• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A series of stable,metastable and unstable salts of Imatinib with improved solubility

    2022-06-20 06:22:30ZhengYuFngBoXiZhngWenHuiXingHongLiJiXueWngNingBoGongYngLuGunHuDu
    Chinese Chemical Letters 2022年4期

    Zheng-Yu Fng,Bo-Xi Zhng,Wen-Hui Xing,Hong-Li Ji,Xue Wng,Ning-Bo Gong,*,Yng Lu,*,Gun-Hu Du

    a Beijing Key Laboratory of Polymorphic Drugs,Institute of Materia Medica,Chinese Academy of Medical Sciences and Peking Union Medical College,Beijing 100050,China

    b State Key Laboratory of Natural and Biomimetic Drugs,School of Pharmaceutical Sciences,Peking University,Beijing 100191,China

    c Beijing City Key Laboratory of Drug Target Identification and Drug Screening,Institute of Materia Medica,Chinese Academy of Medical Sciences and Peking Union Medical College,Beijing 100050,China

    ABSTRACT Pharmaceutical salt formation is the most preferred and effective method to enhance the physicochemical properties of APIs.The aim of the study was to design and synthesize a series of new salts to improve the solubility of Imatinib(IM).Two stable salts with malonic acid(S1)and citric acid(S5),one metastable salt with fumaric acid(S2),two unstable salts with citric acid(S3,S4)were obtained for the first time.Single crystal and powder X-ray diffraction,F(xiàn)ourier transform infrared,differential scanning calorimetry,and thermogravimetric analysis were used to characterize the novel salts.The solubility and stability of the solid were also evaluated,and three salts(S1,S2,S5)had a more than 20 folds of solubility and a faster dissolution rate improved as compared to the pure drug in water and pH 6.8 buffer,respectively.

    Keywords:Imatinib Salt Characterization Stability Solubility

    Imatinib(IM)is a specific small-molecule inhibitor of the Bcr-Abl protein tyrosine kinase,platelet derived growth factor and c-KIT tyrosine kinases[1–3].The drug was formerly referred to as STI571 or CGP57148B by Novartis Pharmaceuticals(Switzerland)[4].It was marketed as a salt form,called as Glivec?,GleevecTM(Imatinib mesylate)and approved by the US Food and Drug Administration(FDA)in 2001[5]and described as the“magic bullet”on the cover of TIME magazine.Gleevec was successfully used for treating chronic myeloid leukaemia(CML)[6]and gastrointestinal stromal tumors(GIST)[7].Imatinib can be used not only as an apoptosis inducer,a tyrosine kinase inhibitor and an antineoplastic agent,but also be used for treating other diseases,such as aggressive systemic mastocytosis[8],fibrotic diseases(including lung[9],liver[10],skin[11]),tuberculosis,pulmonary arterial hypertension[12,13],autoimmune diseases[14,15].According to recent published literature,Imatinib maybe has the potential beneficial effect on COVID-19[16–18].

    More than 40% of marketed drugs and nearly 90% of the active pharmaceutical ingredients(APIs)show poor water solubility[19].Therefore,one of the major challenges of the current pharmaceutical industry is how to improve the water solubility of the bioactive compounds.Various strategies are used to modify the physicochemical properties suitable for formulation design of the poorly soluble drug candidates.Among those methods,salt formation is an effective method of improving solubility and dissolution rate of acidic and basic pharmaceutical materials[20,21].The imatinib free base is practically insoluble at the uncharged form and the solubility of the imatinib in the pure water is 21.8 μg/mL at 37 °C[22].Due to the formation of mesylate,the aqueous solubility of imatinib increases significantly at pH<5.5.However,the solubility of the salt decreases with the increasing pH.It is still poorly soluble or insoluble at neutral and alkaline pH.

    The objective of this study was to screen and prepare a series of new salts of imatinib using different methods.Two stable salts,one metastable salt and two unstable salts of Imatinib were discovered.Single-crystal X-ray diffraction(SCXRD)was used to explore the three-dimensional space structure of the new compounds.In addition,the physicochemical properties were characterized using different techniques including powder X-ray diffraction(PXRD),F(xiàn)ourier transform infrared(FT-IR),differential scanning calorimetry(DSC)and thermogravimetric(TG)analyses.The solubility and stability of the solid were also evaluated,and three salts significantly improved the solubility of Imatinib in water and pH 6.8 buffer,respectively.

    Imatinib was commercially obtained from Wuhan Yuancheng Technology Development Co.,Ltd.(Wuhan,China),malonic acid(MA),fumaric acid(FA),citric acid(CA)and citric acid monohydrate(CA-H2O)were purchased from Sinopharm Chemical Reagent Co.,Ltd.(Beijing,China).All other chemicals used were of analytical reagent grade and used without further purification.

    Slurry and liquid-assisted grinding method were used to prepare of bulk samples of the Imatinib malonate(S1),Imatinib fumarate methanol hydrate(S2),Imatinib citrate methanol hydrate(S3)and Imatinib citrate methylate(S4).Equimolar amounts of Imatinib and malonic acid,fumaric acid,citric acid monohydrate and citric acid were suspended in ethanol or methanol,respectively.The suspensions were agitated at 300 g for 12 h at room temperature,and the solid sediment were filtered and dried at 40°C for 6 h Solvent evaporation method was used to prepare the crystals for single crystal X-ray diffraction.A certain amount of the obtained powder was dissolved in ethanol or methanol or methanol water mixed solvent and allowed to stand at 20°C to obtain the suitable crystals of S1,S2,S3 and S4.

    Thermal transformation method was used to preparation of bulk samples of the Imatinib citrate(S5).S3 or S4 samples were ground into powder at first and put in the glass dish in oven and heating at 105°C for 30 min,and then cooling to room temperature to obtain S5.

    Powder X-ray diffraction(PXRD)data were collected using a D/Max 2550 powder X-ray diffractometer with CuKαradiation,with a tube voltage of 40 kV and tube current of 150 mA.50 mg of powder was gently pressed on a glass slide to afford a flat surface and scanned in the range from 2θ3° to 40° at a rate of 8°/min.

    Suitable crystals of S1,S2,S3 and S4 were selected for the single-crystal X-ray diffraction(SCXRD)experiments on amicroMax 002+diffractometer with CuKαradiation(λ= 1.54187 ?A)at a temperature of 100(2)K.The program suite CrystalClear[23]was used for data collection,cell refinement and data reduction.The structures were solved by direct methods[24]and refined with a fullmatrix least-squares analysis using SHELX-2018[25]on F2 .

    The Fourier transform infrared(FTIR)spectra of starting material and salts were recorded in the range of 4000 cm-1to 650 cm-1by a PE Spectrum 400 infrared spectrometer with an ATR device at room temperature.Samples(powders or crystal particles gently grinding in an agate mortar)were put on the diamond plate,and spectra were acquired accumulating 16 scans at 4 cm-1resolution.

    Differential scanning calorimetry and thermogravimetric analyses.The preliminary thermal characterization of the starting material and salts were carried out by using a differential scanning calorimeter(Mettler Toledo DSC1 500 module)and the thermogravimetry instrument(Mettler Toledo TGA/DSC 700 module)separately,at a heating rate of 10°C/min under N2(flow rate of 20 mL/min)used as protective and purge gas.

    The stability of IM and the new salts has been studied under three accelerate conditions for 10 days,including 60°C;25°C/90%RH;25°C and 4500 lx light,and normal condition(25°C/40% RM)for 6 months.The samples were stored under four conditions inside a drug stability test instrument(SHH-150SD),and periodically evaluated by PXRD.

    The equilibrium solubility of IM raw materials and three stable salts were determined by the shake-flask method at 37°C.An excess of samples was added to 4 mL of pure water and different buffer media pH 1.2,4.5,6.8 maintained by hydrochloric acid,acetate,phosphate buffers.Dissolution measurements were carried out using basket method in above media,respectively.The amount of powder samples is 30 mg(equivalent to imatinib)and the particle size of the sample can pass through a 200 mesh sieve.Dissolution experiments were performed in triplicate.And after solubility and dissolution experiments,the pH of media was measured and the residual solids were tested by PXRD.The solubility measurements were conducted by the high-performance liquid chromatography(HPLC)method by an Agilent 1260 HPLC instrument(Agilent Technologies,USA).The chromatographic condition[26]was:XB-C18 5 μm(250 mm × 4.6 mm)column.The mobile phase consisted of acetonitrile and 0.05 mol/L potassium dihydrogen phosphate water solution(23:77,v/v).The flow rate was set at 1.0 mL/min and the injection volume was 10 μL.The absorbance was measured at a wavelength of 272 nm with column temperature setting at 30°C.

    Within this work,five imatinib new salts were successfully prepared by slurry,liquid-assisted grinding and high temperature transformation method,reacting Imatinib with malonic acid,fumaric acid,citric acid and citric acid monohydrate(Fig.1).The IM molecule is a base compound with pKa8.07,3.73,2.56,1.52 for the different nitrogen group.Thus,to obtain salts,MA(pKa2.86,5.70),F(xiàn)A(pKa3.03,4.44),and CA(pKa3.10,4.70,5.40)were selected as the strong acids,which is consistent withΔpKa>3 between API and coformers.

    Fig 1.Molecular structure of the IM and the list of organic acids used in this study.

    Salt IM-MA crystallizes in the C 2/c monoclinic space group,with one molecule of cationic Imatinib(IM+)and one molecule of anionic malonic acid(MA-)per asymmetric unit.Crystal data and structural refinement parameters are given in Table 1.The salt formation was also identified by the bond length difference between two C-O bonds in the carboxylate group.TheΔdC–Oin the salt-forming carboxyl group obvious lower than that the unsalted carboxyl groups indicates the transfer of proton and the formation of salt[27–29].The details ofΔdC–Oin this work were shown in Table S1(Supporting information).In the crystal structure,a salt bondviaN1-H1···O2(2.658 ?A,-x+2,-y+1,-z+1)and an intramolecular hydrogen bond O5-H5···O3(2.449 ?A)within the two hydroxyl groups of MA molecular were found.The adjacent IM molecules are further connected through intermolecular hydrogen bonds N3-H3···N7(3.070 ?A,x,y+1,z)and result in wavy along[010]direction(Fig.2a).

    Table 1 The crystal data and structural refinement parameters of four IM salts.

    Salt cocrystal IM-FA methanol hydrate crystallizes in monoclinic system,P 21/c space group.It is interesting that there are two types of FA,one is the anionic FA(FA-),and the other is neutral FA molecule.One cationic IM(IM+),half of the FA-half of the neutral FA molecule,one methanol and one water molecules contained in the asymmetric unit.IM+and FA-salt formationviaN1-H1···O3(2.656 ?A,x,-y+1/2,z-1/2).Methanol and water molecules are involved into the intermolecular hydrogen bond O7-H7···O2(2.702 ?A,x,y,z),O6-H6···O7(2.706 ?A,x,y,z),O7-H7B···O6(2.744 ?A,x,3/2-y,1/2+z)to generate a branch structure.Without the help of the solvent,half of the neutral FA molecule and the IM formmotif in the molecular packing.Similar to IM-MA,the adjacent IM molecules are further connected with the intermolecular hydrogen bond N3-H3···N7(3.055 ?A,x,y-1,z)to generate a 1D wavy(Fig.2b).

    Salt IM-CA methanol hydrate S3 crystallizes in triclinic system,P-1 space group andZ= 2.There are two cationic IM(IM+),two anionic CA(CA-),1.68 methanol molecules and 2.139 water molecules in the asymmetric unit.IM+and CA-salt formationviaN1A-H1···O13A(2.722 ?A)and N1B-H1’···O5(2.749 ?A).Methanol and water molecules are involved into the intermolecular hydrogen bond O19A-H19b···O8A(2.637 ?A,-x+1,-y+1,-z+1),O11-H11’···O5(2.850 ?A,x,y,z+1),O16-H16’···O20(2.700 ?A)to generate a bead structure.IM molecule and CA molecule formmotif in the molecular packingviaN4A-H4···O2(2.911 ?A,x-1,y,z),O3-H3AA···N6A(2.731 ?A,x+1,y,z),N4B-H4’···O9(2.884 ?A,-1+x,y,z),O10-H10’···N6B(2.745 ?A,x-1,y,z).The adjacent IM molecules form as loop cycleviaN3A-H3···N7B(2.984 ?A)and N3B-H3’···N7A(2.994 ?A)(Fig.2c).

    Salt IM-CA methylate S4 also crystallizes in triclinic system,P-1 space group andZ= 2.There are three cationic IM(IM+),three anionic CA(CA-),and four methanol molecules in the asymmetric unit.IM+and CA-salt formationviaN1A-H1NA···O13(2.698 ?A),N1B-H1NB···O5(2.703 ?A)and N1C-H1NC···O20(2.755 ?A).IM molecules are associated with CAviainvolving N4A-H2NA···O21(2.917 ?A)and O22-H22O···N6A(2.729 ?A)hydrogen bonds(motif1,F(xiàn)ig.2d).Adjacent two CA molecules forminvolving O18-H18O···O13(2.917 ?A,x,y-1,z)and O11-H11O···O20(2.789 ?A,x,y+1,z)hydrogen bonds(motif2,F(xiàn)ig.2d).Adjacent two CA molecules and two methanol molecules form a cycle in the cell involving O23-H23O···O14(2.758 ?A,-x,-y+1,-z+2)and O15-H15O···O23(2.552 ?A,x,y+1,z)(motif3,F(xiàn)ig.2d).

    The conformation of IM in the unit cell has significantly difference in the four salts.The twist angleψ1(C1-N2-C5-C6),ψ2(N2-C5-C6-C7),ψ3(C8-C9-C12-N3),ψ4(C12-N3-C13-C14),ψ5(C16-C17-N4-C19),ψ6(C17-N4-C19-N5),ψ7(N5-C20-C23-C24),were shown in Table 2.The overlap of the four salts was shown in Fig.3.

    PXRD has been used to identify the new salts.The patterns overlay the experimental patterns,the calculated patterns from the crystal structure data,and those of the starting materials(Fig.4).In all cases,the different peaks indicated the formation of the new phase,and the agreement with the experimental patterns and the simulated patterns indicated that the high identity and homogeneity samples were obtained.

    The starting materials and salts exhibit quite different thermal properties(Fig.5a).A summary with the endothermic peaks of the salt and raw materials were shown in Table 3.The thermal analysis of the salt S1 and S5 only showed melting point at 174.40°C and 181.37°C,which meant S1 and S5 were all solvent free substance.S2,S3,S4 showed solvent peaks 79.53°C,70.24°C and 70.07°C,respectively,which was consistent with the SCXRD results.The analogous endothermic peak temperatures of solvent molecule in S3 and S4 might be attribute to the analogous hydrogen bond energies in those two salts.From the correlation between melting point and energy,it is reasonable that high melting point means low energy and low solubility.After salt formation,the new salts all have lower melting point than IM,which indicates the better solubility.

    Meanwhile,the TG patterns also reflect the thermodynamic behavior of IM salts(Fig.5b and Table S2 in Supporting information).TGA data for S1 and S5 show no mass loss below the melting temperature,consistent with the assignment of S1,S5 as anhydrous material.For S2,a mass loss step ofca.4.86% is observed between 60°C and 100°C,which corresponding to the loss of methanol molecules in S2.For S2,S3 and S4,obvious mass loss of solvate before melting point reveals that solvent molecule exists in the crystal lattice,which was also evidenced by the SCXRD analysis.

    Table 2 The twist angles of four salts.

    The FT-IR spectra technique is a helpful tool to detect the formation of new salts from the corresponding raw materials.The proton transformation between IM,CCF and the shifting of the characteristic peaks evidence the intermolecular interactions can be found in the IR spectra.In the present study,the details of the characteristic peaks of the salts,pure IM and CCF were recorded in Fig.6.For pure IM,the characteristic peaks at 1646 and 3280 cm-1represented C=O and N–H stretching vibrations,respectively.For pure CCF,the characteristic peaks at 1695 cm-1(MA),1660 cm-1(FA),1692 cm-1(CA-H2O)and 1699 cm-1(CA)represented C=O stretching vibrations,respectively.Comparatively,the characteristic peak 1646 cm-1remained unchanged,the characteristic peak 3280 cm-1widened and the C=O stretching vibrations were shifted tohigher frequency 1699–1713 cm-1in the IR pattern of the new salts.This can be used as the evidence that there are intermolecular interactions between IM and CCF.

    Fig 2.Crystal structure and the 1D,2D salt bond and H-bond contacts of IM salts.(a)S1(IM-MA);(b)S2(IM-FA methanol hydrate);(c)S3(IM-CA methanol hydrate);(d)S4(IM-CA methylate).

    Fig 3.Overlay of molecular conformations(red,S1;green,S2;blue,S3,molecule A;yellow,S3,molecule B;purple,S4,molecule A;cyan,S4,molecule B;gray,S4,molecule C).

    Fig 4.Powder X-ray diffraction patterns of IM salts and the raw materials.

    IM,S1,S2 and S5 were found to be stable after 6 months of stability studies at 25°C/40% RH.In addition,IM,S1,S5 retained stable under all the studied conditions.S2 was metastable under 25°C/90% RH and 60°C for 10 days,it had a tendency to transform to amorphous state.S3 and S4 were unstable under ambient conditions,they would transform to S5 quickly(Fig.S1 and Table S3 in Supporting information).Therefore,S1 and S5 are stable,S2 is metastable,and S3 and S4 are unstable.

    Fig 5.(a)DSC curves of IM salts and the raw materials.(b)TG curves of IM salts.

    Table 3 Endothermic peaks of the salts and raw materials.

    Solubility and dissolution are vital physicochemical parameters for APIs because they influence the bioavailability of drugs.The equilibrium solubility of IM,S1,S2 and S5 in pure water was 21.8,390,981.7,2650.8 and 3511.7 μg/mL,respectively(Table S4 in Supporting information).IM undergoes a crystal form transformation in pH 1.2 and 4.5 which can be explained by the fact that it serving as a strong base may be salt with hydrochloric acid or acetic acid in the media.S1 sample performs a great improvement of the solubility and keeps stable in the four media.As for S2,it undergoes transformation in four media.S5 is stable during the solubility experiments and can significantly improve the solubility of the IM(Fig.S2 in Supporting information).

    An examination of the dissolution profiles(Fig.7)indicates that salts S1,S2 and S5 all had a more than 20 folds of solubility and a fast dissolution rate improved in pure water and pH 6.8 phosphate buffer.However,the salts S1,S2 and S5 show no significant difference with the raw material in pH 1.2 buffer or pH 4.5 buffer.The similarity factorf2is employed to compare the dissolution profiles.A highf2value corresponds to more similarity between the profiles of salts and the raw material,with a threshold of 50.The factorf2of salts compared with IM was shown in Table S5(Supporting information).Therefore,the dissolution profiles of S1,S2 and S5 are dissimilar to that of IM in pure water and pH 6.8 phosphate buffer.

    Fig 6.IR of IM salts and the raw materials.

    Fig 7.Dissolution profiles of IM salts and the raw materials in pH 6.8 and pure water.

    It can be seen that the solubility and dissolution rate of IM was increased obviously after salt formation.After salted with organic acid,IM was protonated into IM+and the melting point of new salts of IM decreased compared with IM,which improved the hydrophilicity and free energy of the IM,all those promote the solubility of IM.

    In conclusion,pharmaceutical salt formation is the most preferred and effective method to enhance the physicochemical properties of APIs such as solubility,dissolution rate,bioavailability,stability,compressibility and permeability.The aim of the study was to design and synthesize a series of new salts to improve the solubility of IM.Two stable salts S1 and S5,one metastable salt S2 and two unstable salts S3 and S4 were prepared,and their crystal structures(except S5)were confirmed by single-crystal X-ray diffraction.The SCXRD showed that all the four salts had some analogous arrangement.Cationic IM+and anionic CCF-formed saltviaamino N1 and carboxyl O.All the adjacent IM molecules linked as 1D wavy by the intermolecular hydrogen bond N3-H3···N7.All the solvates had a R22(8)motif according to the intermolecular hydrogen bond N-H···O and O-H···N.Moreover,all the solvent molecules were involved into the intermolecular hydrogen bond to maintain the stable spatial arrangement.However,the conformation of IM in the unit cell had significantly difference in the four salts.PXRD,DSC,IR and TGA were all used to characterize the novel salts.All the salts S1,S2 and S5 exhibited remarkable solubility improvement than pure IM in pure water and pH 6.8 phosphate.Taking into consideration the improved dissolution rate of the novel salts,the good stability and pharmaceutically acceptable S1 and S5 salts are the promising candidate for oral drug formulation.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    We thank CAMS Innovation Fund for Medical Sciences(Nos.2017-I2M-1–010,2020-I2M-1–003),Key National Research and Development Program(No.2016YFC1000901),Construction and Application of Technology Integration System for Efficient Identification of Natural/Effective Active Small Molecules(No.2018ZX09711001–001)and National Science and Technology Major Project:Resource Library of Traditional Chinese Medicine Component(No.2019ZX09735002)for the financial support.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.10.056.

    av卡一久久| 日韩三级伦理在线观看| 18禁在线播放成人免费| 久久99热6这里只有精品| 国产一区有黄有色的免费视频| av有码第一页| 欧美人与性动交α欧美精品济南到 | av天堂久久9| av电影中文网址| 午夜精品国产一区二区电影| 国产欧美亚洲国产| 成人黄色视频免费在线看| 国国产精品蜜臀av免费| 曰老女人黄片| 精品一品国产午夜福利视频| 男的添女的下面高潮视频| 亚洲伊人久久精品综合| 最后的刺客免费高清国语| 亚洲国产欧美日韩在线播放| 亚洲国产日韩一区二区| 午夜av观看不卡| 中文字幕最新亚洲高清| 国产黄色视频一区二区在线观看| 久久久精品免费免费高清| 亚洲第一区二区三区不卡| 亚洲怡红院男人天堂| 久久精品久久精品一区二区三区| 在线亚洲精品国产二区图片欧美 | videossex国产| 亚洲国产欧美日韩在线播放| av有码第一页| 亚洲av男天堂| 一区二区三区乱码不卡18| 蜜桃久久精品国产亚洲av| 亚洲在久久综合| 日产精品乱码卡一卡2卡三| 夫妻午夜视频| 下体分泌物呈黄色| 久久婷婷青草| 亚洲精品视频女| 国产精品免费大片| 九色亚洲精品在线播放| 国产成人午夜福利电影在线观看| 久久99蜜桃精品久久| av一本久久久久| 亚洲精品日本国产第一区| 午夜福利视频在线观看免费| 国产有黄有色有爽视频| 五月玫瑰六月丁香| 亚洲国产精品成人久久小说| 国产不卡av网站在线观看| 久久久亚洲精品成人影院| 欧美精品国产亚洲| 国产成人aa在线观看| 国产色婷婷99| 日产精品乱码卡一卡2卡三| 欧美另类一区| 国产成人aa在线观看| 两个人免费观看高清视频| 欧美精品一区二区大全| 国产片内射在线| 国产 精品1| 国产高清三级在线| 久久久久久久久久成人| 99热国产这里只有精品6| 日韩大片免费观看网站| 丰满少妇做爰视频| 午夜福利视频在线观看免费| 精品人妻偷拍中文字幕| 一级毛片电影观看| 久久精品国产亚洲网站| 人人妻人人爽人人添夜夜欢视频| 免费人妻精品一区二区三区视频| 黑丝袜美女国产一区| 国产欧美日韩综合在线一区二区| 亚洲婷婷狠狠爱综合网| 丝袜喷水一区| 亚洲欧美一区二区三区黑人 | 午夜av观看不卡| 美女xxoo啪啪120秒动态图| a级毛色黄片| 日韩成人伦理影院| 日本午夜av视频| 日本av手机在线免费观看| 热re99久久精品国产66热6| 亚洲精品一二三| 国产极品天堂在线| 久久精品久久精品一区二区三区| av在线app专区| 国产熟女欧美一区二区| 国产精品三级大全| 国产精品国产三级国产专区5o| 蜜桃在线观看..| 大香蕉久久成人网| 卡戴珊不雅视频在线播放| 自线自在国产av| 成人亚洲精品一区在线观看| 午夜激情久久久久久久| 一边摸一边做爽爽视频免费| 国产精品一区二区三区四区免费观看| 成人手机av| 天堂8中文在线网| 如何舔出高潮| 岛国毛片在线播放| 十分钟在线观看高清视频www| 亚洲欧美清纯卡通| 两个人免费观看高清视频| 国产黄色免费在线视频| 国产精品女同一区二区软件| av线在线观看网站| 国产免费福利视频在线观看| 亚洲国产精品一区三区| 久久精品国产亚洲av天美| 色网站视频免费| 十分钟在线观看高清视频www| 国产亚洲精品久久久com| 成人综合一区亚洲| 欧美日韩成人在线一区二区| 免费观看无遮挡的男女| 久久久a久久爽久久v久久| 午夜福利网站1000一区二区三区| 日韩成人av中文字幕在线观看| 晚上一个人看的免费电影| 大香蕉久久网| 啦啦啦在线观看免费高清www| 丝袜脚勾引网站| av视频免费观看在线观看| 蜜臀久久99精品久久宅男| 日韩强制内射视频| 亚洲人成网站在线播| 久久女婷五月综合色啪小说| 一级a做视频免费观看| 国产日韩欧美视频二区| 亚洲人成77777在线视频| 久久久久久久久大av| 国产精品久久久久成人av| 秋霞伦理黄片| 国产一区二区在线观看日韩| 精品国产国语对白av| 91成人精品电影| 我的老师免费观看完整版| 国产精品欧美亚洲77777| 建设人人有责人人尽责人人享有的| 色5月婷婷丁香| 日韩中字成人| 久久久久精品性色| 久久鲁丝午夜福利片| 菩萨蛮人人尽说江南好唐韦庄| 美女cb高潮喷水在线观看| 亚洲av成人精品一区久久| 男的添女的下面高潮视频| 亚洲av电影在线观看一区二区三区| 999精品在线视频| 国产精品.久久久| 色婷婷av一区二区三区视频| 国产成人aa在线观看| 国产成人一区二区在线| 一本色道久久久久久精品综合| 简卡轻食公司| 免费看光身美女| 日韩制服骚丝袜av| 欧美精品亚洲一区二区| 岛国毛片在线播放| 一级a做视频免费观看| 91精品国产九色| 免费高清在线观看日韩| 男女边吃奶边做爰视频| 久久久久久久国产电影| 人成视频在线观看免费观看| 亚洲,一卡二卡三卡| 日日啪夜夜爽| 欧美亚洲 丝袜 人妻 在线| av国产精品久久久久影院| 亚洲av在线观看美女高潮| 在线看a的网站| 久久ye,这里只有精品| 久热久热在线精品观看| 日本黄大片高清| 亚洲欧洲精品一区二区精品久久久 | 18+在线观看网站| 精品久久久久久久久亚洲| 婷婷色综合www| 免费看不卡的av| 五月伊人婷婷丁香| 高清欧美精品videossex| 久热这里只有精品99| 日本av免费视频播放| 国产免费一区二区三区四区乱码| 在线观看免费视频网站a站| 日本与韩国留学比较| 在线观看免费高清a一片| 少妇精品久久久久久久| 日本午夜av视频| 高清欧美精品videossex| 亚洲性久久影院| 搡女人真爽免费视频火全软件| 欧美 亚洲 国产 日韩一| 亚洲欧美成人精品一区二区| 日韩不卡一区二区三区视频在线| 秋霞在线观看毛片| 精品国产露脸久久av麻豆| a级毛片免费高清观看在线播放| 晚上一个人看的免费电影| 久久人妻熟女aⅴ| 国产高清国产精品国产三级| av在线app专区| 视频在线观看一区二区三区| 人妻人人澡人人爽人人| 日本黄色日本黄色录像| 一级a做视频免费观看| 狠狠精品人妻久久久久久综合| 国产免费福利视频在线观看| 美女福利国产在线| 亚洲精品一二三| 精品一区二区免费观看| 在线观看www视频免费| 国产欧美亚洲国产| 亚洲av电影在线观看一区二区三区| 精品人妻一区二区三区麻豆| 久久精品国产自在天天线| 曰老女人黄片| 人体艺术视频欧美日本| 一区二区三区四区激情视频| 精品人妻在线不人妻| 亚洲欧美成人综合另类久久久| 成年人午夜在线观看视频| 亚洲久久久国产精品| 99久久中文字幕三级久久日本| 亚洲欧美日韩另类电影网站| 免费观看av网站的网址| 亚洲精品av麻豆狂野| 男女无遮挡免费网站观看| 欧美日韩精品成人综合77777| 国产片特级美女逼逼视频| 91精品三级在线观看| 国产精品国产三级国产av玫瑰| 三级国产精品片| 久久国产精品大桥未久av| 夫妻午夜视频| 国产成人精品一,二区| 中文欧美无线码| 美女cb高潮喷水在线观看| 亚洲性久久影院| 精品久久久久久电影网| 另类精品久久| 久久久久久久久久久久大奶| 亚洲精品国产av成人精品| 国产精品人妻久久久久久| 色婷婷av一区二区三区视频| 18禁观看日本| 91午夜精品亚洲一区二区三区| 好男人视频免费观看在线| 一级毛片aaaaaa免费看小| 久久免费观看电影| 我的女老师完整版在线观看| 秋霞在线观看毛片| 在线观看www视频免费| 国产毛片在线视频| 亚洲欧美成人综合另类久久久| 在现免费观看毛片| a级片在线免费高清观看视频| 91久久精品电影网| 男女边吃奶边做爰视频| 人妻人人澡人人爽人人| 青春草国产在线视频| 美女中出高潮动态图| 黄色配什么色好看| 亚洲熟女精品中文字幕| 午夜激情久久久久久久| 午夜激情av网站| 亚洲精品乱码久久久v下载方式| 高清视频免费观看一区二区| 欧美日韩综合久久久久久| av福利片在线| 精品一区在线观看国产| 丝袜脚勾引网站| 日韩视频在线欧美| 国产成人午夜福利电影在线观看| 精品国产一区二区三区久久久樱花| 日韩av免费高清视频| 美女cb高潮喷水在线观看| 高清在线视频一区二区三区| 亚洲精品一二三| 午夜av观看不卡| 欧美少妇被猛烈插入视频| 国产精品久久久久久av不卡| 国产淫语在线视频| 久久99蜜桃精品久久| 毛片一级片免费看久久久久| 三级国产精品片| 看十八女毛片水多多多| 亚洲av成人精品一二三区| 免费观看的影片在线观看| 精品久久久噜噜| 精品人妻熟女毛片av久久网站| 搡女人真爽免费视频火全软件| 一级毛片我不卡| 亚洲图色成人| 亚洲精品日本国产第一区| 久久久国产欧美日韩av| 91午夜精品亚洲一区二区三区| 嫩草影院入口| 蜜桃国产av成人99| 亚洲第一区二区三区不卡| a级毛片免费高清观看在线播放| 国产视频内射| 国产高清不卡午夜福利| 国产成人精品婷婷| 美女视频免费永久观看网站| 国产av精品麻豆| 激情五月婷婷亚洲| 亚洲精品乱码久久久v下载方式| 久久国产精品大桥未久av| 亚洲熟女精品中文字幕| 亚洲av电影在线观看一区二区三区| 在线观看人妻少妇| 免费人妻精品一区二区三区视频| 热re99久久国产66热| 韩国高清视频一区二区三区| 蜜桃久久精品国产亚洲av| 狠狠婷婷综合久久久久久88av| 国产片内射在线| 丝袜在线中文字幕| 久久女婷五月综合色啪小说| 日日撸夜夜添| 老司机影院成人| 91精品三级在线观看| 日日撸夜夜添| 日韩亚洲欧美综合| 日韩视频在线欧美| 亚洲精品久久久久久婷婷小说| 国产高清国产精品国产三级| 一二三四中文在线观看免费高清| 一级黄片播放器| tube8黄色片| 边亲边吃奶的免费视频| 18禁裸乳无遮挡动漫免费视频| 日日摸夜夜添夜夜爱| 欧美亚洲日本最大视频资源| 久久狼人影院| 免费观看av网站的网址| 国产一区亚洲一区在线观看| 精品人妻熟女av久视频| 日韩在线高清观看一区二区三区| 国产精品成人在线| √禁漫天堂资源中文www| 国产精品嫩草影院av在线观看| 亚洲精品456在线播放app| 久久久国产精品麻豆| 亚洲av.av天堂| 日韩成人av中文字幕在线观看| 亚洲欧美中文字幕日韩二区| 久久精品国产鲁丝片午夜精品| 国产成人精品福利久久| 久久久久久伊人网av| 久久国内精品自在自线图片| 久久久精品免费免费高清| videosex国产| 国产极品粉嫩免费观看在线 | 青春草国产在线视频| 高清视频免费观看一区二区| 制服丝袜香蕉在线| 久久精品久久久久久噜噜老黄| av不卡在线播放| 国产高清三级在线| 欧美三级亚洲精品| 大片电影免费在线观看免费| 亚洲成人手机| 久久狼人影院| 插逼视频在线观看| 亚洲欧美成人综合另类久久久| 在线观看免费高清a一片| 香蕉精品网在线| 国产精品99久久久久久久久| 欧美亚洲 丝袜 人妻 在线| 午夜福利视频精品| 伊人久久国产一区二区| 亚洲第一区二区三区不卡| 国产男女内射视频| 建设人人有责人人尽责人人享有的| 免费看不卡的av| 黄片无遮挡物在线观看| 日韩欧美精品免费久久| 91成人精品电影| 免费观看av网站的网址| 国产亚洲午夜精品一区二区久久| 曰老女人黄片| 赤兔流量卡办理| 国产精品国产三级国产av玫瑰| 午夜福利影视在线免费观看| 亚洲不卡免费看| 亚洲久久久国产精品| 人成视频在线观看免费观看| 国产精品三级大全| av电影中文网址| 蜜桃久久精品国产亚洲av| 免费观看av网站的网址| 在线观看美女被高潮喷水网站| 在线观看免费视频网站a站| 国产一区二区在线观看av| 中文字幕制服av| 欧美精品一区二区免费开放| a 毛片基地| 国产精品久久久久久久电影| 久久99热这里只频精品6学生| 久久精品熟女亚洲av麻豆精品| 日韩中字成人| 夜夜骑夜夜射夜夜干| 国产成人精品福利久久| 97超视频在线观看视频| 亚洲精品中文字幕在线视频| 久久国产精品大桥未久av| av免费观看日本| 大片免费播放器 马上看| 99热这里只有精品一区| 欧美三级亚洲精品| 一边亲一边摸免费视频| 中文字幕免费在线视频6| 国产黄频视频在线观看| 中文字幕av电影在线播放| 久热这里只有精品99| 久久久久久伊人网av| 2021少妇久久久久久久久久久| 精品少妇黑人巨大在线播放| 精品午夜福利在线看| 日韩一区二区三区影片| av视频免费观看在线观看| 男女啪啪激烈高潮av片| 国产国拍精品亚洲av在线观看| 国产精品国产三级国产专区5o| 欧美日本中文国产一区发布| 国产成人91sexporn| 亚洲四区av| 久久久久久久久久久免费av| 久久ye,这里只有精品| 亚洲精品乱码久久久v下载方式| 亚洲精品日韩在线中文字幕| 欧美另类一区| 黄色欧美视频在线观看| 99热网站在线观看| 高清毛片免费看| 欧美bdsm另类| 欧美亚洲日本最大视频资源| 亚洲精品,欧美精品| 亚洲国产精品成人久久小说| 国产精品久久久久久久电影| 精品国产国语对白av| 性高湖久久久久久久久免费观看| 欧美日韩视频高清一区二区三区二| 久久精品国产亚洲网站| 久久女婷五月综合色啪小说| av在线观看视频网站免费| 丝袜美足系列| 久久狼人影院| 老司机影院毛片| 一本—道久久a久久精品蜜桃钙片| 另类精品久久| 少妇高潮的动态图| 国产成人免费观看mmmm| 韩国高清视频一区二区三区| 波野结衣二区三区在线| 日韩av免费高清视频| 91成人精品电影| 免费观看在线日韩| 青春草亚洲视频在线观看| 美女视频免费永久观看网站| 国产在线视频一区二区| 久久久久久伊人网av| 亚洲国产精品成人久久小说| 91成人精品电影| 黄色一级大片看看| 国产黄频视频在线观看| 91精品伊人久久大香线蕉| 热re99久久精品国产66热6| 欧美老熟妇乱子伦牲交| av播播在线观看一区| 人妻人人澡人人爽人人| 午夜福利视频在线观看免费| 免费av不卡在线播放| 只有这里有精品99| 日本猛色少妇xxxxx猛交久久| 成人无遮挡网站| 午夜福利,免费看| 五月伊人婷婷丁香| 国产黄色视频一区二区在线观看| 性高湖久久久久久久久免费观看| 日韩成人av中文字幕在线观看| 国产精品蜜桃在线观看| 中国国产av一级| 涩涩av久久男人的天堂| 日韩不卡一区二区三区视频在线| 美女国产高潮福利片在线看| 亚洲精品久久午夜乱码| 亚洲色图综合在线观看| 能在线免费看毛片的网站| 最近2019中文字幕mv第一页| 成人免费观看视频高清| 综合色丁香网| 美女中出高潮动态图| 2018国产大陆天天弄谢| 妹子高潮喷水视频| 超色免费av| 一级毛片我不卡| 国产精品一区二区在线观看99| 亚洲内射少妇av| 在线观看www视频免费| 国产免费福利视频在线观看| 国产深夜福利视频在线观看| 男的添女的下面高潮视频| 高清欧美精品videossex| 成人综合一区亚洲| 2022亚洲国产成人精品| 一本一本综合久久| 色5月婷婷丁香| √禁漫天堂资源中文www| 亚洲人成网站在线观看播放| 亚洲熟女精品中文字幕| 国产一级毛片在线| 国产在线视频一区二区| 18禁在线无遮挡免费观看视频| 99国产综合亚洲精品| 18禁在线播放成人免费| 99久久人妻综合| freevideosex欧美| 麻豆精品久久久久久蜜桃| 精品国产露脸久久av麻豆| 国内精品宾馆在线| 91精品一卡2卡3卡4卡| 中文天堂在线官网| 色婷婷久久久亚洲欧美| 日韩在线高清观看一区二区三区| 亚洲av福利一区| 乱码一卡2卡4卡精品| 中国美白少妇内射xxxbb| 亚洲欧美一区二区三区黑人 | av女优亚洲男人天堂| 亚洲欧美色中文字幕在线| 日韩中文字幕视频在线看片| 欧美精品亚洲一区二区| 你懂的网址亚洲精品在线观看| 日韩大片免费观看网站| av在线老鸭窝| 国产成人免费观看mmmm| 亚洲精品第二区| 视频在线观看一区二区三区| 99九九在线精品视频| 亚洲成色77777| 国产高清有码在线观看视频| 国产日韩欧美在线精品| 一级毛片 在线播放| 黄色视频在线播放观看不卡| 人成视频在线观看免费观看| 制服人妻中文乱码| 久久久久久久亚洲中文字幕| 九九久久精品国产亚洲av麻豆| 免费黄色在线免费观看| 亚洲色图 男人天堂 中文字幕 | 日韩av不卡免费在线播放| 校园人妻丝袜中文字幕| 日韩,欧美,国产一区二区三区| 成人影院久久| a级片在线免费高清观看视频| 国产国拍精品亚洲av在线观看| 午夜免费观看性视频| 少妇人妻 视频| 国产日韩欧美亚洲二区| 欧美精品一区二区免费开放| 中文字幕亚洲精品专区| 日本av免费视频播放| 久久久久久久大尺度免费视频| 久久99蜜桃精品久久| 女的被弄到高潮叫床怎么办| 日韩人妻高清精品专区| 国产视频内射| 亚洲精品视频女| 免费看av在线观看网站| 日本-黄色视频高清免费观看| 99久国产av精品国产电影| 日日摸夜夜添夜夜添av毛片| 色视频在线一区二区三区| 久久精品熟女亚洲av麻豆精品| 伦理电影免费视频| 99re6热这里在线精品视频| 在线观看国产h片| 国产一区二区三区综合在线观看 | 日本色播在线视频| 能在线免费看毛片的网站| 成年人免费黄色播放视频| 97超视频在线观看视频| av线在线观看网站| 一区在线观看完整版| 老司机影院成人| 国产女主播在线喷水免费视频网站| 国产 精品1| 中文字幕人妻丝袜制服| 久久韩国三级中文字幕| 不卡视频在线观看欧美| 狂野欧美激情性xxxx在线观看| 日日啪夜夜爽| www.色视频.com| 亚洲国产成人一精品久久久| 插逼视频在线观看| 久久久久精品性色| av免费观看日本| 热re99久久精品国产66热6| 少妇人妻久久综合中文| 国产色爽女视频免费观看| 久久免费观看电影| 亚洲,一卡二卡三卡| 一个人看视频在线观看www免费| 七月丁香在线播放| 久久国产精品男人的天堂亚洲 | 亚洲一区二区三区欧美精品| 大片免费播放器 马上看| 精品国产一区二区三区久久久樱花|