• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic swelling performance of hydrophobic hydrogels

    2022-06-20 06:22:40HuiGuoJunxinChenZingWngHongLeiGuoWeiHongXiolinWng
    Chinese Chemical Letters 2022年4期

    Hui Guo,Junxin Chen,Zing Wng,Hong Lei Guo,Wei Hong,Xiolin Wng

    a School of Chemical Engineering and Technology,Sun Yat-sen University,Zhuhai 519082,China

    b Department of Mechanics and Aerospace Engineering,Southern University of Science and Technology,Shenzhen 518055,China

    c School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine,Macau University of Science and Technology,Macao,China

    1 These authors contributed equally to this work.

    ABSTRACT Conventional gels manifest monotonous swelling or shrinking performance upon immersing in solvents until reaching an equilibrium state.Recently,we discovered that the“hydrophobic hydrogels”prepared from hydrophobic polymer networks demonstrated dynamic swelling performance without equilibrium states.Upon water immersion,the gels expanded tremendously at the first stage until reaching a swelling peak;subsequently,the gels shrunk at an extremely slow rate.While this phenomenon endows the material with an unusual feature,more efforts are highly demanding for the full understanding of this performance.Herein,we systematically investigate the hydrophobic hydrogels’swelling kinetics by screening the organic solvent dependence,polymer effect,and temperature impact.It is revealed that the chemical structure of gels greatly influences the swelling kinetics.The higher the networks’hydrophobicity,the slower the swelling kinetics.Meanwhile,organic solvents demonstrate a limited effect on the dynamic swelling performance.Moreover,higher temperature significantly accelerates the whole volume change process.Based on the swelling performance,we further develop hydrogel-based soft devices with timeprogrammable two-dimensional and three-dimensional shape-shifting performances.

    Keywords:Hydrophobic hydrogels Swelling kinetics Shape-shifting device Time-dependence Thermodynamically unstable state

    Gels are defined as three-dimensional crosslinked polymer networks infiltrated with solvents.While the networks maintain gels with elastic performance,the solvent fillers endow the materials with satisfactory biocompatibility,super wetness,and suitable softness[1].During the past few decades,gels have received intensive interest for versatile engineering and biological applications[2–7].All of the functions are highly dependent on the intrinsic features of gels.In particular,one favorable property of gels is their ability to change volume when immersing in a solvent[8].Based on this particularity,these soft materials can serve as potential candidates for soft actuators[9],valves[10]and rapid hemostasis[11].

    Normally,a polymer hydrogel swells in a thermodynamically compatible solvent from the preparation stage.In contrast,the gel tends to shrink(deswell)in a noncompatible solvent driven by osmotic pressure.From a statistical macroscopic theory,the equilibrium state is achieved by a minimum of the Gibbs free energy[12].More precisely,the thermodynamic force of gels’volume change is determined by the change of free energy of mixing,change of elastic energy,and mixing of ions with solvent according to Flory and Rehner[13].Once a gel attains a thermodynamically stable state(swelling equilibrium state),no driving force exists to swell or shrink the gel as the osmotic pressure gap across the gel’s interface disappears.Consequently,the swelling/deswelling of gel manifests a monotonous performance under fixed environmental conditions.Starting from the swelling equilibrium state,a gel may undergo volume change to fulfill versatile functionalities only if the material is imposed with environmental triggers(e.g.,temperature[14–16],pH[17,18],light[19,20],magnetic field[21],salt[22],solvent[23])or undergo chemical change(e.g.,hydrolysis[24],crosslinking[25],isomerization[26]).

    Recently,a kind of“hydrophobic hydrogels”composed of hydrophobic polymer networks while maintaining super high water content has been discovered[27,28].Besides this particular composition,these hydrophobic hydrogels have a unique fruitlike structure,selective water absorption capacity,and more interestingly,dynamic swelling processes.The gels were prepared by immersing hydrophobic organo-gels with omniphilic organic solvents in water.Upon such solvent exchange,instantaneously that the hydrophobic polymer chains phase separate to form condensed surface layers,which serve as a semipermeable membrane to maintain the organic solvent inside gels while staying open to water.Therefore,the organic solvent forms high osmotic pressure to absorb external water inside and swell the materials.Macroscopically,the gels expanded at the first stage and reached a swelling peak,thereafter the gels shrunk at an extremely slow rate(Fig.1).During the whole process,no swelling equilibrium state is observed as that for conventional gels,and the swelling ratio demonstrates obvious time dependence.

    Fig.1.(a)Scheme of swelling kinetics of hydrophobic hydrogels and conventional hydrogels upon solvent exchange.(b)Photos of PMEA gels swelling performances at different stages.

    Benefitting from this unusual swelling process,it is feasible to program the volume change of hydrogels with time.In this work,we report the systematical investigation of factors that influence the hydrophobic hydrogels’swelling kinetics,including organic solvent dependence,polymer effect,and temperature impact.Both gels’ chemical structure and environmental temperature greatly influence the swelling kinetics and ratio.Based on the swelling performance,we further develop time-programmable soft shape-shifting materials,where the two-dimensional(2D)and three-dimensional(3D)shape-shifting performances can be finely tuned by controlling immersing time.

    Upon the solvent exchange by immersing organo-gels in water,only three components are on the scene:organic solvent,polymer network,and water.Water may enter the gels with osmotic pressure as a driven force,while organic solvents infiltrated the organo-gels may come out to mix with water.The two processes compete with each other and lead to abnormal swelling or normal shrinking of gels.According to our previous study[27],only the organo-gels with omniphilic organic solvents have a higher affinity for water than for polymer network displayed such type of abnormal volume expansion.Taking our previous system of polymer poly(methyl acrylate)(PMA)gels for example,DMSO(dimethyl sulfoxide),DMF(N,Ndimethylformamide),NMP(N-methyl-2-pyrrolidone),DMAc(N,Ndimethylacetamide),and NMF(N-methylformamide)are such kind of solvent(termed as“swelling solvent”)to swell PMA gels,while other solvents such as acetone,THF(tetrahydrofuran)and MeCN(acetonitrile)are account for the normal shrinkage of PMA gels.

    In the first place,we investigated the influence of organic solvent on the gels’swelling performance with PMA gels.The fabrication of PMA organo-gels was simply realized with UV-cure polymerization with monomer and crosslink molecules in(DMSO).Subsequently,the PMA discoid gels were immersed omniphilic organic solvent to reach an equilibrium state,followed by the solvent exchange in a large amount of water.As depicted in Fig.2a,PMA organo-gels pre-equilibrated in the five swelling organic solvents all manifested obvious swelling performance upon immersion in water.Just after a few hours’solvent exchange process,the gels’volume boosted 5-8 times.In contrast,the organo-gels pre-swelled in acetone,THF,and MeCN led to fast shrinkage(Fig.S1 in Supporting information).To characterize the swelling kinetics,we first eliminated the effect induced by gels’size effect.According to Fick’s Laws of diffusion[29],the diffusion time of given species across a fixed layer thickness is proportional to the square of the layer’s thickness.For better comparison,the swelling time is normalized by the square of the initial sample thickness(time/t2).From our previous work,this normalization approach well fits samples with different initial thicknesses.In addition,two parameters are defined to simplify our following discussion:Qmax,i.e.,the maximum swelling ratio;tmax,i.e.,the normalized time to reachQmax.From the time profiles of the swelling ratio depicted in Figs.2b and c,no evident difference occurs among 5 groups of samples concerning theQmax,as all the maximum swelling ratios are around 6-8.Similarly,theTmaxdemonstrates weak dependence on organic solvents,as most of the values are around 20 h/mm2.The only exception is DMF,which may be attributed to the large gap in sampling.Moreover,the diffusion coefficient of water during the solvent exchange was also carried out to assess the organic solvent impact with a typical gravimetric method[30].Similar to the other parameters,all the samples from different organic solvents demonstrate comparable diffusion rates.From all these data,it is clearly demonstrated that organic solvent has a rather limited effect on the kinetics of such abnormal swelling.

    From our previous preliminary work,it has been verified that the organic solvent residues played a critical role in the type of abnormal swelling performance[27].The more organic remained,the higher osmotic pressure was generated,and the larger swelling degree was achieved.Indeed,unlike the conventional hydrogels where miscible solvent escapes from the soft materials rapidly during the solvent exchange,still a large amount of organic solvents was left inside the gel after swelling in water for 16 h(Fig.S2 in Supporting information).Between different swelling solvent groups,a minor difference exists,which brings about a slight deviation in osmotic pressure between different gels.Consequently,no significant difference in swelling performance presents.

    Next,the significance of the polymer effect has been fully screened.Whereas the organic solvent infiltrated inside the network displays a slight influence on the swelling ratio and kinetics,the role played by the polymer network is extremely prominent.As shown in Fig.3a,the swelling kinetics of 9 polymers organogels demonstrated a striking difference.Almost all the samples exhibited a dynamic swelling performance with no swelling equilibrium state,except for poly(phenyl acrylate)(PPA)sample that exhibited an equilibrium-like swelling process with a relatively lower maximum swelling ratio.Compared to other samples with polymer glass transition temperature(Tg)lower than observation temperature(25 °C),the PA polymer has a rather highTg(63 °C).Therefore,the swelling performance for PPA gels can be account for the plasticity of the frozen phase separation structure during swelling,which increases the swelling resistance but diminishes the contractile elasticity.From the supplementary rheological test,the rubbery like PPA-DMSO organo-gel turned into a fragile plastic PPA-hydrogel after just swelling in water for 2 min(Fig.S3 in Supporting information).As a result,the gel maintained a constant volume after long-term immersion even without enough osmotic pressure induced by residue solvents.In contrast,immersed at a temperature higher than Tg,this gel presented again a dynamic volume change without equilibrium state,while the maximum swelling degree was remarkably enhanced compared to that at low temperature(Fig.S4 in Supporting information).At the same time,the other 8 types of organo-gels exhibited different swelling ratios and kinetics in water(Fig.3b).On one hand,the polymer gels which has only poly(ethylene glycol)(PEG)side chains,such as PMEA,PCBA,tended to swell rapidly.This is especially the case for PMEA organo-gels,which took only around 1 h/mm2to reach thetmax.On the other hand,the polymers that have bulk aryl hydrophobic groups,such as PBnA,PPHEA,manifested a very long swelling process prior to the maximum swelling degree.Thetmaxachieved by PBnA gel(73.1 h/mm2)is nearly two decades higher than that of PMEA.Meanwhile,the longer swelling period of PBnA and PPHEA led to the highest swelling ratio.Between the two critical situations,other polymer gels are located with mild swelling kinetics and maximum swelling ratio.The difference induced by polymer is more prominent and comparative by comparing the diffusion coefficient(D).Whereas PBnA gels showed a D value of 5.9 × 10-13m2/s,PMEA demonstrated a more than 100 higher value of 8.0 × 10-11m2/s.

    Fig.2.(a)Time profiles of swelling ratio(Q)of PMA organo-gels from the different organic solvent after being immersed in water at 25 °C.(b)Time/thickness2 profiles of Q of PMA organo-gel from different organic solvent.(c) tmax, Qmax and water diffusion coefficient(D)of the different PMA organo-gels.The initial size of the disc shape samples was 33 mm in diameter and around ~0.67 mm in thickness.The chemical structures of the solvent are illustrated below the figure.

    Fig.3.(a)Time profiles of swelling ratio(Q)of different polymer organo-gels from DMSO after being immersed in water at 25 °C.(b) tmax, Qmax and water diffusion coefficient(D)of different organo-gels.The initial size of the disc shape samples was 33 mm in diameter and around ~2.0 mm in thickness.The chemical structures of the linear polymers are illustrated below the figure.Note that all the linear polymers bear glass transition temperature(Tg)lower than room temperature,except PPA whose Tg is 63 °C[32].

    This distinct performance can be elucidated with the aid of the semi-permeable membrane hypothesis developed in our previous study[27].Upon solvent exchanging from good solvent to poor solvent,the phase separation of polymer network restrains a large amount of organic solvent and generates high osmotic pressure to swell the gel at the first stage.Over time,organic solvent slowly leaking from the phase-separated membrane decreases the osmotic pressure,therefore gives rise to the further deswelling of the materials.The more hydrophobic the membrane,the less susceptible that organic solvent and water diffuse across the system,the higher the osmotic pressure generated.Consequently,the materials achieve the higher maximum swelling ratio.These are typically the stories for PBnA and PPHEA gels,where the hydrophobic benzyl side chains form solvent-proof membranes and the release of organic solvent becomes rather time-consuming.Consequently,slow swelling kinetics are revealed.In contrast,if the polymers are somehow hydrophilic with PEG side chains,the structure of the membrane is not finely fixed,thus facilitates the flux of both organic solvent and water and lead to fast swelling kinetics.

    Fig.4.Shape-shifting behaviors of hydrophobic hydrogels.(a)Scheme of the sandwich-like soft device upon solvent exchange process.(b)Time profiles of bending angle of three soft shape-shift materials(PMEA-PET film,PBnA-PET film,PMEAPET film-PBnA),the inset shows the definition of the bending angle(θ).(c-e)Twodimensional(2D)shape-shifting performances of three types of materials(PMEAPET,PBnA-PET,PMEA-PET-PBnA).(f)Three-dimensional(3D)shape-shifting performance of PMEA-PET-PBnA hydrogel.The initial size of the organo-gel layer was 0.2 mm in thickness.

    Besides intrinsic property,environmental factors such as temperature also significantly influence the swelling kinetic.As shown in Fig.S5(Supporting information),the kinetics is greatly enhanced upon raising the temperature.For PMEA gels,thetmaxat 60 °C is more than 20 times shorter than that at 5 °C.Consequently,the diffusion rate experiences a significant enhancement upon heating.At the same time,the maximum swelling ratioQmaxremains less unaffected at lower temperatures but presents descending trend at higher temperatures.

    Benefitting from this dynamic swelling process of such hydrophobic hydrogels,it is feasible to program the volume change of materials.For this purpose,sandwich-like materials were fabricated by two hydrophobic hydrogels with divergent swelling kinetics combining with non-swellable backing.As a representative illustration,PMEA and PBnA were prepared with polyethylene terephthalate(PET)film in the middle as a dimensional stable bonding medium(Fig.4a).In the first few minutes after soaking the sandwich-like PMEA-PET-PBnA sample in water,the violet PMEA layer swelled much more promptly and greatly than the opposite yellow layer of PBnA hydrogel,driving the bilayer hydrogel strip to bend in the direction of the yellow side(Figs.4b-e).Later,after the swelling equilibrium state of PMEA and with the continuous expansion of PBnA part,the swelling volume difference between the two layers decreases,resulting in the full recovery of binding performance.Then the bilayer hydrogel strip started to shift the bending direction to the violet side since the swelling volume of PBnA hydrogel is more important than that of the PMEA hydrogel.Besides the sandwich-like samples,hydrogel-PET singlelayer materials also demonstrate similar dynamic shape-shifting performance.Both of the single-layer hydrogel strips could finally bend to full or nearly complete circles.Moreover,heating can significantly accelerate the shape-shifting performance and shorten the response time.

    In addition to the 2D variation,3D self-actuation like a flower has been designed as well.As shown in Fig.4f,a piece of PMEAPET-PBnA organo-gel was cut into the shape of a long-sawtooth and then was rolled one or two circles along the long side to form the shape of a flower bud.When it was immersed in water,the blossom opened to the maximum at the first few minutes and then began to close up like an Epiphyllum.Accordingly,by rationally adjusting the composition of the two layers,as well as the temperature of the permeant solvent,the asymmetricity in the hydrophobicity of the hydrogel can be changed and the amplitude along with the speed or the duration of self-actuation behavior can be regulated.Furthermore,by designing the shape of the bilayer gel or the patterned distributions[31]of the different gels,the hydrogel could deform into 2D or 3D complex structures spontaneously,indicating considerable potential as time-programmable soft shape-shifting materials.

    In this work,we systematically investigate the hydrophobic hydrogels’dynamic swelling process upon solvent exchange.The organic solvent dependence,polymer effect,and temperature impact are systematically studied by extracting three parameters,namely:the maximum swelling ratio(Qmax),time to reach maximum swelling ratio(tmax),and the diffusion coefficient of water(D).It is verified that the chemical structure of gels greatly influences the swelling kinetics.The higher the polymer networks’hydrophobicity,the larger thetmaxand the lower the D.Meanwhile,organic solvents that can swell the gels during the solvent exchange process demonstrates a limited effect on the dynamic swelling performance.Moreover,higher environmental temperature significantly accelerates the whole volume change process.Based on the swelling performance,we further develop timeprogrammable soft shape-shifting materials with distinct polymer gels,which demonstrate rapid 2D and 3D shape-shifting materials upon solvent exchange.

    With this study,we hope to inspire readers to take a new look at gels’swelling process.Other dynamic swelling processes are also likely by finely tuning the swelling driven force.In addition,we anticipate that the dynamic swelling performance of the hydrophobic hydrogels may endow them with other promising applications in the future.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgment

    The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China(NSFC,Nos.51903253,51903257),Natural Science Foundation of Guangdong Province of China(Nos.2019A1515011150,2019A1515011258),Macau University of Science and Technology Foundation(No.FRG-19-003-SP),and the Science and Technology Development Fund of Macao(Nos.FDCT 0009/2019/A,0083/2019/A2,0007/2019/AKP,0009/2020/AMJ).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.09.015.

    精品国内亚洲2022精品成人| 久久久久久久久久久免费av| 美女高潮的动态| 亚洲av电影在线观看一区二区三区 | 精品少妇黑人巨大在线播放 | 中文精品一卡2卡3卡4更新| av免费观看日本| 国产高潮美女av| 中文天堂在线官网| 久久久午夜欧美精品| 美女大奶头视频| 亚洲av成人精品一二三区| 久久久久久伊人网av| 男女边吃奶边做爰视频| 亚洲av一区综合| 禁无遮挡网站| 免费黄色在线免费观看| 久久精品国产99精品国产亚洲性色| 18禁动态无遮挡网站| 久久人妻av系列| 精品久久久久久久人妻蜜臀av| 成人高潮视频无遮挡免费网站| www.av在线官网国产| 免费观看精品视频网站| 午夜福利网站1000一区二区三区| 精品人妻视频免费看| 99在线人妻在线中文字幕| 亚洲精品国产av成人精品| 免费黄网站久久成人精品| 人妻制服诱惑在线中文字幕| 久久精品夜夜夜夜夜久久蜜豆| 国产高清有码在线观看视频| 亚洲图色成人| 伦理电影大哥的女人| 成人毛片a级毛片在线播放| 精品国产一区二区三区久久久樱花 | 国产精品一二三区在线看| 我要搜黄色片| 女人十人毛片免费观看3o分钟| 精品免费久久久久久久清纯| 91久久精品国产一区二区三区| 国产精品一区二区三区四区久久| 三级男女做爰猛烈吃奶摸视频| 中文字幕制服av| 国产一级毛片在线| 亚洲天堂国产精品一区在线| 亚洲欧美成人精品一区二区| 99久久九九国产精品国产免费| 寂寞人妻少妇视频99o| 欧美日本亚洲视频在线播放| 久久久久久伊人网av| 青春草亚洲视频在线观看| 性插视频无遮挡在线免费观看| 99久国产av精品国产电影| 国产单亲对白刺激| 国产日韩欧美在线精品| 天天一区二区日本电影三级| 纵有疾风起免费观看全集完整版 | 久久久久久久久大av| 性插视频无遮挡在线免费观看| 国产黄色视频一区二区在线观看 | 亚洲欧美清纯卡通| 亚洲av熟女| 午夜福利视频1000在线观看| 日本wwww免费看| 男女国产视频网站| 91精品国产九色| 人妻制服诱惑在线中文字幕| 国产成人91sexporn| 最近视频中文字幕2019在线8| 亚洲va在线va天堂va国产| 狂野欧美白嫩少妇大欣赏| 亚洲久久久久久中文字幕| 成人美女网站在线观看视频| 欧美人与善性xxx| 精品熟女少妇av免费看| 亚洲自拍偷在线| 精品午夜福利在线看| 一夜夜www| 简卡轻食公司| 久久精品国产亚洲av天美| 中文字幕av在线有码专区| 国产精品一区二区在线观看99 | 少妇熟女aⅴ在线视频| 国产高潮美女av| 亚洲性久久影院| 天美传媒精品一区二区| 国产成年人精品一区二区| 国产黄色小视频在线观看| 好男人在线观看高清免费视频| 中文字幕亚洲精品专区| 大又大粗又爽又黄少妇毛片口| 日本熟妇午夜| 人妻夜夜爽99麻豆av| 亚洲美女视频黄频| 国产高清国产精品国产三级 | 中文欧美无线码| 一级二级三级毛片免费看| 男人狂女人下面高潮的视频| 久久久久国产网址| 日韩三级伦理在线观看| 国产中年淑女户外野战色| 亚洲国产日韩欧美精品在线观看| 日韩精品有码人妻一区| 禁无遮挡网站| 国产午夜精品一二区理论片| 色噜噜av男人的天堂激情| 国产精品久久久久久av不卡| 中文字幕人妻熟人妻熟丝袜美| 日本黄色视频三级网站网址| 噜噜噜噜噜久久久久久91| 免费看av在线观看网站| 亚洲成人av在线免费| 亚洲精品乱久久久久久| 麻豆乱淫一区二区| 日韩国内少妇激情av| 草草在线视频免费看| 国语对白做爰xxxⅹ性视频网站| 久久久精品大字幕| 亚洲精品亚洲一区二区| 一个人观看的视频www高清免费观看| av线在线观看网站| av在线蜜桃| 九九热线精品视视频播放| 超碰97精品在线观看| 少妇高潮的动态图| 在线免费观看的www视频| 中文乱码字字幕精品一区二区三区 | 看片在线看免费视频| 日本五十路高清| av视频在线观看入口| 午夜久久久久精精品| 一区二区三区高清视频在线| 国产高清有码在线观看视频| 大又大粗又爽又黄少妇毛片口| 亚洲精品久久久久久婷婷小说 | 午夜免费男女啪啪视频观看| 亚洲美女视频黄频| 秋霞在线观看毛片| 中文亚洲av片在线观看爽| 精品久久久久久久久av| 蜜桃亚洲精品一区二区三区| 夫妻性生交免费视频一级片| 国产视频首页在线观看| 级片在线观看| 国产av在哪里看| 丝袜美腿在线中文| av专区在线播放| 亚洲自拍偷在线| 欧美xxxx黑人xx丫x性爽| 亚洲三级黄色毛片| 3wmmmm亚洲av在线观看| 在线免费十八禁| 国产成人一区二区在线| 我的女老师完整版在线观看| 青春草国产在线视频| 少妇高潮的动态图| 丰满乱子伦码专区| 久热久热在线精品观看| 午夜福利网站1000一区二区三区| 欧美zozozo另类| 免费观看性生交大片5| 精品久久久久久成人av| 亚洲精品久久久久久婷婷小说 | av在线亚洲专区| 热99在线观看视频| 国产真实乱freesex| 精品久久久久久久人妻蜜臀av| 欧美日韩国产亚洲二区| 一区二区三区乱码不卡18| 午夜福利视频1000在线观看| 欧美色视频一区免费| 精品一区二区免费观看| 国产一区二区在线av高清观看| 久久6这里有精品| 国产一级毛片在线| 国产伦理片在线播放av一区| 我的老师免费观看完整版| 国产亚洲av片在线观看秒播厂 | 久久99热这里只频精品6学生 | 欧美人与善性xxx| 汤姆久久久久久久影院中文字幕 | 久久这里只有精品中国| 日日干狠狠操夜夜爽| 国产精品伦人一区二区| 国产成人一区二区在线| 日产精品乱码卡一卡2卡三| 国产精品爽爽va在线观看网站| 午夜爱爱视频在线播放| 久久精品国产亚洲av天美| 2021少妇久久久久久久久久久| 色视频www国产| 99久久九九国产精品国产免费| 亚洲国产精品专区欧美| 99久国产av精品| 午夜视频国产福利| 久久精品人妻少妇| 国产一区二区在线av高清观看| 午夜激情欧美在线| 国产午夜精品论理片| 男人舔女人下体高潮全视频| 99久国产av精品国产电影| 欧美一级a爱片免费观看看| 欧美又色又爽又黄视频| 国产高清国产精品国产三级 | 尤物成人国产欧美一区二区三区| 欧美三级亚洲精品| 国产精品,欧美在线| 精品欧美国产一区二区三| 麻豆一二三区av精品| 国产极品精品免费视频能看的| 成年女人永久免费观看视频| 热99re8久久精品国产| 麻豆一二三区av精品| 蜜臀久久99精品久久宅男| 精品免费久久久久久久清纯| av线在线观看网站| 国产极品精品免费视频能看的| 国产精品三级大全| 亚洲人与动物交配视频| 久久久久久久久中文| 只有这里有精品99| av卡一久久| 最近最新中文字幕大全电影3| 日本免费在线观看一区| 国产av不卡久久| 亚洲aⅴ乱码一区二区在线播放| 久久精品夜色国产| 精品国内亚洲2022精品成人| 精品少妇黑人巨大在线播放 | 春色校园在线视频观看| 久久久久久久久久久丰满| 一级黄色大片毛片| 国产精品久久久久久精品电影| 午夜精品在线福利| 亚洲丝袜综合中文字幕| 纵有疾风起免费观看全集完整版 | 国产精品福利在线免费观看| 亚洲av电影在线观看一区二区三区 | 美女脱内裤让男人舔精品视频| 亚洲伊人久久精品综合 | 国产一区有黄有色的免费视频 | 日韩,欧美,国产一区二区三区 | 国产乱人偷精品视频| 精品熟女少妇av免费看| 天堂√8在线中文| 亚洲一区高清亚洲精品| 亚洲精品乱码久久久久久按摩| 国产一区二区亚洲精品在线观看| 性插视频无遮挡在线免费观看| 美女黄网站色视频| 亚洲婷婷狠狠爱综合网| 少妇熟女欧美另类| 国产伦在线观看视频一区| 美女大奶头视频| 国产成人a∨麻豆精品| 亚洲精品一区蜜桃| 亚洲中文字幕日韩| 又粗又硬又长又爽又黄的视频| 乱系列少妇在线播放| 国产精品人妻久久久久久| 国产午夜精品久久久久久一区二区三区| 校园人妻丝袜中文字幕| 国产精品久久电影中文字幕| 亚洲成人av在线免费| 亚洲自偷自拍三级| 非洲黑人性xxxx精品又粗又长| 国产免费男女视频| 亚洲av男天堂| 国产精品久久久久久精品电影小说 | 亚洲av中文av极速乱| 春色校园在线视频观看| 国产高清不卡午夜福利| 亚洲国产精品成人综合色| 国产成人午夜福利电影在线观看| 国产亚洲午夜精品一区二区久久 | 99久国产av精品| 日韩av在线免费看完整版不卡| 最近手机中文字幕大全| 国产老妇女一区| 成人午夜高清在线视频| 天天一区二区日本电影三级| 观看美女的网站| 午夜视频国产福利| 欧美一区二区国产精品久久精品| 国产大屁股一区二区在线视频| 精品人妻视频免费看| 午夜激情福利司机影院| 日韩一本色道免费dvd| 国产亚洲av嫩草精品影院| 精品酒店卫生间| 久久综合国产亚洲精品| 国产午夜精品论理片| 成年女人永久免费观看视频| av专区在线播放| 婷婷六月久久综合丁香| 嘟嘟电影网在线观看| 日韩精品青青久久久久久| 久久久久网色| 成人毛片60女人毛片免费| 一级毛片我不卡| 日韩,欧美,国产一区二区三区 | 国产高清不卡午夜福利| 久久午夜福利片| 久久久久国产网址| 亚洲av熟女| 麻豆成人av视频| 久久久久久大精品| 国产精品人妻久久久久久| АⅤ资源中文在线天堂| 啦啦啦韩国在线观看视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 男女视频在线观看网站免费| 一个人看视频在线观看www免费| 成人特级av手机在线观看| 中文字幕久久专区| АⅤ资源中文在线天堂| 精品国内亚洲2022精品成人| 高清av免费在线| 国产成人a区在线观看| 日日撸夜夜添| 真实男女啪啪啪动态图| 亚洲精品色激情综合| 亚洲国产精品久久男人天堂| 精品久久久久久电影网 | АⅤ资源中文在线天堂| 一级毛片aaaaaa免费看小| 亚洲av免费在线观看| 国产男人的电影天堂91| 丰满少妇做爰视频| 国产老妇女一区| 69av精品久久久久久| 久久久久久久久久成人| 天美传媒精品一区二区| 亚洲,欧美,日韩| 噜噜噜噜噜久久久久久91| 成人午夜精彩视频在线观看| 久久久久久大精品| 麻豆一二三区av精品| 国产成人福利小说| 免费一级毛片在线播放高清视频| 久久久精品94久久精品| 国产探花在线观看一区二区| 少妇的逼好多水| 亚洲在线自拍视频| 国产av不卡久久| 成人综合一区亚洲| 国产成人福利小说| 人人妻人人看人人澡| 变态另类丝袜制服| 亚洲人成网站在线观看播放| 最近视频中文字幕2019在线8| 中文字幕av在线有码专区| 久久精品综合一区二区三区| 18+在线观看网站| 久久久久久大精品| 国产午夜精品论理片| 成人漫画全彩无遮挡| 国产亚洲精品av在线| 男女国产视频网站| 色5月婷婷丁香| 噜噜噜噜噜久久久久久91| 免费av观看视频| 淫秽高清视频在线观看| 日日摸夜夜添夜夜添av毛片| 午夜亚洲福利在线播放| 99久久九九国产精品国产免费| 99国产精品一区二区蜜桃av| 国语自产精品视频在线第100页| 一个人观看的视频www高清免费观看| 国产精品一区二区三区四区免费观看| 卡戴珊不雅视频在线播放| 女人久久www免费人成看片 | 欧美精品一区二区大全| 水蜜桃什么品种好| 免费看a级黄色片| 久久99热6这里只有精品| av在线观看视频网站免费| 国产视频内射| 亚洲精品成人久久久久久| 午夜精品国产一区二区电影 | 免费av不卡在线播放| 嫩草影院入口| 中文亚洲av片在线观看爽| 国产精华一区二区三区| 国产精品综合久久久久久久免费| 99热全是精品| 哪个播放器可以免费观看大片| 久久草成人影院| 看非洲黑人一级黄片| 亚洲av电影不卡..在线观看| 日日撸夜夜添| 精品国内亚洲2022精品成人| 狂野欧美激情性xxxx在线观看| 亚洲欧美成人精品一区二区| 国产黄色小视频在线观看| 久久鲁丝午夜福利片| 少妇猛男粗大的猛烈进出视频 | 日韩,欧美,国产一区二区三区 | 日韩欧美 国产精品| 国产精品久久久久久精品电影小说 | av天堂中文字幕网| 久久精品影院6| 亚洲av电影不卡..在线观看| 纵有疾风起免费观看全集完整版 | 国产亚洲91精品色在线| 内地一区二区视频在线| 日产精品乱码卡一卡2卡三| 午夜精品在线福利| 国语自产精品视频在线第100页| 最近视频中文字幕2019在线8| 亚洲在线观看片| 久久精品夜夜夜夜夜久久蜜豆| 国产精品国产三级国产专区5o | 成人性生交大片免费视频hd| .国产精品久久| 日本免费a在线| 秋霞伦理黄片| 亚洲国产欧美在线一区| 久久久久久久久久久丰满| av国产免费在线观看| 久久精品夜色国产| 日韩人妻高清精品专区| 美女高潮的动态| eeuss影院久久| 国产精品永久免费网站| av又黄又爽大尺度在线免费看 | 亚洲欧美精品专区久久| 久久韩国三级中文字幕| 国产片特级美女逼逼视频| 美女脱内裤让男人舔精品视频| 一夜夜www| a级一级毛片免费在线观看| 亚州av有码| 精品人妻一区二区三区麻豆| 国内揄拍国产精品人妻在线| 老司机影院成人| 欧美激情国产日韩精品一区| 国产一区二区亚洲精品在线观看| 中文字幕人妻熟人妻熟丝袜美| 日韩精品有码人妻一区| 国产一区有黄有色的免费视频 | 国产男人的电影天堂91| 日韩在线高清观看一区二区三区| 69av精品久久久久久| 99视频精品全部免费 在线| 亚洲最大成人手机在线| 亚洲精品久久久久久婷婷小说 | 久久99精品国语久久久| 高清毛片免费看| 国产一区亚洲一区在线观看| 91精品一卡2卡3卡4卡| 两个人视频免费观看高清| 精品国产一区二区三区久久久樱花 | 男女那种视频在线观看| 91久久精品国产一区二区三区| 久久久久久久久久成人| 日韩欧美精品免费久久| 在线观看av片永久免费下载| 国产精品蜜桃在线观看| 黑人高潮一二区| 少妇的逼水好多| 一区二区三区四区激情视频| 亚洲电影在线观看av| 免费黄色在线免费观看| 免费播放大片免费观看视频在线观看 | 色网站视频免费| 国产精品久久久久久精品电影小说 | 久久久国产成人免费| 亚洲欧洲日产国产| 国产精品人妻久久久久久| 91在线精品国自产拍蜜月| 在线观看66精品国产| 亚洲欧美中文字幕日韩二区| 日本午夜av视频| 亚洲天堂国产精品一区在线| 色综合亚洲欧美另类图片| 午夜精品一区二区三区免费看| a级毛片免费高清观看在线播放| 特级一级黄色大片| 国语对白做爰xxxⅹ性视频网站| 在线观看av片永久免费下载| 午夜福利成人在线免费观看| 欧美精品国产亚洲| 国产伦在线观看视频一区| 国产精品久久视频播放| 久久久亚洲精品成人影院| 91精品国产九色| 亚洲精品乱久久久久久| 尾随美女入室| 插阴视频在线观看视频| 日产精品乱码卡一卡2卡三| 高清毛片免费看| 99在线人妻在线中文字幕| 熟妇人妻久久中文字幕3abv| 午夜福利视频1000在线观看| 人人妻人人澡欧美一区二区| 国产乱人偷精品视频| 久久久久久久午夜电影| 欧美不卡视频在线免费观看| 国产精品嫩草影院av在线观看| 日日啪夜夜撸| 又爽又黄a免费视频| 色综合站精品国产| 国产黄片美女视频| 在线免费十八禁| 成人毛片60女人毛片免费| 久久久国产成人免费| 又黄又爽又刺激的免费视频.| 欧美不卡视频在线免费观看| 淫秽高清视频在线观看| 免费av观看视频| 狂野欧美激情性xxxx在线观看| 啦啦啦韩国在线观看视频| 长腿黑丝高跟| 久久这里有精品视频免费| 国产亚洲午夜精品一区二区久久 | 亚洲av免费在线观看| 亚洲精品一区蜜桃| 免费不卡的大黄色大毛片视频在线观看 | 亚洲五月天丁香| h日本视频在线播放| 嫩草影院入口| 在线a可以看的网站| 日韩高清综合在线| 成人亚洲欧美一区二区av| 日韩高清综合在线| 永久网站在线| 国产片特级美女逼逼视频| 男的添女的下面高潮视频| 国产美女午夜福利| 蜜臀久久99精品久久宅男| 女人被狂操c到高潮| 婷婷色综合大香蕉| 欧美成人午夜免费资源| 久久久久久久久大av| 国产一区有黄有色的免费视频 | 男人舔女人下体高潮全视频| 亚洲不卡免费看| 精品一区二区免费观看| 国产 一区 欧美 日韩| 精品久久久久久电影网 | 3wmmmm亚洲av在线观看| 国产一级毛片在线| 美女国产视频在线观看| 欧美一级a爱片免费观看看| 国产视频首页在线观看| 久久鲁丝午夜福利片| 日本av手机在线免费观看| 欧美不卡视频在线免费观看| 性色avwww在线观看| 国产高潮美女av| 超碰97精品在线观看| 国产成人91sexporn| 精品国内亚洲2022精品成人| 久久久精品欧美日韩精品| 岛国毛片在线播放| 99久久精品国产国产毛片| 男女啪啪激烈高潮av片| 免费看av在线观看网站| 午夜a级毛片| 99久久成人亚洲精品观看| 3wmmmm亚洲av在线观看| 亚洲精品乱码久久久v下载方式| 国产成人免费观看mmmm| 又黄又爽又刺激的免费视频.| 国产一区二区在线av高清观看| 免费一级毛片在线播放高清视频| 精品久久国产蜜桃| 赤兔流量卡办理| 我要看日韩黄色一级片| 欧美人与善性xxx| 91久久精品国产一区二区成人| 精品国产一区二区三区久久久樱花 | 亚洲综合色惰| 青春草视频在线免费观看| 欧美一区二区国产精品久久精品| 欧美日韩国产亚洲二区| 久久韩国三级中文字幕| 永久网站在线| 少妇人妻精品综合一区二区| 日本色播在线视频| 国产在视频线在精品| 亚州av有码| 看黄色毛片网站| 欧美一区二区亚洲| 三级经典国产精品| 毛片女人毛片| 亚洲精品乱码久久久久久按摩| 午夜久久久久精精品| 嫩草影院新地址| 日韩一本色道免费dvd| 国产大屁股一区二区在线视频| 精品免费久久久久久久清纯| 精品人妻偷拍中文字幕| 国产大屁股一区二区在线视频| 国产黄片视频在线免费观看| 日韩一本色道免费dvd| 真实男女啪啪啪动态图| 99国产精品一区二区蜜桃av| 国产极品天堂在线| 国产成人a区在线观看| 国产成人a∨麻豆精品| 人人妻人人澡欧美一区二区| 免费观看精品视频网站| 欧美成人一区二区免费高清观看| 欧美日韩在线观看h| 天堂av国产一区二区熟女人妻| 插阴视频在线观看视频| eeuss影院久久| 日韩在线高清观看一区二区三区| 久久久色成人| 亚洲欧美成人综合另类久久久 | 一级毛片我不卡| 3wmmmm亚洲av在线观看|