects and,hence,have fewer species of lizard.This suggested that NPP is a stronger predictor for Chinese lizard richness than AET is.

    The seasonality hypothesis proposes that species richness decreases with increasing seasonal variability (Gouveiaet al.,2013;Rahbek,1995).Here,we found that lizard richness decreased with increasing seasonality,which is consistent with the seasonality prediction.This correlation seems to be associated with both NPP and the ambient energy hypotheses;increased seasonality may increase the variation in productivity(and energy) and,hence,reduce species richness (Evanset al.,2005,also see above).Furthermore,species inhabiting low richness regions could have wider distributions,promoting the evolution of climatic tolerances and enabling species to breed over larger areas (Evanset al.,2005;Slobodkin and Sanders,1969).

    Large-scale richness patterns are driven by the complexity of multiple factors,such as evolutionary and ecological factors(Velascoet al.,2018),and the overall patterns may be different across taxa (Lianget al.,2021).Moreover,rapid global climate change may influence the distribution and diversity patterns of species.We did not test this in this study.However,this should be performed in a future study to help face the challenges imposed by climate change on the Chinese lizard population.

    5.Conclusions

    We demonstrated that both the latitudinal and altitudinal gradients of Chinese lizard richness varied slightly within different scales.The species richness patterns of Chinese lizards were consistent with the predictions of the ambient energy,seasonality,and productivity hypotheses across multiple scales.Altitudinal gradients of lizard richness patterns were influenced by latitude.The relationship between lizard richness and habitat heterogeneity however differed among the studied scales in Chinese lizards.

    AcknowledgmentWe thank all the researchers whose work contributed to our dataset.We also thank two anonymous reviewers for comments and suggestions on earlier versions of the manuscript.This study was supported by the National Natural Science Foundation of China (31660613).

    Data availabilityThe distribution maps of 211 Chinese lizards from Rollet al.(2017) and Lianget al.(2021).Maps data respectively available from Dryad (datadryad.org):https://doi.org/10.5061/dryad.83s7k/2 and https://doi.org/10.5061/dryad.j6q573ndn.ENVIREM variables are available at:http://envirem.github.io/.

    Appendix S1

    List of the 212 species used in the analysis

    GEKKONIDAE:Hemiphyllodactylus typus,Hemiphyllodactylus changningensis,Hemiphyllodactylus dushanensis,Hemiphyllodactylus huishuiensis,Hemiphyllodactylus jinpingensis,Hemiphyllodactylus longlingensis,Hemiphyllodactylus hongkongensis,Hemiphyllodactylus yunnanensis,Gekko scabridus,Gekko gecko,Gekko japonicus,Gekko auriverrucosus,Gekko kwangsiensis,Gekko guishanicus,Gekko similignum,Gekko reevesii,Gekko kikuchii,Gekko liboensis,Gekko melli,Gekko subpalmatus,Gekko hokouensis,Gekko taibaiensis,Gekko wenxianensis,Gekko swinhonis,Gekko adleri,Gekko chinensis,Gehyra mutilate,Lepidodactylus lugubris,Lepidodactylus yami,Altiphylax stoliczkai,Cyrtodactylus cayuensis,Cyrtodactylus wayakonei,Cyrtodactylus tibetanus,Cyrtodactylus zhaoermii,Alsophylax przewalskii,Alsophylax pipiens,Ptychozoon bannaense,Cyrtopodion medogense,Hemidactylus garnotii,Hemidactylus brookii,Hemidactylus aquilonius,Hemidactylus ste jnegeri,Hemidactylus platyurus,Hemidactylus f renatus,Hemidactylus bowringii,Tenuidactylus dadunensis,Tenuidactylus elongatus,Mediodactylus russowii.

    SHINISAURIDAE:Shinisaurus crocodilurus.

    EUBLEPHARIDAE:Goniurosaurus bawanglingensis,Goniurosaurus kwangsiensis,Goniurosaurus hainanensis,Goniurosaurus kadoorieorum,Goniurosaurus lichtenfelderi,Goniurosaurus liboensis,Goniurosaurus luii,Goniurosaurus yingdeensis,Goniurosaurus Araneus,Goniurosaurus zhelongi,Goniurosaurus sinensis,Goniurosaurus zhoui.

    VARANIDAE:Varanus nebulosus,Varanus irrawadicus,Varanus salvator.

    AGAMIDAE:Trapelus sanguinolentus,Draco maculatus,Draco blanf ordii,Ptyctolaemus gularis,Acanthosaura lepidogaster,Acanthosaura tongbiguanensis,Acanthosaura armata,Leiolepis reevesii,Diploderma batangense,Diploderma flaviceps,Diploderma brevicaudum,Diploderma brevipes,Diploderma vela,Diploderma iadinum,Diploderma slowinskii,Diploderma fasciatum,Diploderma laeviventre,Diploderma varcoae,Diploderma splendidum,Diploderma polygonatum,Diploderma dymondi,Diploderma micangshanense,Diploderma chapaense,Diploderma swild,Diploderma swinhonis,Diploderma zhaoermii,Diploderma makii,Diploderma graham,Diploderma luei,Diploderma yulongense,Diploderma yunnanense,Diploderma drukdaypo,Pseudocalotes kakhienensis,Pseudocalotes brevipes,Pseudocalotes austeniana,Pseudocalotes kingdonwardi,Pseudocalotes microlepis,Japalura andersoniana,Japalura tricarinata,Phrynocephalus versicolor,Phrynocephalus mystaceus,Phrynocephalus put jatai,Phrynocephalus helioscopus,Phrynocephalus melanurus,Phrynocephalus erythrurus,Phrynocephalus przewalskii,Phrynocephalus nasatus,Phrynocephalus forsythia,Phrynocephalus grumgrzimailoi,Phrynocephalus vlangalii,Phrynocephalus theobaldi,Phrynocephalus axillaris,Phrynocephalus alpherakii,Calotes emma,Calotes mystaceus,Calotes versicolor,Calotes jerdoni,Calotes medogensis,Calotes Paulus,Laudakia sacra,Laudakia tuberculate,Laudakia wui,Laudakia papenf ussi,Laudakia himalayana,Laudakia stoliczkana,Physignathus cocincinus.

    SPHAERODACTYLIDAE:Teratoscincus roborowskii,Teratoscincus przewalskii,Teratoscincus scincus.

    ANGUIDAE:Dopasia harti,Dopasia hainanensis,Dopasia gracilis.

    SCINCIDAE:S phenomorphus maculatus,S phenomorphus tonkinensis,S phenomorphus incognitus,S phenomorphus courcyanum,Sphenomorphus taiwanensis,Sphenomorphus indicus,Emoia atrocostata,Ablepharus alaicus,Ablepharus deserti,Ateuchosaurus chinensis,Scincella huanrenensis,Scincella potanini,Scincella barbouri,Scincella ladacensis,Scincella reevesii,Scincella modesta,Scincella tsinlingensis,Scincella monticola,Scincella formosensis,Scincella schmidti,Scincella przewalskii,Scincella sikimmensis,Scincella himalayanus,Scincella doriae,Tropidophorus berdmorei,Tropidophorus guangxiensis,Tropidophorus hainanus,Tropidophorus sinicus,Eutropis multicarinata,Eutropis multif asciata,Eutropis cumingi,Eutropis longicaudata,Plestiodon leucostictus,Plestiodon popei,Plestiodon tunganus,Plestiodon capito,Plestiodon elegans,Plestiodon liui,Plestiodon quadrilineatus,Plestiodon tamdaoensis,Plestiodon chinensis,Lygosoma bowringii.

    DIBAMDAE:Dibamus bourreti,Dibamus bogadeki.

    LACERTIDAE:Takydromus wolteri,Takydromus septentrionalis,Takydromus sylvaticus,Takydromus viridipunctatus,Takydromus intermedius,Takydromus kuehnei,Takydromus amurensis,Takydromus sauteri,Takydromus luyeanus,Takydromus sexlineatus,Takydromus stejnegeri,

    Takydromus f ormosanus,Takydromus albomaculosus,Takydromus hsuehshanensis,Takydromus yunkaiensis,Eremias arguta,Eremias vermiculata,Eremias przewalskii,Eremias buechneri,Eremias kokshaaliensis,Eremias velox,Eremias argus,Eremias multiocellata,Eremias yarkandensis,Eremias brenchleyi,Eremias quadrifrons,Eremias stummeri,Eremias roborowskii,Eremias grammica,Zootoca vivipara,Lacerta agilis.

    Appendix S2

    Results of t-test between R2 values

    中文字幕人妻熟女乱码| 国产一区二区三区视频了| 国产淫语在线视频| 欧美激情高清一区二区三区| 精品久久久久久电影网| 真人做人爱边吃奶动态| 曰老女人黄片| 少妇精品久久久久久久| 叶爱在线成人免费视频播放| 三级毛片av免费| 高潮久久久久久久久久久不卡| 国产精品1区2区在线观看. | 悠悠久久av| 国产一卡二卡三卡精品| 国产精品 国内视频| 日韩中文字幕视频在线看片| 欧美性长视频在线观看| 亚洲国产看品久久| 欧美日韩亚洲综合一区二区三区_| 美女主播在线视频| 色综合婷婷激情| 欧美 日韩 精品 国产| 午夜福利,免费看| 久久免费观看电影| 欧美精品av麻豆av| 天堂俺去俺来也www色官网| 欧美变态另类bdsm刘玥| 麻豆av在线久日| 人妻久久中文字幕网| 成人永久免费在线观看视频 | av网站在线播放免费| 日韩免费高清中文字幕av| 国产精品影院久久| 日韩欧美免费精品| 欧美成人免费av一区二区三区 | 亚洲专区国产一区二区| 一区二区日韩欧美中文字幕| a在线观看视频网站| 正在播放国产对白刺激| 黑人巨大精品欧美一区二区mp4| 在线观看免费视频网站a站| 久久精品国产亚洲av高清一级| 欧美黄色淫秽网站| 在线 av 中文字幕| 人妻 亚洲 视频| 欧美在线一区亚洲| 国产日韩一区二区三区精品不卡| 欧美亚洲日本最大视频资源| 亚洲av日韩精品久久久久久密| 精品国产乱码久久久久久小说| 精品少妇久久久久久888优播| 国产男靠女视频免费网站| 亚洲成av片中文字幕在线观看| 国产精品偷伦视频观看了| 国产高清国产精品国产三级| 欧美日韩黄片免| 亚洲成av片中文字幕在线观看| 欧美成狂野欧美在线观看| 制服人妻中文乱码| 国产精品亚洲一级av第二区| 老汉色av国产亚洲站长工具| 日本撒尿小便嘘嘘汇集6| 精品国内亚洲2022精品成人 | 在线观看人妻少妇| 男女下面插进去视频免费观看| 777米奇影视久久| 亚洲一区中文字幕在线| 久久毛片免费看一区二区三区| 一级片免费观看大全| 国产精品免费大片| 变态另类成人亚洲欧美熟女 | 日日爽夜夜爽网站| 新久久久久国产一级毛片| 俄罗斯特黄特色一大片| 黑人猛操日本美女一级片| 一二三四在线观看免费中文在| 久久精品国产亚洲av香蕉五月 | 正在播放国产对白刺激| 欧美日韩黄片免| 国产一区二区三区综合在线观看| 热99re8久久精品国产| 99久久99久久久精品蜜桃| 亚洲精品在线观看二区| 纵有疾风起免费观看全集完整版| 久久人妻av系列| 亚洲精品中文字幕在线视频| 亚洲性夜色夜夜综合| 性少妇av在线| 国产精品1区2区在线观看. | 国产精品一区二区在线观看99| 国产一区二区在线观看av| 香蕉久久夜色| 在线永久观看黄色视频| 99riav亚洲国产免费| 国产日韩一区二区三区精品不卡| 99久久人妻综合| 91av网站免费观看| av一本久久久久| 日韩中文字幕欧美一区二区| 黑丝袜美女国产一区| 两人在一起打扑克的视频| 一本大道久久a久久精品| 国产不卡一卡二| av超薄肉色丝袜交足视频| av一本久久久久| 国产亚洲一区二区精品| 性高湖久久久久久久久免费观看| 欧美国产精品一级二级三级| 悠悠久久av| 90打野战视频偷拍视频| www.精华液| 亚洲欧美日韩另类电影网站| 国产精品九九99| 极品人妻少妇av视频| 国产亚洲精品一区二区www | 国产黄频视频在线观看| 午夜91福利影院| 久久久国产欧美日韩av| 69av精品久久久久久 | 日韩三级视频一区二区三区| 欧美 亚洲 国产 日韩一| 国产真人三级小视频在线观看| 人成视频在线观看免费观看| 久久影院123| 国产欧美日韩一区二区三区在线| 亚洲七黄色美女视频| svipshipincom国产片| 日韩一区二区三区影片| 人人妻人人澡人人爽人人夜夜| 欧美黄色淫秽网站| 激情视频va一区二区三区| 国产欧美日韩精品亚洲av| 一进一出抽搐动态| 老熟妇乱子伦视频在线观看| 19禁男女啪啪无遮挡网站| 一区二区av电影网| 一本久久精品| 国产日韩欧美亚洲二区| 日韩大码丰满熟妇| 天天躁日日躁夜夜躁夜夜| 日韩 欧美 亚洲 中文字幕| 18在线观看网站| 一级毛片女人18水好多| 久久狼人影院| 两性夫妻黄色片| 大片免费播放器 马上看| 女人高潮潮喷娇喘18禁视频| 最新的欧美精品一区二区| 国产精品电影一区二区三区 | 日韩欧美免费精品| 久久热在线av| 日韩成人在线观看一区二区三区| 在线观看免费日韩欧美大片| 99久久99久久久精品蜜桃| 国产又色又爽无遮挡免费看| 久久九九热精品免费| 91精品国产国语对白视频| 无遮挡黄片免费观看| 电影成人av| 看免费av毛片| 欧美黑人精品巨大| 亚洲国产av影院在线观看| 色婷婷久久久亚洲欧美| 日本黄色日本黄色录像| 午夜激情久久久久久久| 久久久久久久国产电影| 人成视频在线观看免费观看| 亚洲国产欧美网| 新久久久久国产一级毛片| 国产精品 国内视频| 脱女人内裤的视频| 两个人免费观看高清视频| 欧美成狂野欧美在线观看| 在线观看舔阴道视频| 日韩精品免费视频一区二区三区| 日本一区二区免费在线视频| 久久国产精品影院| 日韩欧美免费精品| 国产精品电影一区二区三区 | 满18在线观看网站| 免费一级毛片在线播放高清视频 | 久久久久久久久免费视频了| 国产精品久久久av美女十八| 麻豆国产av国片精品| 国产成+人综合+亚洲专区| 久久久精品免费免费高清| 亚洲熟女精品中文字幕| 女人爽到高潮嗷嗷叫在线视频| 国产av一区二区精品久久| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲专区字幕在线| 黄色视频不卡| 久久久国产一区二区| 亚洲国产欧美日韩在线播放| 一级,二级,三级黄色视频| 久久人人爽av亚洲精品天堂| 精品国产亚洲在线| 国产亚洲欧美在线一区二区| 久久精品国产99精品国产亚洲性色 | 女同久久另类99精品国产91| 91av网站免费观看| 久久热在线av| 国产不卡一卡二| 最黄视频免费看| 757午夜福利合集在线观看| 精品少妇黑人巨大在线播放| 精品久久蜜臀av无| 亚洲专区中文字幕在线| 欧美亚洲 丝袜 人妻 在线| 99久久99久久久精品蜜桃| 国产欧美日韩一区二区三| 99热国产这里只有精品6| 曰老女人黄片| 欧美激情高清一区二区三区| 在线观看免费高清a一片| 国产主播在线观看一区二区| 久久久久久亚洲精品国产蜜桃av| 黄色 视频免费看| 91av网站免费观看| 午夜福利视频精品| a级片在线免费高清观看视频| 国产成人一区二区三区免费视频网站| 超碰97精品在线观看| 精品国产一区二区三区久久久樱花| 久久久久精品国产欧美久久久| 亚洲av成人不卡在线观看播放网| 欧美日韩成人在线一区二区| 97人妻天天添夜夜摸| 日韩熟女老妇一区二区性免费视频| 法律面前人人平等表现在哪些方面| 999久久久国产精品视频| 国产成人精品无人区| 脱女人内裤的视频| 精品乱码久久久久久99久播| 国产精品 欧美亚洲| 99久久人妻综合| 桃红色精品国产亚洲av| 欧美精品亚洲一区二区| 国产亚洲精品久久久久5区| 日本av手机在线免费观看| 男女无遮挡免费网站观看| 国产精品美女特级片免费视频播放器 | 久久精品人人爽人人爽视色| 精品一区二区三区av网在线观看 | 国产精品美女特级片免费视频播放器 | 成在线人永久免费视频| www.熟女人妻精品国产| 巨乳人妻的诱惑在线观看| 后天国语完整版免费观看| 亚洲专区字幕在线| 久久国产精品大桥未久av| 国产日韩一区二区三区精品不卡| 久久亚洲精品不卡| 十分钟在线观看高清视频www| 国产精品久久久久久精品古装| 亚洲国产精品一区二区三区在线| 女人爽到高潮嗷嗷叫在线视频| 中文字幕人妻丝袜一区二区| 亚洲精品国产色婷婷电影| 免费看a级黄色片| 青草久久国产| 国产精品1区2区在线观看. | 欧美成狂野欧美在线观看| 色老头精品视频在线观看| 国产在线免费精品| 一级毛片女人18水好多| 日韩欧美三级三区| 亚洲精品国产色婷婷电影| 国产一区有黄有色的免费视频| 欧美日韩一级在线毛片| 久久久精品区二区三区| 母亲3免费完整高清在线观看| 精品少妇内射三级| 亚洲熟妇熟女久久| 欧美久久黑人一区二区| 国产av一区二区精品久久| 首页视频小说图片口味搜索| 国产在线一区二区三区精| 欧美乱妇无乱码| 9热在线视频观看99| 国产男女超爽视频在线观看| 久久 成人 亚洲| 欧美激情 高清一区二区三区| 久久精品国产99精品国产亚洲性色 | 精品少妇黑人巨大在线播放| 久久人妻av系列| avwww免费| 亚洲免费av在线视频| 欧美日韩黄片免| av超薄肉色丝袜交足视频| 高清欧美精品videossex| 国产一区二区激情短视频| 久久久精品94久久精品| 精品人妻在线不人妻| 国产成人免费观看mmmm| 女人高潮潮喷娇喘18禁视频| 亚洲伊人久久精品综合| 大型黄色视频在线免费观看| 在线观看免费午夜福利视频| 动漫黄色视频在线观看| 免费人妻精品一区二区三区视频| 日韩一区二区三区影片| 欧美亚洲 丝袜 人妻 在线| 曰老女人黄片| 欧美精品一区二区大全| 曰老女人黄片| 啪啪无遮挡十八禁网站| 女性被躁到高潮视频| 人人妻人人澡人人爽人人夜夜| 人人妻人人添人人爽欧美一区卜| 18禁国产床啪视频网站| 欧美国产精品一级二级三级| 人妻 亚洲 视频| 成年女人毛片免费观看观看9 | 亚洲精品久久成人aⅴ小说| 狂野欧美激情性xxxx| 午夜免费成人在线视频| 国产一区二区在线观看av| 久久久久久久大尺度免费视频| 久久久久国内视频| 九色亚洲精品在线播放| 国产精品 国内视频| 欧美乱码精品一区二区三区| 国产av精品麻豆| 热re99久久国产66热| 黄色视频不卡| 99国产精品99久久久久| 91成年电影在线观看| 啦啦啦在线免费观看视频4| 精品乱码久久久久久99久播| 久久久久久久久免费视频了| 亚洲成av片中文字幕在线观看| 正在播放国产对白刺激| a级片在线免费高清观看视频| √禁漫天堂资源中文www| 国产一区有黄有色的免费视频| 免费不卡黄色视频| av天堂在线播放| 国产成人av教育| 久久久久久久大尺度免费视频| 日本av免费视频播放| 丰满饥渴人妻一区二区三| 1024视频免费在线观看| 亚洲精品一卡2卡三卡4卡5卡| 欧美在线一区亚洲| 国产精品免费视频内射| 免费看十八禁软件| 成人特级黄色片久久久久久久 | 五月天丁香电影| 成人亚洲精品一区在线观看| 亚洲欧美一区二区三区久久| 中文字幕另类日韩欧美亚洲嫩草| av不卡在线播放| 极品教师在线免费播放| 又黄又粗又硬又大视频| 国产成人精品无人区| 女性被躁到高潮视频| 亚洲七黄色美女视频| 两性午夜刺激爽爽歪歪视频在线观看 | 国产成人欧美| 欧美乱妇无乱码| 久久久久久免费高清国产稀缺| 最新的欧美精品一区二区| 亚洲五月色婷婷综合| 啪啪无遮挡十八禁网站| 黑人巨大精品欧美一区二区mp4| 久久天躁狠狠躁夜夜2o2o| 老司机在亚洲福利影院| 视频在线观看一区二区三区| 亚洲欧美精品综合一区二区三区| av超薄肉色丝袜交足视频| 水蜜桃什么品种好| 高清毛片免费观看视频网站 | 9色porny在线观看| 精品人妻熟女毛片av久久网站| 国产精品一区二区免费欧美| 亚洲熟妇熟女久久| 大片免费播放器 马上看| 精品久久久久久久毛片微露脸| 国产成人精品久久二区二区免费| 叶爱在线成人免费视频播放| 老司机亚洲免费影院| 男女之事视频高清在线观看| 成年版毛片免费区| 1024视频免费在线观看| 精品一区二区三区视频在线观看免费 | 日韩免费av在线播放| 免费观看a级毛片全部| 美女视频免费永久观看网站| 国产极品粉嫩免费观看在线| 国产日韩欧美亚洲二区| 欧美成人免费av一区二区三区 | www.999成人在线观看| 亚洲情色 制服丝袜| 日韩欧美三级三区| 久久 成人 亚洲| 亚洲av电影在线进入| 9191精品国产免费久久| 国产免费福利视频在线观看| 国产精品99久久99久久久不卡| 中国美女看黄片| 亚洲专区国产一区二区| tocl精华| 狠狠精品人妻久久久久久综合| 三级毛片av免费| 女人高潮潮喷娇喘18禁视频| 人妻久久中文字幕网| 欧美黑人精品巨大| 人人澡人人妻人| 中文字幕人妻丝袜一区二区| 成人精品一区二区免费| 久久人妻熟女aⅴ| 欧美 亚洲 国产 日韩一| 欧美在线一区亚洲| 黄网站色视频无遮挡免费观看| 成年人黄色毛片网站| 欧美日韩亚洲高清精品| 国产精品秋霞免费鲁丝片| 国产日韩欧美亚洲二区| 美女扒开内裤让男人捅视频| 欧美午夜高清在线| 精品国产乱子伦一区二区三区| 日本一区二区免费在线视频| 色在线成人网| 黑人猛操日本美女一级片| 亚洲,欧美精品.| 亚洲精品久久午夜乱码| 亚洲性夜色夜夜综合| 热99国产精品久久久久久7| 精品一区二区三区视频在线观看免费 | 狠狠精品人妻久久久久久综合| 精品一区二区三区四区五区乱码| 天天影视国产精品| av一本久久久久| 99re6热这里在线精品视频| 国产免费视频播放在线视频| 一夜夜www| 777久久人妻少妇嫩草av网站| 高清毛片免费观看视频网站 | 亚洲 欧美一区二区三区| 亚洲av电影在线进入| 亚洲va日本ⅴa欧美va伊人久久| 亚洲欧美一区二区三区黑人| 精品少妇一区二区三区视频日本电影| 日本av免费视频播放| 嫩草影视91久久| 久久久久视频综合| 久久毛片免费看一区二区三区| 黄色a级毛片大全视频| 国产三级黄色录像| 女人爽到高潮嗷嗷叫在线视频| 99国产精品一区二区蜜桃av | 日韩欧美三级三区| 午夜日韩欧美国产| 亚洲七黄色美女视频| 麻豆成人av在线观看| 国产熟女午夜一区二区三区| 午夜福利视频在线观看免费| 一级毛片电影观看| 亚洲精品国产精品久久久不卡| 欧美日韩国产mv在线观看视频| 99国产精品一区二区蜜桃av | 日本精品一区二区三区蜜桃| 丝袜美足系列| 亚洲av日韩在线播放| 亚洲欧美日韩另类电影网站| bbb黄色大片| 国产日韩欧美在线精品| 久久国产精品人妻蜜桃| 午夜福利在线免费观看网站| 色老头精品视频在线观看| 国产黄频视频在线观看| 日本五十路高清| 欧美中文综合在线视频| 精品人妻熟女毛片av久久网站| 欧美日韩国产mv在线观看视频| 国产精品久久久久久人妻精品电影 | 日日摸夜夜添夜夜添小说| 香蕉丝袜av| 激情在线观看视频在线高清 | 亚洲精品国产色婷婷电影| 99在线人妻在线中文字幕 | 97在线人人人人妻| 一级毛片电影观看| 国产精品.久久久| 老司机亚洲免费影院| 一区二区三区精品91| 自线自在国产av| 一级片'在线观看视频| 精品乱码久久久久久99久播| 男男h啪啪无遮挡| 18禁美女被吸乳视频| 一级黄色大片毛片| 三级毛片av免费| 国产精品香港三级国产av潘金莲| 看免费av毛片| 亚洲av第一区精品v没综合| 欧美成人午夜精品| 人人妻人人澡人人看| 国产又色又爽无遮挡免费看| 免费在线观看日本一区| 精品免费久久久久久久清纯 | 国产精品二区激情视频| 咕卡用的链子| a在线观看视频网站| 国产精品影院久久| 久久久久精品国产欧美久久久| 国产一区二区激情短视频| 女性被躁到高潮视频| 日本av免费视频播放| 免费黄频网站在线观看国产| 两个人看的免费小视频| 黑丝袜美女国产一区| 在线观看66精品国产| 人人妻人人澡人人看| 亚洲精品久久成人aⅴ小说| 国产av国产精品国产| 亚洲欧美一区二区三区黑人| 999精品在线视频| 可以免费在线观看a视频的电影网站| 国产91精品成人一区二区三区 | 一级,二级,三级黄色视频| 纯流量卡能插随身wifi吗| 大码成人一级视频| 日本黄色日本黄色录像| 久久久久网色| 亚洲一卡2卡3卡4卡5卡精品中文| 精品一区二区三卡| 啦啦啦在线免费观看视频4| 亚洲一码二码三码区别大吗| 久久久久久久大尺度免费视频| 人妻久久中文字幕网| 日本黄色日本黄色录像| 亚洲午夜精品一区,二区,三区| 99香蕉大伊视频| 久久精品熟女亚洲av麻豆精品| 窝窝影院91人妻| 大型av网站在线播放| 妹子高潮喷水视频| 少妇的丰满在线观看| 人人妻人人爽人人添夜夜欢视频| 免费在线观看视频国产中文字幕亚洲| 国产成人影院久久av| 国产男靠女视频免费网站| 久久午夜综合久久蜜桃| 亚洲九九香蕉| 亚洲精品国产区一区二| 亚洲综合色网址| 国产午夜精品久久久久久| 757午夜福利合集在线观看| 久久香蕉激情| 欧美黑人精品巨大| 精品卡一卡二卡四卡免费| 又大又爽又粗| 国产亚洲精品第一综合不卡| 丰满迷人的少妇在线观看| 少妇裸体淫交视频免费看高清 | 99精品在免费线老司机午夜| 国产精品久久久久久人妻精品电影 | 久久天躁狠狠躁夜夜2o2o| 老熟女久久久| 丰满迷人的少妇在线观看| 肉色欧美久久久久久久蜜桃| 国产一区二区三区视频了| 成人三级做爰电影| 欧美日韩中文字幕国产精品一区二区三区 | 国产野战对白在线观看| 久久国产精品人妻蜜桃| 亚洲av第一区精品v没综合| 欧美日韩亚洲高清精品| 国产精品欧美亚洲77777| 在线天堂中文资源库| 中文字幕精品免费在线观看视频| 亚洲色图 男人天堂 中文字幕| 少妇精品久久久久久久| 日日夜夜操网爽| 一级,二级,三级黄色视频| 国产日韩欧美亚洲二区| 怎么达到女性高潮| 国产精品久久久久久人妻精品电影 | 这个男人来自地球电影免费观看| 新久久久久国产一级毛片| 淫妇啪啪啪对白视频| 俄罗斯特黄特色一大片| 久久婷婷成人综合色麻豆| www.精华液| 久久中文字幕人妻熟女| 999久久久精品免费观看国产| 午夜激情久久久久久久| 国产精品一区二区在线观看99| 日韩中文字幕欧美一区二区| 亚洲综合色网址| 国产精品一区二区在线观看99| 天堂俺去俺来也www色官网| 欧美成人免费av一区二区三区 | 欧美精品一区二区大全| 99国产极品粉嫩在线观看| 91老司机精品| 久久中文字幕人妻熟女| 亚洲午夜精品一区,二区,三区| 精品久久久久久电影网| 中文字幕人妻丝袜一区二区| 欧美日韩av久久| 国产成人免费观看mmmm| 成年人免费黄色播放视频| 亚洲五月色婷婷综合| 大码成人一级视频| 午夜福利免费观看在线| 久久久久久免费高清国产稀缺| 国产精品久久电影中文字幕 | 美女高潮喷水抽搐中文字幕| 9191精品国产免费久久| 波多野结衣一区麻豆| 日韩欧美一区二区三区在线观看 | 日本黄色视频三级网站网址 |