• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bismuth chloride@mesocellular carbon foam nanocomposite cathode materials for rechargeable chloride ion batteries

    2022-06-20 06:22:50ChngZhngShijioSunMeifenWuXingyuZho
    Chinese Chemical Letters 2022年4期

    Chng Zhng,Shijio Sun,*,Meifen Wu,Xingyu Zho,c,*

    a College of Materials Science and Engineering,Nanjing Tech University,Nanjing 211816,China

    b CAS Key Laboratory of Materials for Energy Conversion,Shanghai Institute of Ceramics,Chinese Academy of Sciences,Shanghai 200050,China

    c Jiangsu Collaborative Innovation Center for Advanced Inorganic Functional Composites,Nanjing Tech University,Nanjing 211816,China

    ABSTRACT Chloride ion batteries(CIB)are considered to be one of the most promising energy storage devices.As cathode materials for CIBs,metal chlorides have many advantages,such as high theoretical energy density,abundant elemental resources and ideal discharge voltage plateau.However,the dissolution and huge volume change of metal chlorides during cycling lead to considerable short lifespan,which limits their potential application for CIBs.Herein,the bismuth chloride nanocrystal is confined in mesocellular carbon foam matrix by a new vacuum impregnation approach.The mesocellular carbon foam with large interconnected pores(15.7 or 23.2 nm)may buffer the large volume variation of bismuth chloride during charge and discharge,giving rise to significantly enhanced electrochemical performance.The as-prepared bismuth chloride@mesocellular carbon foam cathode delivered an initial discharge capacity of 298 mAh/g and a reversible capacity of 91 mAh/g after 60 cycles.In contrast,the pure bismuth chloride cathode almost cannot discharge after 30 cycles.This is the first report that the metal chloride cathode can achieve a prolonged cycling in CIBs.

    Keywords:Chloride ion batteries Cathode materials Bismuth chloride Mesocellular carbon foam Electrochemistry

    Chloride ion batteries(CIB)based on the transfer of chloride ion have attracted significant attention because of their high theoretical volumetric energy density(2500 Wh/L)and abundant material resources[1–3].In the first concept,this battery system employed commercial metal chloride(CoCl2,VCl3or BiCl3)as the cathode,lithium metal as the anode and a binary ionic liquid as the electrolyte.However,severe capacity decay occurs during cycling,which is caused by dissolution of metal chloride into the electrolyteviaLewis acid/base interaction and/or the large volume contraction/expansion of metal chloride upon cycling[4,5].Subsequently,metal oxychlorides including BiOCl[6],F(xiàn)eOCl[6,7]and VOCl[8,9]with good chemical stability in the electrolyte were explored as cathode materials for CIBs.Nevertheless,metal oxychlorides also suffered from a large volume change during repeated charge and discharge,resulting in pulverization and electrical disconnection between active material particles[10,11].An effective strategy is to incorporate different carbon materials(e.g.,carbon nanotube,carbon black,graphene nanoplatelets and ordered mesoporous carbon CMK-3)[12,13]or conducting polymers[14,15]into metal oxychloride cathodes.Recently,layered double hydroxides(Ni2V0.9Al0.1-Cl[16],CoFe-Cl[17],NiMn-Cl[18],NiFe-Cl[19])were demonstrated to be effective intercalation cathode materials for CIBs due to their good chemical and structural stability.Besides inorganic electrode materials,chloride ion-doped polypyrrole[20]and polyaniline[21]have also been developed as cathode materials for chloride ion batteries.The polymer cathode materials exhibit reversible electrochemical energy storage based on the redox reactions of nitrogen species and chloride ion transfer.Although some progresses have been achieved,the research of CIBs is still at an early stage[22].Exploiting alternative cathode materialsviadesigning new materials or modifying the current materials with high capacity and long lifetime is highly desired.

    Fig.1.Schematic representation of the preparation of BiCl3@MCF.

    As mentioned above,even though the feasibility of transitionmetal chlorides to be cathode materials has been proved,they showed inferior electrochemical activity.For example,commercial BiCl3delivered an initial discharge capacity of 142.9 and~75 mAh/g after only 3 cycles even at a low current density of 3 mA/g.Considering the insoluble behavior of BiCl3in the electrolyte,the authors attributed this capacity decay to the large volume change of the conversion reaction between Bi metal and BiCl3[1].Inspired by the carbon incorporation effect for the FeOCl cathode material in CIBs,it is possible to improve the chloride-ion storage performance of BiCl3using the similar strategy[12,13,23].However,it is difficult to obtain BiCl3/carbon nanocomposite because BiCl3is highly hygroscopic in air to irreversibly form BiOCl[24].Therefore,the reports on preparation of BiCl3/carbon nanocomposites are rare.To our best knowledge,the only work was reported by Anumolet al.who heated the mixture of BiCl3and MWCNTs in a sealed quartz ampule under vacuum to obtain the BiCl3@multi-walled carbon nanotube(BiCl3@MWCNT)nanocomposite[25].In order to melt BiCl3into a liquid state,a high reaction temperature of 500 K needs to be used.A long heating time of more than 72 h is also required to infiltrate the molten BiCl3into the carbon nanotube because of the high surface tension and viscosity of molten BiCl3.Therefore,this preparation process is energy-and time-consuming.Furthermore,the purity of the final product depends strictly on the tightness of the preparation system and the purity of the BiCl3raw material since BiCl3is easily transformed into BiOCl upon exposure to air.

    In this study,a facile and novel strategy is developed to prepare BiCl3@mesocellular carbon foam(BiCl3@MCF)nanocomposite for CIBs.The commercial BiCl3dissolved in hydrochloric acid is successfully loaded into the MCF with open porous structure at a considerably mild condition(298 K for 18 h and 393 K for 5 h)viaan infiltration process.The hydrochloric acid medium can inhibit the hydrolysis of BiCl3[26–29].When assembled into CIBs,the BiCl3@MCF nanocomposite electrode exhibited significantly enhanced electrochemical properties compared to the BiCl3electrode,such as an initial discharge capacity of 298 mAh/g and a reversible capacity of 91 mAh/g after 60 cycles.The superior electrochemical performance is attributed to the unique BiCl3@MCF electrode architecture.BiCl3nanocrystals with a size less than 10 nm are favorable for the rapid transport of electrons and Cl–[30–32].The porous carbon scaffold could facilitate electrolyte penetration and provide a mechanical cushion to buffer the large volume variation of BiCl3during repeated charge and discharge.This is the first report that the metal chloride cathode can achieve a prolonged cycling in CIBs.

    Two kinds of mesocellular carbon foams(MCF-1 and MCF-2)with different porosities were preparedviaa nano casting method with the Al-impregnated mesocellular silica foams as hard templates.The detailed fabrication process is provided in Supporting information.The scheme of the fabrication process for the BiCl3@MCF composites is shown in Fig.1.First,1 g of commercial BiCl3was dissolved in 1 mL of concentrated hydrochloric acid.Then,the solution was impregnated into 0.5 g of the mesocellular carbon foam obtained above at 298 K under vacuum for 18 h.The obtained paste was dried by rotary evaporation at 393 K for 5 h to remove hydrochloric acid.The as-prepared powders were denoted as BiCl3@MCF-1 and BiCl3@MCF-2 when MCF-1 and MCF-2 were used as carbon matrix,respectively.Likewise,the commercial BiCl3powder was treated in the same way except the use of MCF to form a BiCl3electrode material.

    Electrochemical measurements were conducted using coin cells(CR2032).The anode was lithium metal(Alfa Aesar).The separator is glass fiber film(Whatman).The working electrode was prepared by pressing a mixture of 80 wt% BiCl3@MCF nanocomposite or BiCl3,10 wt% carbon black and 10 wt% PVDF powders between two stainless steel meshes.The loading weight of the as-prepared composite material in the cathode is about 1.5 mg.The 0.5 mol/L PP14Cl in PP14TFSI was used as the electrolyte[7].The galvanostatic discharge and charge was tested on a Neware battery testing system(Neware Co.,Ltd.).Cyclic voltammetry(CV)and electrochemical impedance spectroscopy(EIS)were measured on a BioLogic(VMP3)battery testing system.All electrochemical measurements were performed at 298 K.

    The wide-angle XRD patterns of the two mesocellular carbon foams(Fig.S1a in Supporting information)show two broad peaks at 23.8°and 43.6°,corresponding to the(002)and(100)planes of graphite,respectively.Small-angle XRD patterns of the MCF-1 and MCF-2(Fig.S1b in Supporting information)both exhibit one welldefined diffraction peak,implying the ordered mesoporous structure of the as-prepared carbon materials.This regular and ordered mesostructure is beneficial to achieve homogeneous distribution of BiCl3nanocrystals and prevent its aggregation in the carbon matrix.The porosity of the as-prepared MCFs was investigated by nitrogen adsorption/desorption analysis.The isotherms of MCF-1 and MCF-2 exhibit the type-IV shape with two H2-type hysteresis loops at medium and high relative pressures,indicating the presence of the small mesopores with size of around 3 nm inside the walls of the MCFs and the large cellular mesopores,respectively(Fig.S2 in Supporting information).The cell and window size of the MCFs(inset in Fig.S2)were calculated from the adsorption and desorption branch of the isotherm using the Barrett-Joyner-Halenda(BJH)method,respectively.The textural parameters including total pore volume,cell diameter,window diameter and Brunauer-Emmett-Teller(BET)specific surface area of the mesocellular carbon foams were summarized in Table S1.By increasing the amount of organic swelling agent 1,3,5-trimethylbenzene(TMB)from 1.2 g to 6 g,the total pore volume,cell and window diameter increase from 1.5 cm3/g,15.7 nm and 15.2 nm for MCF-1 to 2.0 cm3/g,23.2 nm and 22.3 nm for MCF-2,respectively.The BET specific surface area decreases from 1429 m2/g for MCF-1 to 993 m2/g for MCF-2.The large pore size and pore volume of the mesocellular carbon foams may be suitable for accommodating a large amount of electroactive BiCl3material.The interconnected mesoporous structure of the mesocellular carbon foams could facilitate the rapid release of water vapor during heating the BiCl3·HCl·H2O system,thus avoiding the appearance of BiOCl impurity during the sample preparation process.

    Fig.S3(Supporting information)shows the SEM images of the as-prepared MCFs.The low-magnification images(Figs.S3a and c)show that the MCFs comprise irregular micrometer sized particles.Upon considerably enhanced magnification,that the MCF particle is composed of nanospheres with a size of ~20 nm.The assembly of the nanospheres generates a highly porous structure.The corresponding energy-dispersive X-ray spectra(EDS)reveal an extremely low content of Si element and the absence of Al element,indicating that the Al-impregnated mesocellular silica foam templates have been almost completely removed.To further study the structure and morphology of the as-prepared mesocellular carbon foams,transition electron microscopy(TEM)and the corresponding selected area electron diffraction(SAED)were performed(Fig.S4 in Supporting information).The MCFs show a typical honeycombed structure(Figs.S4a and c)and the pore sizes of 16 nm for MCF-1 and 23 nm for MCF-2,which are consistent with the above N2physisorption results.The corresponding SAED patterns(Figs.S4b and d)of the MCFs display blurred diffraction rings,revealing the nanocrystalline structure that is consistent with the above wideangle XRD results.

    Fig.2.(a)Wide-angle XRD pattern and(b)Raman spectra of BiCl3 and BiCl3@MCFs.

    Fig.3.FE-SEM images of(a,b)BiCl3,(c,d)BiCl3@MCF-1 and(e,f)BiCl3@MCF-2.(g–i)The corresponding elemental mapping images of BiCl3@MCF-2;(j,k)TEM images and the corresponding(l)SAED of BiCl3@MCF-2.

    Fig.2a shows the XRD patterns of the as-prepared BiCl3and BiCl3@MCFs nanocomposites.The broad background centered at about 20.0°is ascribed to the amorphous 3M tape used for preventing the samples from moisture absorption during the tests.The diffraction peaks of the BiCl3sample coincides well with that of the orthorhombic BiCl3phase(PDF card No.70–1519),demonstrating that the acidic treatment of the commercial BiCl3did not introduce any impurities.The XRD patterns of BiCl3@MCF-1 and BiCl3@MCF-2 only display the broad peak of the 3M tape and no characteristic peaks of BiCl3were detected,which may be due to the poor crystallinity of BiCl3caused by the confined growth inside pores of the MCFs.Raman spectroscopy was further conducted to analyze the phase structures of the asprepared BiCl3@MCFs(Fig.2b).The samples were sealed between two pieces of glasses to prevent moisture contamination.Five characteristic peaks are identified in the Raman spectrum of the BiCl3sample[33–35].Similar Raman signals are detected for the BiCl3@MCF nanocomposites,confirming the presence of BiCl3in the as-prepared BiCl3@MCF nanocomposites.The decreased intensity of Raman peaks for the BiCl3@MCF nanocomposites may be due to the encapsulation of the BiCl3phase inside the pores of MCFs[36].

    In order to study the morphology of the BiCl3@MCF nanocomposites,field-emission scanning electron microscopy(FE-SEM)was performed.From Figs.3a and b,it can be seen that the BiCl3sample is consisted of agglomerated nanosheets,with a thickness of about 20 nm.Figs.3c–f present the morphologies of the BiCl3@MCF-1 and BiCl3@MCF-2 composites at two different magnifications.By comparing Figs.3d and f with Figs.S3b and d,it is clear that the apparent morphology of mesocellular carbon foams is retained for both BiCl3@MCF composites.For the BiCl3@MCF-1 sample,there are large amount of bare BiCl3nanosheets attached on the surface of the carbon matrix MCF-1.In contrast,much fewer BiCl3nanosheets are observed for the BiCl3@MCF-2 sample,indicating that most of the BiCl3particles are encapsulated into the carbon matrix MCF-2.This is because the carbon matrix MCF-2 with a larger pore volume,larger cell and window diameter can accommodate more BiCl3.The corresponding elemental mapping images(Figs.3g–i)further show that the Bi and Cl elements are evenly distributed in the carbon matrix,indicating that BiCl3nanoparticles are uniformly distributed in the mesocellular carbon foam matrix.

    Fig.4.CV and discharge-charge curves of(a,b)BiCl3(c,d)BiCl3@MCF-1 and(e,f)BiCl3@MCF-2.(g)Cycling performance and(h)nyquist plots of BiCl3 and BiCl3@MCFs.

    In order to further confirm the phase purity of the BiCl3@MCF-2 composite,transition electron microscopy and the corresponding selected area electron diffraction(SAED)were carried out.Fig.3j indicates that the porous structure of MCF-2 can be maintained after loading of BiCl3.The high-resolution transmission electron microscopy image of the BiCl3@MCF-2 composite(Fig.3k)shows that many crystalline particles with size less than 10 nm are homogeneously distributed in the amorphous carbon matrix MCF-2.The interplanar spacing of 0.306 nm is well matched with the d spacing of the(211)lattice plane of BiCl3.The corresponding SAED pattern(Fig.3l)shows that besides the blurred diffraction ring corresponding to(100)plane of the carbon matrix,the dispersed diffraction ring with the interplanar spacing of 0.334 nm agrees well with(121)plane of the BiCl3phase.Hence,the TEM result further verified the confinement of pure BiCl3nanocrystal in the mesocellular carbon foams.

    In the following,we investigated the electrochemical performances of the as-prepared BiCl3,BiCl3@MCF-1 and BiCl3@MCF-2 materials.Cyclic voltammetry(CV)tests were recorded at a scan rate of 0.05 mV/s with a potential range of 1.6–4 V.The CV curves of the BiCl3and the BiCl3@MCF cathodes(Figs.4a,c and e)all show one major couple of redox peaks and two weak couples of redox peaks.This implies a three-step electrochemical reaction between BiCl3and Bi metal,consistent with the commercial BiCl3reported previously[1].Galvanostatic dischargecharge tests were carried out at a current density of 10 mA/g.Figs.4b,d and f illustrate the first three charge-discharge profiles of the three cathodes.In accordance with the CV results,one major charge/discharge plateau in the vicinity of 2.5 V accompanying with two short charge/discharge plateaus are observed.Benefitted from the nanoconfinement effect of the BiCl3nanoparticles within the mesocellular carbon foams,the BiCl3@MCF nanocomposites show higher utilization of active materials than the BiCl3sample.The initial discharge capacities for the BiCl3@MCF-2 and BiCl3@MCF-1 cathodes are 298 mAh/g and 261 mAh/g,respectively,much higher than 182 mAh/g for the BiCl3cathode.Fig.4g presents the cycling performance of the three cathodes.For the two nanocomposite cathodes,they display high reversible capacities of 91 mAh/g(BiCl3@MCF-2)and 60 mAh/g(BiCl3@MCF-1)after 60 cycles.On the contrary,the BiCl3cathode remains little capacity after 30 cycles.The terrible capacity retention of the BiCl3cathode is likely originated from structural collapse of the electrode and the loss of electrical contact with the current collector because of the large volume changes of BiCl3during repeated charge and discharge.The excellent cycling performance of the BiCl3@MCF nanocomposite cathodes can be attributed to the enhanced structural stability by encapsulation of BiCl3into mesocellular carbon foams[37].Moreover,a high energy density of 2097 Wh/L can be reached in this work,which is close to the theoretical volumetric energy density(2500 Wh/L).Besides,the energy-dispersive X-ray analysis(Fig.S5 in Supporting information)on glass fiber separator(the side facing lithium metal)after 70 cycles reveals the absence of Bi,F(xiàn)e,Cr and Ni elements,indicating BiCl3was not dissolved in the electrolyte and the stainless steel collector was not corroded during cycling.Hence,unlike the other metal chlorides such as CoCl2and VCl3,the dissolution of BiCl3in the electrolyte can be ignored.

    To further elucidate the different electrochemical properties of the BiCl3and BiCl3@MCF composites,electrochemical impedance spectroscopy(EIS)tests were performed.The EIS curves consist of two parts,a broad arc at high and medium frequency and a straight line at low frequency(Fig.4h).The broad arc at high and medium frequency represents the combined contribution of the contact resistance(Rc)and the charge transfer process(Rct).The straight line at low frequency may be related to the Warburg resistance reflecting the solid-state diffusion of chloride ions in the bulk electrode[38,39].The EIS plots can be well fitted according to the equivalent circuit model shown in the inset of Fig.4h.The fitted electrochemical kinetic parameters of the BiCl3and BiCl3@MCF cathodes are shown in Table S2(Supporting information).The BiCl3@MCF-2 cathode(96 Ohm)possesses a smaller charge transfer resistance than the BiCl3@MCF-1(167 Ohm)cathode,which could be attributed to less exposed BiCl3nanosheets on the surface of the MCF matrix.Moreover,the charge transfer resistances of the BiCl3@MCF-1 and BiCl3@MCF-2 cathodes are much smaller than that of the BiCl3cathode(2431 Ohm).Therefore,the unique BiCl3@MCF composite architecture can considerably enhance the electrical conductivity and charge transfer of the corresponding electrode.

    In order to understand the electrochemical reaction mechanism of the BiCl3@MCF-2 cathode,the batteries after initial discharge and charge were disassembled.The cycled cathodes were directly characterized by XRD as shown in Fig.S6a(Supporting information).The Bi metal(PDF card No.2–518)formed after the 1stdischarge as indicated by the arrows in Fig.S6a,revealing a conversion reaction mechanism which is consistent with the previous report[1].After the 1stcharge,the Bi phase disappeared,the BiCl3phase was nevertheless not detected.The weak peaks of the BiCl3nanocrystals even if formed after the 1stcharge could be overlapped by the broad peak of the 3M tape.Becauseex-situXRD cannot prove the recovering of BiCl3phase after the 1stcharge,F(xiàn)ESEM and the corresponding EDS(Figs.S6b and c)were used to further clarify whether chloride ion was back or not after the 1stcharge.In order to avoid the interference of Cl–in the electrolyte,solvent of the electrolyte(PP14TFSI)was used to wash the electrode disks detached from the current collector.The corresponding EDS results(Fig.S6b inset)verify the removal of chloride ions from the BiCl3@MCF-2 cathode after the 1stdischarge as the atomic ratio of Cl element to Bi element is around 0.56.After the 1stcharge,the increased atomic ratio between Cl element and Bi element to around 2.5 further confirmed shuttle back of chloride ions to the BiCl3@MCF-2 cathode.Raman spectroscopy was further used to investigate the structural evolution of the BiCl3@MCF-1(Fig.S7 in Supporting information)cathode during the 1stdischarge and charge process.The two peaks at 50–80 cm-1in Raman spectrum of the pristine electrode after rest for 20 h can be assigned to BiCl3[40].Compared with Fig.2b,the absence of other peaks is probably due to the formation of complex ion(such as BiCl52-or BiCl63-)between BiCl3and the electrolyte[41].A broad peak at 80–105 cm-1appeared after the 1stdischarge,which can be assigned to Bi metal[36,42],this broad peak disappeared after the subsequent charge,further suggesting the extraction/insertion of chloride ions from/into the BiCl3@MCF composite materials.

    In summary,we reported the BiCl3@MCF nanocomposite material for chloride ion batteries which was prepared by vacuum impregnation and subsequent rotary evaporation at 393 K for 5 h,and achieved stable cycling performance of metal chloride for the first time.X-ray diffraction and Raman spectroscopy revealed the high purity of the BiCl3@MCF nanocomposite.Field-emission scanning electron microscopy and transition electron microscopy revealed that most of the BiCl3nanocrystals with size less than 10 nm were uniformly encapsulated into the pores of the mesocellular carbon foam matrix.When used as cathode for chloride ion batteries,the nanoconfined BiCl3@MCF composite exhibited superior Cl–storage performance than the BiCl3material,delivering a maximum discharge capacity of 298 mAh/g and remained at 91 mAh/g after 60 cycles at 10 mA/g.The better electrochemical performance of the BiCl3@MCF nanocomposite benefited from 3D interconnected porous carbon matrix with large cell(15.7 nm)and window size(23.2 nm),which could not only facilitate the charge transfer and electrolyte transport but also buffer the large volume change of BiCl3during repeated charge and discharge.Ex-situX-ray diffraction,ex-situscanning electron microscopy andex-situRaman characterization revealed the Cl–extraction/insertion from/into the BiCl3@MCF nanocomposite cathode during discharge and charge process.This work opens up an avenue to rationally design of bismuth chloride cathode with stable cycling performance for chloride ion batteries.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(No.51602150),the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)and the Opening Project of CAS Key Laboratory of Materials for Energy Conversion.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.09.052.

    一区福利在线观看| 亚洲四区av| 嫩草影院入口| 免费看av在线观看网站| 午夜免费男女啪啪视频观看 | 国产精品福利在线免费观看| 亚洲无线在线观看| 99在线视频只有这里精品首页| 欧美日韩亚洲国产一区二区在线观看| 日本熟妇午夜| 久久亚洲精品不卡| 啪啪无遮挡十八禁网站| 亚洲欧美精品综合久久99| 国产精品人妻久久久久久| 国产精品一区二区性色av| 日韩精品有码人妻一区| 亚洲五月天丁香| 精品午夜福利视频在线观看一区| 欧美绝顶高潮抽搐喷水| 精华霜和精华液先用哪个| 欧美性感艳星| 婷婷丁香在线五月| h日本视频在线播放| 男人舔女人下体高潮全视频| 我的女老师完整版在线观看| 国模一区二区三区四区视频| 国产高清三级在线| 欧美日韩黄片免| 国产精品国产三级国产av玫瑰| 亚洲精品久久国产高清桃花| 免费看日本二区| 午夜免费男女啪啪视频观看 | 久久久久久久午夜电影| 亚洲欧美激情综合另类| 伊人久久精品亚洲午夜| 久久这里只有精品中国| 桃红色精品国产亚洲av| 日本一本二区三区精品| 我的老师免费观看完整版| 久久中文看片网| 久久午夜福利片| 亚洲久久久久久中文字幕| 国产精品乱码一区二三区的特点| 九九久久精品国产亚洲av麻豆| 亚洲aⅴ乱码一区二区在线播放| 欧美3d第一页| 欧美不卡视频在线免费观看| 日日撸夜夜添| 麻豆成人午夜福利视频| 免费av观看视频| 欧美+亚洲+日韩+国产| 精品久久久久久久久av| 在现免费观看毛片| 在线播放无遮挡| 最好的美女福利视频网| 一区二区三区四区激情视频 | 99热6这里只有精品| 成人精品一区二区免费| 少妇人妻一区二区三区视频| 校园人妻丝袜中文字幕| 欧美成人免费av一区二区三区| 内射极品少妇av片p| 免费看a级黄色片| 舔av片在线| 久久久久性生活片| 色综合色国产| 亚洲av免费在线观看| 久久国内精品自在自线图片| 麻豆一二三区av精品| 男女啪啪激烈高潮av片| 午夜亚洲福利在线播放| 黄色丝袜av网址大全| 一级黄色大片毛片| 国产黄a三级三级三级人| 精品一区二区三区视频在线| 欧美最黄视频在线播放免费| 亚洲真实伦在线观看| 欧美性猛交╳xxx乱大交人| 两人在一起打扑克的视频| 亚洲无线观看免费| 九九久久精品国产亚洲av麻豆| 国产精品久久视频播放| 国产探花在线观看一区二区| 色在线成人网| 一区二区三区四区激情视频 | 干丝袜人妻中文字幕| 成人永久免费在线观看视频| 婷婷色综合大香蕉| 99久久无色码亚洲精品果冻| 国产色婷婷99| 免费看a级黄色片| 一夜夜www| 特大巨黑吊av在线直播| 一区二区三区激情视频| 波多野结衣高清作品| 熟女人妻精品中文字幕| 亚洲最大成人中文| 深夜精品福利| 国产日本99.免费观看| 亚洲性久久影院| 91av网一区二区| 久久6这里有精品| 亚洲美女搞黄在线观看 | 久久久久久久久久黄片| 在线免费观看不下载黄p国产 | 一边摸一边抽搐一进一小说| 国产色婷婷99| 一级a爱片免费观看的视频| 欧美激情在线99| 亚洲精品乱码久久久v下载方式| 欧美区成人在线视频| 亚洲自偷自拍三级| 久久精品国产99精品国产亚洲性色| 天天一区二区日本电影三级| 亚洲自偷自拍三级| 99久久精品国产国产毛片| 亚洲最大成人手机在线| 五月伊人婷婷丁香| 日本-黄色视频高清免费观看| 日韩人妻高清精品专区| 国产不卡一卡二| 男女边吃奶边做爰视频| 日日干狠狠操夜夜爽| 丝袜美腿在线中文| 我要搜黄色片| 偷拍熟女少妇极品色| 91久久精品国产一区二区成人| 午夜爱爱视频在线播放| 如何舔出高潮| 少妇的逼水好多| 国产高清不卡午夜福利| 成人av一区二区三区在线看| 日韩中字成人| 亚洲欧美日韩无卡精品| 精品久久久久久久久亚洲 | 韩国av在线不卡| 欧美绝顶高潮抽搐喷水| 97超视频在线观看视频| 一级黄片播放器| 国内精品一区二区在线观看| 亚洲精品色激情综合| 国产精品美女特级片免费视频播放器| 亚洲国产日韩欧美精品在线观看| 日韩欧美一区二区三区在线观看| 日本 欧美在线| 亚洲一区高清亚洲精品| 中出人妻视频一区二区| 久久久久精品国产欧美久久久| 成人综合一区亚洲| 日韩精品青青久久久久久| 国产精品一区二区性色av| 噜噜噜噜噜久久久久久91| 亚洲精品456在线播放app | 男女视频在线观看网站免费| 中文字幕精品亚洲无线码一区| 久久精品国产亚洲网站| 特大巨黑吊av在线直播| 日韩一区二区视频免费看| 女同久久另类99精品国产91| 美女大奶头视频| 国产精品三级大全| 国产亚洲精品久久久com| 蜜桃久久精品国产亚洲av| 国产成人a区在线观看| 亚洲午夜理论影院| 国产精品乱码一区二三区的特点| 欧美激情久久久久久爽电影| 久久久午夜欧美精品| 亚洲熟妇熟女久久| 午夜免费激情av| 亚洲久久久久久中文字幕| 中文亚洲av片在线观看爽| 国产一区二区亚洲精品在线观看| 蜜桃亚洲精品一区二区三区| 免费观看在线日韩| 美女xxoo啪啪120秒动态图| 亚洲不卡免费看| 国产高潮美女av| 亚洲av第一区精品v没综合| 日韩欧美国产在线观看| 无遮挡黄片免费观看| www.www免费av| 亚洲av中文字字幕乱码综合| 香蕉av资源在线| 麻豆国产av国片精品| 内射极品少妇av片p| 色噜噜av男人的天堂激情| 精品免费久久久久久久清纯| 性色avwww在线观看| 麻豆av噜噜一区二区三区| 大又大粗又爽又黄少妇毛片口| 国产亚洲精品久久久久久毛片| 国产不卡一卡二| 亚洲国产精品成人综合色| 午夜激情福利司机影院| 很黄的视频免费| 99热精品在线国产| 99久久九九国产精品国产免费| 深夜a级毛片| 日韩欧美免费精品| 国产亚洲欧美98| 成人一区二区视频在线观看| 黄色配什么色好看| 久久久久久九九精品二区国产| 欧美bdsm另类| 国产黄色小视频在线观看| 老司机午夜福利在线观看视频| 99视频精品全部免费 在线| 综合色av麻豆| 干丝袜人妻中文字幕| 麻豆一二三区av精品| 国产精品1区2区在线观看.| 伦精品一区二区三区| 九九在线视频观看精品| 国产熟女欧美一区二区| 日韩欧美国产一区二区入口| 久久国产乱子免费精品| 99热只有精品国产| 国产精华一区二区三区| 99久久精品一区二区三区| 少妇被粗大猛烈的视频| 精品无人区乱码1区二区| av天堂中文字幕网| 国内毛片毛片毛片毛片毛片| 极品教师在线视频| 日日摸夜夜添夜夜添av毛片 | 精品久久久久久久久av| 亚洲最大成人手机在线| 网址你懂的国产日韩在线| АⅤ资源中文在线天堂| 日韩 亚洲 欧美在线| 亚洲avbb在线观看| 免费一级毛片在线播放高清视频| 亚洲经典国产精华液单| 黄片wwwwww| 亚洲性夜色夜夜综合| 美女cb高潮喷水在线观看| 在线看三级毛片| 午夜精品一区二区三区免费看| 久久久久久久久久成人| 在线观看av片永久免费下载| 99热网站在线观看| 高清毛片免费观看视频网站| 又爽又黄a免费视频| 免费在线观看日本一区| 看十八女毛片水多多多| 最好的美女福利视频网| 欧美性猛交╳xxx乱大交人| 亚洲国产色片| 免费看av在线观看网站| 国内精品久久久久精免费| 亚洲av五月六月丁香网| 自拍偷自拍亚洲精品老妇| 国产黄a三级三级三级人| 日本一二三区视频观看| 十八禁国产超污无遮挡网站| 亚洲一区二区三区色噜噜| 免费观看人在逋| 啦啦啦观看免费观看视频高清| 国内揄拍国产精品人妻在线| 女人被狂操c到高潮| 欧美三级亚洲精品| 久久天躁狠狠躁夜夜2o2o| 十八禁国产超污无遮挡网站| 色哟哟哟哟哟哟| 91麻豆精品激情在线观看国产| 久久久久久久精品吃奶| 亚洲成a人片在线一区二区| 亚洲午夜理论影院| 午夜福利在线在线| 搡老妇女老女人老熟妇| 国产成人av教育| 国产高清三级在线| 12—13女人毛片做爰片一| 成人特级av手机在线观看| 乱系列少妇在线播放| 真人做人爱边吃奶动态| 身体一侧抽搐| 国产亚洲精品久久久久久毛片| 午夜a级毛片| 久久久久九九精品影院| 黄色丝袜av网址大全| 熟女电影av网| 丰满人妻一区二区三区视频av| 亚洲国产精品成人综合色| 中文字幕免费在线视频6| 亚洲精品一卡2卡三卡4卡5卡| 精品久久久久久久久av| 老师上课跳d突然被开到最大视频| 亚洲成人中文字幕在线播放| 99在线视频只有这里精品首页| av天堂中文字幕网| 日本 欧美在线| 国产免费男女视频| 我要搜黄色片| 尾随美女入室| 欧美性感艳星| 搡老熟女国产l中国老女人| 床上黄色一级片| 午夜久久久久精精品| 一级a爱片免费观看的视频| x7x7x7水蜜桃| 此物有八面人人有两片| 亚洲人与动物交配视频| 一区二区三区高清视频在线| 99在线视频只有这里精品首页| 久久香蕉精品热| 99久久无色码亚洲精品果冻| 亚洲av五月六月丁香网| 男女之事视频高清在线观看| 国产高清三级在线| 欧美又色又爽又黄视频| 嫩草影院新地址| 特大巨黑吊av在线直播| av天堂中文字幕网| 香蕉av资源在线| 日韩亚洲欧美综合| 看片在线看免费视频| 日日啪夜夜撸| 一区二区三区免费毛片| 又黄又爽又刺激的免费视频.| 身体一侧抽搐| 日本 av在线| 欧美日韩乱码在线| 九色国产91popny在线| 久久久午夜欧美精品| 成人av在线播放网站| 成年女人看的毛片在线观看| 亚洲四区av| 国产熟女欧美一区二区| 超碰av人人做人人爽久久| 国产精品久久电影中文字幕| 一个人看的www免费观看视频| 五月玫瑰六月丁香| bbb黄色大片| 尾随美女入室| 一区二区三区高清视频在线| or卡值多少钱| 色尼玛亚洲综合影院| 日本色播在线视频| 99久国产av精品| 2021天堂中文幕一二区在线观| 午夜激情福利司机影院| av中文乱码字幕在线| 午夜爱爱视频在线播放| 国产三级中文精品| 97超级碰碰碰精品色视频在线观看| 小说图片视频综合网站| 舔av片在线| 精品99又大又爽又粗少妇毛片 | 3wmmmm亚洲av在线观看| 俺也久久电影网| a级一级毛片免费在线观看| 亚洲成人精品中文字幕电影| 久久午夜福利片| 国产综合懂色| 三级国产精品欧美在线观看| 黄色视频,在线免费观看| 国产v大片淫在线免费观看| 久久欧美精品欧美久久欧美| 韩国av在线不卡| 久久久午夜欧美精品| 国产中年淑女户外野战色| 97碰自拍视频| 美女高潮的动态| 亚洲精品在线观看二区| 一本久久中文字幕| 国产免费男女视频| 精品一区二区免费观看| 在现免费观看毛片| 久久久久免费精品人妻一区二区| 久久久久久国产a免费观看| 免费一级毛片在线播放高清视频| 国产一区二区三区在线臀色熟女| 日日摸夜夜添夜夜添av毛片 | 国内精品一区二区在线观看| 嫩草影院入口| 日韩,欧美,国产一区二区三区 | 国产私拍福利视频在线观看| or卡值多少钱| 免费黄网站久久成人精品| 国产高潮美女av| 午夜爱爱视频在线播放| 22中文网久久字幕| 国产视频内射| 91av网一区二区| 亚洲av不卡在线观看| 一a级毛片在线观看| 精品99又大又爽又粗少妇毛片 | 欧美潮喷喷水| 亚洲精品国产成人久久av| 午夜日韩欧美国产| 嫩草影院精品99| 成人一区二区视频在线观看| 亚洲综合色惰| 能在线免费观看的黄片| 国产精品一区二区三区四区免费观看 | 国产精华一区二区三区| 窝窝影院91人妻| 午夜福利高清视频| 岛国在线免费视频观看| 美女被艹到高潮喷水动态| 久久这里只有精品中国| 亚洲成a人片在线一区二区| 亚洲美女黄片视频| 可以在线观看的亚洲视频| 欧美日韩综合久久久久久 | 午夜精品在线福利| 中文资源天堂在线| 欧美黑人欧美精品刺激| 韩国av在线不卡| 亚洲av五月六月丁香网| 亚洲自偷自拍三级| 很黄的视频免费| 欧美区成人在线视频| 观看美女的网站| 欧美潮喷喷水| 黄色视频,在线免费观看| 久久精品国产亚洲av涩爱 | 国产av在哪里看| 欧美成人a在线观看| 啦啦啦观看免费观看视频高清| 国产精品福利在线免费观看| 毛片女人毛片| 婷婷亚洲欧美| 国产精品精品国产色婷婷| 波多野结衣巨乳人妻| 偷拍熟女少妇极品色| 日韩,欧美,国产一区二区三区 | 色5月婷婷丁香| 午夜福利在线观看免费完整高清在 | 成人亚洲精品av一区二区| 91久久精品电影网| 日本 欧美在线| 国产精品人妻久久久久久| 我的女老师完整版在线观看| 女的被弄到高潮叫床怎么办 | 在现免费观看毛片| av福利片在线观看| 最近视频中文字幕2019在线8| av在线老鸭窝| 亚洲国产精品sss在线观看| 久久午夜亚洲精品久久| 国产精品国产高清国产av| 国产精品人妻久久久影院| 亚洲人成网站在线播| 国产三级在线视频| 99热这里只有精品一区| 国产男人的电影天堂91| 日日摸夜夜添夜夜添av毛片 | 亚洲国产日韩欧美精品在线观看| 变态另类丝袜制服| 老女人水多毛片| 国产 一区精品| 国产真实乱freesex| 亚洲av二区三区四区| 国产一区二区三区在线臀色熟女| 尤物成人国产欧美一区二区三区| 国产 一区精品| 久久久久性生活片| 国产高潮美女av| 很黄的视频免费| 97人妻精品一区二区三区麻豆| 免费黄网站久久成人精品| 美女高潮喷水抽搐中文字幕| 久久精品国产自在天天线| 中亚洲国语对白在线视频| 成年女人看的毛片在线观看| 久久精品国产亚洲网站| 久久这里只有精品中国| 免费在线观看日本一区| 制服丝袜大香蕉在线| av天堂中文字幕网| 亚洲成人久久爱视频| 日韩欧美精品v在线| 直男gayav资源| 少妇的逼好多水| 国产精品99久久久久久久久| 国产成人影院久久av| 成人av一区二区三区在线看| 国产精品伦人一区二区| 在线免费观看的www视频| 乱码一卡2卡4卡精品| 国产免费av片在线观看野外av| 国产精品久久久久久久久免| 又粗又爽又猛毛片免费看| a在线观看视频网站| 少妇高潮的动态图| 一个人免费在线观看电影| 国产成人一区二区在线| 久久久精品欧美日韩精品| 99热精品在线国产| 久久久久久久久久黄片| 国产大屁股一区二区在线视频| 欧美bdsm另类| 如何舔出高潮| 最好的美女福利视频网| 51国产日韩欧美| ponron亚洲| 国产日本99.免费观看| 久久亚洲精品不卡| 大又大粗又爽又黄少妇毛片口| 精品午夜福利在线看| 精品久久久噜噜| 深夜精品福利| 国产大屁股一区二区在线视频| 久久精品国产自在天天线| 国产v大片淫在线免费观看| 亚洲精品日韩av片在线观看| 啦啦啦啦在线视频资源| 神马国产精品三级电影在线观看| 精品一区二区三区视频在线| 国产精品久久久久久久电影| 欧美成人a在线观看| 久久精品国产亚洲av涩爱 | 色综合婷婷激情| 国产精品爽爽va在线观看网站| 日韩欧美在线乱码| 琪琪午夜伦伦电影理论片6080| 中文字幕久久专区| 久久久久久伊人网av| 国产av一区在线观看免费| 草草在线视频免费看| 校园春色视频在线观看| av中文乱码字幕在线| 精品人妻熟女av久视频| 一区二区三区高清视频在线| 成人性生交大片免费视频hd| 国产爱豆传媒在线观看| 简卡轻食公司| 一进一出抽搐gif免费好疼| 午夜精品久久久久久毛片777| 成人毛片a级毛片在线播放| 日韩亚洲欧美综合| 永久网站在线| 别揉我奶头~嗯~啊~动态视频| 亚洲 国产 在线| 亚洲人成伊人成综合网2020| 日韩精品青青久久久久久| 99热6这里只有精品| 日本五十路高清| 亚洲人与动物交配视频| 久久热精品热| 无人区码免费观看不卡| 日本免费一区二区三区高清不卡| 给我免费播放毛片高清在线观看| 亚洲国产高清在线一区二区三| 能在线免费观看的黄片| 草草在线视频免费看| 人人妻人人看人人澡| 亚洲精华国产精华精| 两个人的视频大全免费| x7x7x7水蜜桃| 搡老岳熟女国产| 国产精品伦人一区二区| 亚洲成人精品中文字幕电影| 夜夜夜夜夜久久久久| 成人三级黄色视频| 女人被狂操c到高潮| 少妇丰满av| 国产综合懂色| 日本免费a在线| 国产精品一区二区性色av| 欧美日韩亚洲国产一区二区在线观看| 精品久久国产蜜桃| 一个人看的www免费观看视频| 中文字幕精品亚洲无线码一区| 久久久久久伊人网av| 欧美日韩国产亚洲二区| 亚洲欧美日韩高清专用| eeuss影院久久| 国产在线精品亚洲第一网站| 亚洲无线在线观看| 欧美日韩瑟瑟在线播放| 亚洲精品久久国产高清桃花| 精品一区二区三区视频在线观看免费| 亚洲四区av| 一进一出抽搐gif免费好疼| 韩国av在线不卡| 搡老岳熟女国产| 亚洲人成网站在线播| 色综合亚洲欧美另类图片| 久久久久久久亚洲中文字幕| 久久久精品欧美日韩精品| 亚洲第一区二区三区不卡| 成人亚洲精品av一区二区| 91久久精品国产一区二区三区| 全区人妻精品视频| 欧美成人免费av一区二区三区| 丰满乱子伦码专区| 全区人妻精品视频| 人妻久久中文字幕网| 丰满乱子伦码专区| 日本黄色视频三级网站网址| 欧美极品一区二区三区四区| a级毛片a级免费在线| 欧美三级亚洲精品| 国产精品久久电影中文字幕| 最近视频中文字幕2019在线8| 国产一区二区三区视频了| 欧洲精品卡2卡3卡4卡5卡区| 深爱激情五月婷婷| 一区二区三区高清视频在线| 天堂影院成人在线观看| 丰满乱子伦码专区| 看免费成人av毛片| 禁无遮挡网站| 亚洲精品亚洲一区二区| aaaaa片日本免费| 美女大奶头视频| 亚洲图色成人| 天堂√8在线中文| 欧美日韩国产亚洲二区| 免费搜索国产男女视频| 午夜福利在线观看免费完整高清在 |