• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis and characterization of poly(p-dioxanone)-based degradable copolymers with enhanced thermal and hydrolytic stabilities

    2022-06-20 06:22:26YiTengYanGangWuSiChongChenYuZhongWang
    Chinese Chemical Letters 2022年4期

    Yi-Teng Yan,Gang Wu,Si-Chong Chen,Yu-Zhong Wang

    Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials(MoE),State Key Laboratory of Polymer Materials Engineering,National Engineering Laboratory of Eco-Friendly Polymeric Materials(Sichuan),College of Chemistry,Sichuan University,Chengdu 610064, China

    ABSTRACT Herein,we presented a novel biodegradable copolymer via the chain extending reaction of poly(pdioxanone)-co-poly(2-(2-hydroxyethoxy)benzoate)(PPDO-co-PDHB)prepolymer with hexamethylene diisocyanate(HDI)as a chain extender.The structures and molecular weight of PPDO-co-PDHB prepolymer and PPDO-co-PDHB-PU chain-extended copolymer are characterized via hydrogen nuclear magnetic resonance spectroscopy(1H NMR)and viscosity test.The relationship between the molecular structures and properties of the chain-extended copolymers is established.The PPDO-co-PDHB-PU copolymers possess a better thermal stability comparing with the PPDO homopolymer.The study of mechanical properties shows that the elongation-at-break of PPDO-co-PDHB-PU is much higher than that of PPDO.The investigation of hydrolytic degradation behaviors indicates the degradation rate of PPDO can be controlled by adjusting the PDHB compositions,and proves that chain-extended copolymers exhibit an excellent hydrolytic stability being better than that of PPDO.

    Keywords:Poly(p-dioxanone)Poly(2-(2-hydroxyethoxy)benzoate)Tunable properties Chain extending Controlled degradation

    As a unique biodegradable aliphatic polyester,poly(pdioxanone)(PPDO)has attracted much attention in recent years because of its outstanding biodegradability,biocompatibility and bioabsorbability[1–5].The existence of special ether-ester unit structures also endows it with increased hydrophilicity,excellent flexibility,and so on[6,7].Accordingly,PPDO has been used as ideal biomedical materials and also considered as a candidate for the general-purpose plastics[8–11].However,PPDO has drawbacks of easy to hydrolysis and thermal degradation,which limit its further practical applications.Therefore,various chemical and physical modification methods have been developed to improve the properties of PPDO[10].

    As an effective approach,the copolymerization of two monomers or more is often employed to obtain polymer materials with tailored properties which are usually unattainable relative to those of homopolymers[2,12].Shaveret al.presented the aliphatic-aromatic polyester(P2HEB)from ring-opening polymerization(ROP)of a cyclic ester 2,3-dihydro-5H-1,4-benzodioxepin-5-one(2,3-DHB)[13,14].The enzymatic degradation behaviors evidenced by weight loss indicated that degradation rate of P2HEB was much slower than for atactic polylactic acid(PLA),but significantly faster than for poly(ethylene terephthalate)(PET).The current degradation results should be ascribed to the peculiar microstructure that contained both aromatic and aliphatic linkages in the polymer backbone,reducing enzyme access for steric reasons.Therefore,the new 2,3-DHB monomer could be used as component to regulate the degradation process of PPDO.However,it is usually difficult to obtain the desired copolymer with high molecular weight[15].Recently,chain extending reaction has been extensively used in synthesizing high molecular weight biodegradable polymers and improving its performance[16].Though a series of PPDO-based chain-extended polymers with high molecular weight have been reported[17–20],the improvement of properties,especially thermostability and hydrolytic degradability,is still very limited.

    In this work,for the first time,we rationally designed and successfully synthesized a PPDO-based chain-extended copolymer,i.e.the poly(p-dioxanone)-co-poly(2-(2-hydroxyethoxy)benzoate)(PPDO-co-PDHB-PU)through a two-steps strategy including the synthesis of PPDO-co-PDHB diol prepolymer and the subsequent chain extending by using hexamethylene diisocyanate(HDI)as a chain extender.This PPDO-based copolymer possessed not only a good mechanical property but also significantly improved thermal and hydrolytic stabilities,indicating a potential application prospect in a wide field.

    Fig.1.1H NMR of(a)PPDO-co-PDHB5.4% prepolymer and(b)PPDO-co-PDHB5.4%-PU chain-extended copolymer.

    As shown in Scheme 1,the PPDO-co-PDHB-PU were synthesized through two steps:firstly,ROP ofp-dioxanone(PDO)with 2,3-DHB using 1,4-butanediol(BDO)as initiator and stannous octoate[Sn(Oct)2]as catalyst at 120 °C to synthesize PPDO-co-PDHB prepolymer;secondly,chain extending reaction of PPDO-co-PDHB with HDI at 140 °C to synthesize PPDO-co-PDHB-PU.To investigate the effect of the chemical compositions on the properties of the chain-extended copolymers,the PPDO-co-PDHB-PU with different PDHB compositions were obtained by varying the feed molar ratio of 2,3-DHB to PDO from 1/20 to 1/5(Table S1 in Supporting information).

    Scheme 1.The synthetic route of PPDO-co-PDHB prepolymer and PPDO-co-PDHBPU chain-extended copolymer.

    Table 1 Results of molecular weights of the synthesized PPDO,PPDO-co-PDHB and PPDOco-PDHB-PU.a

    The molecular structures of the synthesized PPDO-co-PDHB and PPDO-co-PDHB-PU were characterized by1H NMR and13C NMR.As shown in Fig.1a,it can be seen that resonances located at 4.36 ppm(δHe),4.19 ppm(δHc),and 3.81 ppm(δHd)belong to the three methylene groups of PPDO,respectively.The signals at 4.12 ppm(δHb)and 1.73 ppm(δHa)correspond to the methyleneprotons of BDO initiator.The signals at 7.82 ppm(δHf),7.46(δHg)and 7.05 ppm(δHh+i)are assigned to the aromatic rings protons of PDHB,and the signals at 4.47 ppm(δHj)and 4.27 ppm(δHk)belong to the methylene protons of PDHB.According to the following Eq.1,the amount of PDHB incorporations in the prepolymer can be calculated from the integral areas ratio of characteristic signals of respective PPDO and PDHB.

    whereI4.27andI3.81are the peak intensities of methylene protons in PDHB and PPDO,respectively.It can be found that PDHB incorporations in PPDO-co-PDHB prepolymers are almost consistent with the initial monomer feed ratio(Table S1).

    Furthermore,from the data of1H NMR,the degree of polymerization(Dp)for PPDO-co-PDHB prepolymer can be calculated according to the following equation:

    whereI1.73is the peak intensity of the methylene of BDO in copolymer chain.It can be seen that the experimentalDpof prepolymer(36)are close to the theoretical value(40),suggesting a controllable polymerization process.

    As shown in Fig.S2(Supporting information),further analysis of the monomer sequencing in the PPDO-co-PDHB by quantitative13C NMR spectroscopy indicates the lack of a high quality of 2,3-DHB*-PDO and PDO*-2,3-DHB resonances(where*denotes the observed carbonyl),suggesting copolymer produced is likely to be blocky copolymer.Similarly,no distinctly separated cross-peaks are observed in the methylene carbon and hydrogen adjacent to the oxygen atom in ring-opened structures of both PDO and 2,3-DHB.The 2,3-DHB*-PDO and PDO*-2,3-DHB carbonyl diad resonances with low integration are presented,which is the evidence of a short gradation between blocks.Current results are consistent with the previous reports[21-23],that is a block-like copolymer is formed.

    For the PPDO-co-PDHB-PU copolymer,all characteristic signals for both PPDO and PDHB repeat units are visible in Fig.1b.The further evidence for the implementation of chain extending reaction is the signals occurring at 1.33 ppm(δHm),1.49 ppm(δHl)and 3.16 ppm(δHk),which are assigned to the three kinds of methylene protons derived from HDI chain extender.The viscosity numbers(V.N.)of PPDO-co-PDHB prepolymers and PPDO-co-PDHB-PU chain-extended copolymers were measured by Ubbelohde viscosimeter.It can be seen from Table 1 that the V.N.values of PPDO-co-PDHB-PU obviously increase in comparison with the prepolymers,demonstrating again the success of the chain extending reaction to effectively elevate the molecular weight.The molecular weight is one of critical factors that influence the properties of polyester materials.For a better comparison,PPDO homopolymer and PPDO-co-PDHB copolymer with similar viscosity(viscosity number of about 1.0)were also synthesized.

    Fig.2.(a)TG and(b)DTG curves of PPDO,PPDO-co-PDHB and PPDO-co-PDHB-PU.DSC curves of PPDO,PPDO-co-PDHB and PPDO-co-PDHB-PU:(c)the first cooling scans and(d)the second heating scans.

    The thermostabilities of PPDO,PPDO-co-PDHB and PPDO-co-PDHB-PU with different 2,3-DHB incorporations were studied by thermogravimetric analysis(TGA).The typical TGA and DTG curves are shown in Figs.2a and b,and the relevant data are listed in Table S2(Supporting information).As shown in Fig.2a,all chainextended copolymers exhibit essentially a one-step degradation profile with much higher decomposition temperature at 5% weight loss(T5%)(about 220 °C)than those of PPDO(185.0 °C)and PPDOco-PDHB5.4%(188.1 °C).The thermal decomposition of PPDO mainly proceeds through the unzipping depolymerization initiated from the reactive hydroxyl group at the chain end[13,24,25],the chainend capping with isocyanate restrains the reaction and therefore improves the thermostability of PPDO-based chain-extended copolymers.In addition,a slight increase of theT5%from 216.7 to 223.2 °C is observed with the increase of PDHB.Overall,such results demonstrate that PPDO-co-PDHB-PU has much better thermal stability than PPDO and PPDO-co-PDHB.

    As shown in Figs.2c and d,the thermal transition behaviors of PPDO-co-PDHB-PU chain-extended copolymers,PPDO homopolymer and PPDO-co-PDHB copolymer were researched by differential scanning calorimetry(DSC),and the relevant data were summarized in Table S3(Supporting information).Owing to the very different crystalline behaviors of PDHB in the nascent form and after melting[13,14],the crystallization of chain-extended copolymers are predominantly contributed by PPDO segments.No crystallization peak is observed during the first cooling scans for PPDO-co-PDHB-PU chain-extended copolymers and PPDO-co-PDHB5.4%copolymer(Fig.2c),while PPDO-co-PDHB5.4%and PPDOco-PDHB5.4%-PU shows the weak melting endotherms signals at the second heating scans(Fig.2d),suggesting that the chain-extended copolymer and PPDO-co-PDHB5.4%copolymer are semicrystalline polymers with a slow crystallization rate.The further evidence for the weakened crystalline property is that the degree of crystallinity calculated byΔHmdecreases with the introduction of PDHB,suggesting PDHB polymeric segment in the PPDO-co-PDHB destroys the regularity of polymer chains,decreasing the crystallization rate of PPDO.It also can be found that the degree of crystallinity of PPDO segment in the chain-extended copolymers further decreased through the chain-end capping.These results clearly show that the introduction of both PDHB segment and chain extender structure units in the PPDO-co-PDHB-PU not only slow down the crystallization process but also depress the crystallinity of PPDO.

    Fig.3.Stress-strain curves of PPDO,PPDO-co-PDHB and PPDO-co-PDHB-PU.

    Fig.4.Plots of(a)weight loss and(b)viscosity loss for PPDO,PPDO-co-PDHB and PPDO-co-PDHB-PU in deionized water at 25 °C as a function of time.

    The mechanical properties of polymers are one of the important indexes for the practical applications.Fig.3 shows the representative stress-strain curves of PPDO homopolymer,PPDO-co-PDHB copolymer and PPDO-co-PDHB-PU chain-extended copolymers,and the results are listed in Table S4(Supporting information).It can be seen that elongation-at-break and tensile strength of PPDO-co-PDHB are higher than PPDO,which should be ascribed to the comprehensive influence of the weakened crystalline property as well as the aliphatic and aromatic structures[16].It also can be found that the elongation-at-break of PPDO-co-PDHB-PU chain-extended copolymers is 2 to 2.5 times higher than that of PPDO,but their tensile strength which still meet the application requirements is lower than that of PPDO.Meanwhile,the elongation-at-break of PPDO-co-PDHB-PU decreases slightly with the increase of PDHB,which should be ascribed to the introduction of the more rigid aromatic structures[16,19].It could be concluded that the chain extending reaction improves the flexibility,and destroys the crystallization of polymer chains,thereby increasing the elongation-atbreak and decreasing the tensile strength of chain-extended products[16].

    The hydrolytic degradability of PPDO,PPDO-co-PDHB and PPDO-co-PDHB-PU was comparatively studied.The weight loss is a simple and intuitive evaluation for the hydrolysis process of polymer during the exposure to the hydrolytic medium.Fig.4a shows the weight loss of the samples as a function of time in deionized water at 25 °C.It can be seen that the PPDO-co-PDHB5.4%copolymer exhibits a slower weight loss than that of PPDO throughout the degradation period,demonstrating that the incorporation of hydrophobic PDHB chains could reduce the hydrophilicity of PPDO chains and enhance the hydrolytic stability of PPDO.Meanwhile,it can be found that the PPDO-co-PDHB-PU copolymers exhibit a much slower weight loss comparing with the PPDO and PPDO-co-PDHB throughout the degradation period.Specifically,the weight loss values of PPDO and PPDO-co-PDHB severally reach to about 11% and 9% at 58 days,while the weight loss of PPDO-co-PDHB-PU is no more than 2% at 58 days,demonstrating that the PPDO-based chain-extended copolymers possess the better hydrolytic stability in comparison with PPDO and PPDO-co-PDHB.In addition,it also can be found that the weight loss of PPDO-co-PDHB-PU further decreases with the increase of PDHB.The above results could be attributed to the introduction of hydrophobic PDHB chains to reduce the hydrophilicity of PPDO chains as well as the role of chain extending reaction on decreasing the content of terminal hydroxyl groups.

    To better understand the degradation process,the Ubbelohde viscosimeter was used to trace the variation of the viscosity numbers(V.N.)of samples with degradation time,and their viscosity loss values were plotted in Fig.4b.The viscosity losses of PPDOco-PDHB and PPDO after 26 days severally reach to over 45% and 65%.By contrast,PPDO-co-PDHB-PU shows a slower viscosity loss in keeping with the result of weight loss,and its value for PPDOco-PDHB-PU5.4%at 26 days is only about 35%,which demonstrates again that the hydrolytic degradation of PPDO could be retarded by our approach.

    Fig.S5(Supporting information)is the1H-NMR spectra of samples after hydrolytic degradation of different times.It can be found that the characteristic peaks of PDO monomers occur with the degradation for PPDO and PPDO-co-PDHB.The resulted monomers should be ascribed to the back-biting reaction of the low molecular weight degradable products with terminal hydroxyl groups[26].However,no obvious monomers peaks are observed in the PPDOco-PDHB-PU copolymers,confirming that the back-biting reaction of terminal hydroxyl groups to generate the PDO is suppressed severely.

    The current degradation results should be ascribed to the comprehensive influences of the hydrophobicity and the steric hindrance from PDHB chains as well as the modification method of chain extending on the hydrophilicity of PPDO and the diffusion rate of water molecules in PPDO,so as to suppress the hydrolytic degradation of PPDO and improve the hydrolytic stability.Overall,these results suggest that the hydrolysis rate of the PPDO-based chain-extended copolymers could be controlled by regulating their composition.

    In summary,the PPDO-co-PDHB-PU copolymers with adjustable compositions were synthesized through the two-steps strategy of copolymerization and chain extending reaction.The molecular structures of the synthesized prepolymers and chain-extended copolymers were characterized by means of1H NMR.The molecular weights of resulting chain-extended copolymers increased significantly comparing to the prepolymers.In comparison with the PPDO homopolymer,the chain-extended copolymers possessed the better thermostability.The results of mechanical properties showed that the introduction of PDHB chains improved observably the elongation-at-break of PPDO,but decreased slightly the tensile strength.More importantly,the results of the hydrolytic degradation suggested that introducing the hydrophobic,steric hindraned PDHB chains into PPDO and combining with chain extending method suppressed significantly the hydrolytic degradation of PPDO,and thus improved greatly its hydrolytic stability.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(No.U19A2095),the Sichuan Science and Technology Program(No.2017SZDZX0015),and the Fundamental Research Funds for the Central Universities.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.08.124.

    91九色精品人成在线观看| 日本熟妇午夜| 欧美精品啪啪一区二区三区| av在线观看视频网站免费| 美女免费视频网站| 99国产综合亚洲精品| 国产亚洲精品久久久com| 精品午夜福利视频在线观看一区| 国产精品亚洲美女久久久| 日韩人妻高清精品专区| 精品午夜福利在线看| 一区二区三区免费毛片| 国产大屁股一区二区在线视频| 网址你懂的国产日韩在线| av天堂在线播放| 国产成年人精品一区二区| 国模一区二区三区四区视频| 在线播放国产精品三级| 在线天堂最新版资源| 亚洲片人在线观看| 99久久无色码亚洲精品果冻| 久久精品国产亚洲av天美| 欧美日韩瑟瑟在线播放| 午夜福利欧美成人| 欧美黑人巨大hd| 桃色一区二区三区在线观看| 真人做人爱边吃奶动态| 精品人妻偷拍中文字幕| 国产黄a三级三级三级人| 中亚洲国语对白在线视频| 欧美黄色淫秽网站| 脱女人内裤的视频| 91狼人影院| 不卡一级毛片| 国产精品,欧美在线| 久久久久久久精品吃奶| 中文字幕免费在线视频6| 久久久久久久久中文| 欧美日韩黄片免| 久久这里只有精品中国| 深爱激情五月婷婷| 舔av片在线| 免费观看人在逋| 免费搜索国产男女视频| 欧美色视频一区免费| 老司机午夜福利在线观看视频| 欧美日韩亚洲国产一区二区在线观看| 久久久国产成人精品二区| 色av中文字幕| 午夜久久久久精精品| 亚洲欧美精品综合久久99| 欧美xxxx黑人xx丫x性爽| 亚洲性夜色夜夜综合| 99国产综合亚洲精品| 国产伦精品一区二区三区视频9| 一级a爱片免费观看的视频| 18禁黄网站禁片免费观看直播| 久久精品国产亚洲av香蕉五月| 国产国拍精品亚洲av在线观看| 中亚洲国语对白在线视频| 色尼玛亚洲综合影院| 欧美日韩国产亚洲二区| 小蜜桃在线观看免费完整版高清| 亚洲乱码一区二区免费版| 中文字幕免费在线视频6| 亚洲人与动物交配视频| 国产亚洲av嫩草精品影院| 国产成人av教育| 极品教师在线视频| 久久人妻av系列| 99热精品在线国产| 国产黄a三级三级三级人| 成人av一区二区三区在线看| 成熟少妇高潮喷水视频| 精品熟女少妇八av免费久了| 国产成人aa在线观看| 亚洲国产色片| x7x7x7水蜜桃| 精品久久久久久久末码| 午夜福利在线观看吧| 久久久色成人| 麻豆av噜噜一区二区三区| 中文亚洲av片在线观看爽| 国产免费av片在线观看野外av| 日韩av在线大香蕉| 久久九九热精品免费| 日本三级黄在线观看| 黄色日韩在线| 国产野战对白在线观看| 哪里可以看免费的av片| 欧美色欧美亚洲另类二区| 久久久久精品国产欧美久久久| 久久久久久久久久成人| av国产免费在线观看| 日韩av在线大香蕉| 国产色婷婷99| 精品人妻偷拍中文字幕| 久久久精品欧美日韩精品| 麻豆av噜噜一区二区三区| 99国产精品一区二区三区| avwww免费| 欧美黑人巨大hd| 日韩欧美国产在线观看| 日本成人三级电影网站| 国产精品日韩av在线免费观看| 国产成人av教育| 国产熟女xx| 国内毛片毛片毛片毛片毛片| 老司机福利观看| 欧美日韩瑟瑟在线播放| 亚洲18禁久久av| 能在线免费观看的黄片| 亚洲va日本ⅴa欧美va伊人久久| avwww免费| 97热精品久久久久久| 欧美国产日韩亚洲一区| 国产一级毛片七仙女欲春2| 99热只有精品国产| 久久久久性生活片| 精品福利观看| 91麻豆精品激情在线观看国产| 午夜福利免费观看在线| 蜜桃久久精品国产亚洲av| 欧美日韩综合久久久久久 | 国产乱人伦免费视频| 色综合亚洲欧美另类图片| 亚洲成av人片免费观看| 老司机深夜福利视频在线观看| 国产不卡一卡二| 中亚洲国语对白在线视频| 国产精品一区二区免费欧美| 人人妻,人人澡人人爽秒播| 免费观看人在逋| 国产久久久一区二区三区| 国产亚洲精品久久久久久毛片| 丰满的人妻完整版| 欧美色视频一区免费| 午夜视频国产福利| 五月伊人婷婷丁香| 久久久国产成人免费| 亚洲av成人精品一区久久| 成人av一区二区三区在线看| 99国产综合亚洲精品| 免费观看的影片在线观看| 久久久久精品国产欧美久久久| 黄色配什么色好看| 3wmmmm亚洲av在线观看| а√天堂www在线а√下载| 欧美乱色亚洲激情| 色综合亚洲欧美另类图片| 欧美日韩中文字幕国产精品一区二区三区| 久久久久久久精品吃奶| 又爽又黄无遮挡网站| 99热精品在线国产| .国产精品久久| 亚洲乱码一区二区免费版| 女生性感内裤真人,穿戴方法视频| 美女xxoo啪啪120秒动态图 | 成人精品一区二区免费| 一级黄色大片毛片| 无遮挡黄片免费观看| 俄罗斯特黄特色一大片| 99精品久久久久人妻精品| 别揉我奶头 嗯啊视频| 国产亚洲精品久久久com| 亚州av有码| 五月玫瑰六月丁香| 欧美成人性av电影在线观看| 在线观看午夜福利视频| 亚洲第一欧美日韩一区二区三区| 给我免费播放毛片高清在线观看| 简卡轻食公司| 性欧美人与动物交配| 午夜精品一区二区三区免费看| 欧美绝顶高潮抽搐喷水| ponron亚洲| 欧美zozozo另类| 在线播放国产精品三级| 日韩欧美精品v在线| 一个人免费在线观看电影| 简卡轻食公司| 一进一出好大好爽视频| 精华霜和精华液先用哪个| 久久久久久久亚洲中文字幕 | 午夜精品一区二区三区免费看| 成人特级黄色片久久久久久久| 欧美黑人欧美精品刺激| 天天躁日日操中文字幕| 亚洲黑人精品在线| 麻豆成人午夜福利视频| 99久国产av精品| 丁香六月欧美| 国产老妇女一区| 97人妻精品一区二区三区麻豆| 美女 人体艺术 gogo| 国产久久久一区二区三区| 国产高潮美女av| 两个人视频免费观看高清| 高清在线国产一区| 日韩人妻高清精品专区| 69人妻影院| 淫妇啪啪啪对白视频| 国产真实伦视频高清在线观看 | 日本黄色片子视频| 韩国av一区二区三区四区| 一区二区三区激情视频| av在线蜜桃| 亚洲成av人片在线播放无| 成人永久免费在线观看视频| 丁香欧美五月| 最近视频中文字幕2019在线8| 欧美在线一区亚洲| 亚洲天堂国产精品一区在线| 少妇熟女aⅴ在线视频| 日韩欧美一区二区三区在线观看| 丝袜美腿在线中文| 十八禁国产超污无遮挡网站| 我的老师免费观看完整版| 久久精品国产清高在天天线| 天美传媒精品一区二区| 嫩草影院精品99| av视频在线观看入口| 最近最新免费中文字幕在线| 非洲黑人性xxxx精品又粗又长| 中文字幕高清在线视频| 99久久久亚洲精品蜜臀av| 国产午夜福利久久久久久| 成人三级黄色视频| 亚洲中文字幕一区二区三区有码在线看| a级毛片a级免费在线| 日本 欧美在线| 老司机午夜十八禁免费视频| 中文字幕免费在线视频6| 婷婷亚洲欧美| 亚洲片人在线观看| 欧美xxxx黑人xx丫x性爽| 亚洲第一电影网av| 网址你懂的国产日韩在线| 亚州av有码| 欧美中文日本在线观看视频| 国产一区二区三区视频了| 日韩欧美免费精品| 丁香六月欧美| 国产免费av片在线观看野外av| 99热6这里只有精品| 日本成人三级电影网站| 午夜亚洲福利在线播放| 中文字幕高清在线视频| 哪里可以看免费的av片| 老女人水多毛片| 成人三级黄色视频| 精品人妻熟女av久视频| 欧美区成人在线视频| 欧美日韩乱码在线| 国产在线男女| 色综合亚洲欧美另类图片| 国产精品亚洲av一区麻豆| 亚洲第一区二区三区不卡| 国产高清有码在线观看视频| 直男gayav资源| 91字幕亚洲| 亚洲欧美清纯卡通| 亚洲精品一卡2卡三卡4卡5卡| 亚洲性夜色夜夜综合| 精品久久久久久久久久免费视频| 丰满的人妻完整版| 日韩欧美在线二视频| 国产av在哪里看| 亚洲成av人片免费观看| 国产精品亚洲一级av第二区| 欧美激情在线99| 欧美高清成人免费视频www| 免费电影在线观看免费观看| 亚洲avbb在线观看| 此物有八面人人有两片| 亚洲人成电影免费在线| 1000部很黄的大片| 久久亚洲真实| 国产午夜精品论理片| 亚洲精品色激情综合| 91麻豆av在线| 午夜免费成人在线视频| 亚洲人成电影免费在线| 日韩欧美 国产精品| 国产黄色小视频在线观看| 国产中年淑女户外野战色| 日本免费a在线| 亚洲精华国产精华精| 首页视频小说图片口味搜索| 欧美激情国产日韩精品一区| 日本与韩国留学比较| 91久久精品国产一区二区成人| 精品久久久久久成人av| 国产伦精品一区二区三区四那| 亚洲专区中文字幕在线| 超碰av人人做人人爽久久| 成人亚洲精品av一区二区| 在线观看66精品国产| 男女床上黄色一级片免费看| 免费在线观看亚洲国产| 国产伦精品一区二区三区四那| 精品人妻1区二区| 桃红色精品国产亚洲av| 免费人成在线观看视频色| av天堂在线播放| 成人性生交大片免费视频hd| 国产极品精品免费视频能看的| 日本 欧美在线| 老司机深夜福利视频在线观看| 欧美性猛交黑人性爽| 免费观看精品视频网站| 国产高清视频在线观看网站| 成人美女网站在线观看视频| 亚州av有码| 久久伊人香网站| 亚洲国产精品sss在线观看| 狂野欧美白嫩少妇大欣赏| 麻豆久久精品国产亚洲av| 久久天躁狠狠躁夜夜2o2o| 久久久久久久久久成人| 51午夜福利影视在线观看| 国产色婷婷99| 宅男免费午夜| 中出人妻视频一区二区| 精品一区二区三区视频在线观看免费| 久久精品影院6| 国产精品不卡视频一区二区 | 一夜夜www| 天堂影院成人在线观看| 国产高潮美女av| 欧美性猛交╳xxx乱大交人| 国产精品久久电影中文字幕| 人妻夜夜爽99麻豆av| 最近中文字幕高清免费大全6 | 一本精品99久久精品77| 国产视频一区二区在线看| 午夜福利欧美成人| 日韩高清综合在线| 国产亚洲精品av在线| 亚洲国产精品sss在线观看| 嫩草影院精品99| 亚洲av电影不卡..在线观看| 麻豆成人av在线观看| 亚洲av成人av| 欧美3d第一页| 日韩中文字幕欧美一区二区| 亚洲自偷自拍三级| 成人美女网站在线观看视频| 国产精品一区二区三区四区久久| 成人一区二区视频在线观看| 长腿黑丝高跟| 日韩大尺度精品在线看网址| 国产欧美日韩精品亚洲av| 成人性生交大片免费视频hd| 中文字幕久久专区| 男人的好看免费观看在线视频| 久久精品国产亚洲av天美| 亚洲国产日韩欧美精品在线观看| 久久婷婷人人爽人人干人人爱| 一本一本综合久久| 搞女人的毛片| 美女高潮喷水抽搐中文字幕| 两人在一起打扑克的视频| 国产老妇女一区| 中国美女看黄片| 亚洲色图av天堂| 91久久精品国产一区二区成人| 亚洲最大成人中文| 91久久精品国产一区二区成人| 激情在线观看视频在线高清| 天天躁日日操中文字幕| 在线天堂最新版资源| 97热精品久久久久久| 国产老妇女一区| 国模一区二区三区四区视频| 亚洲国产高清在线一区二区三| 日韩欧美精品免费久久 | 亚洲欧美日韩卡通动漫| 亚洲欧美日韩东京热| 亚洲av第一区精品v没综合| 亚洲欧美日韩东京热| а√天堂www在线а√下载| 国内精品一区二区在线观看| 丝袜美腿在线中文| 国产视频一区二区在线看| 日韩高清综合在线| 亚洲中文字幕一区二区三区有码在线看| 在现免费观看毛片| 91久久精品电影网| 亚洲欧美激情综合另类| 少妇人妻一区二区三区视频| 亚洲精品乱码久久久v下载方式| 亚洲片人在线观看| 真实男女啪啪啪动态图| 天堂动漫精品| 免费一级毛片在线播放高清视频| 综合色av麻豆| 亚洲成av人片在线播放无| 国产精品精品国产色婷婷| 好看av亚洲va欧美ⅴa在| 性色av乱码一区二区三区2| 天天一区二区日本电影三级| 欧美xxxx黑人xx丫x性爽| 变态另类成人亚洲欧美熟女| 成年人黄色毛片网站| 国产精品一区二区性色av| 能在线免费观看的黄片| 精品人妻1区二区| 久久精品国产99精品国产亚洲性色| 国产三级在线视频| 亚洲第一欧美日韩一区二区三区| 国产蜜桃级精品一区二区三区| 精品久久久久久久久久久久久| 久久久久久久久大av| 国产aⅴ精品一区二区三区波| 欧美黑人欧美精品刺激| 国产激情偷乱视频一区二区| 一级毛片久久久久久久久女| 99久久九九国产精品国产免费| 中国美女看黄片| 国产精品久久久久久久电影| bbb黄色大片| 国产三级中文精品| 成年女人毛片免费观看观看9| 男女下面进入的视频免费午夜| 日本在线视频免费播放| 波多野结衣高清作品| 99精品在免费线老司机午夜| 免费看美女性在线毛片视频| 白带黄色成豆腐渣| 成年人黄色毛片网站| 欧美一区二区精品小视频在线| 老司机午夜十八禁免费视频| 3wmmmm亚洲av在线观看| 久久国产精品人妻蜜桃| 欧美精品国产亚洲| 欧美日本视频| 51午夜福利影视在线观看| 国产精品1区2区在线观看.| 在线观看午夜福利视频| 国内少妇人妻偷人精品xxx网站| 精品无人区乱码1区二区| 久久国产乱子免费精品| 黄色丝袜av网址大全| 97超视频在线观看视频| 欧美潮喷喷水| 免费看美女性在线毛片视频| 国产乱人伦免费视频| 久久亚洲真实| 老司机深夜福利视频在线观看| 久久久精品欧美日韩精品| 成人高潮视频无遮挡免费网站| 俄罗斯特黄特色一大片| 欧美日本视频| 99国产综合亚洲精品| 757午夜福利合集在线观看| 一区二区三区免费毛片| 12—13女人毛片做爰片一| 亚洲成a人片在线一区二区| 丁香欧美五月| 国产综合懂色| 亚洲国产欧美人成| 国内精品一区二区在线观看| 国内精品美女久久久久久| 久久精品国产亚洲av涩爱 | 亚洲av电影在线进入| 国产 一区 欧美 日韩| 精品人妻1区二区| 99精品久久久久人妻精品| 国内精品美女久久久久久| 十八禁人妻一区二区| 黄色日韩在线| 90打野战视频偷拍视频| 午夜福利成人在线免费观看| 日韩欧美国产一区二区入口| 一本一本综合久久| 亚洲电影在线观看av| 亚洲五月天丁香| 国产免费男女视频| 深爱激情五月婷婷| 赤兔流量卡办理| 国产国拍精品亚洲av在线观看| 亚洲在线观看片| 91麻豆精品激情在线观看国产| 国产精品电影一区二区三区| 制服丝袜大香蕉在线| 又紧又爽又黄一区二区| 亚洲人成电影免费在线| 精华霜和精华液先用哪个| 亚洲天堂国产精品一区在线| 噜噜噜噜噜久久久久久91| 欧美日韩瑟瑟在线播放| 欧美色视频一区免费| 人人妻人人澡欧美一区二区| 日韩欧美国产在线观看| 成人特级av手机在线观看| 成人国产综合亚洲| 真人一进一出gif抽搐免费| 午夜福利18| 亚洲第一电影网av| 成年女人永久免费观看视频| 久久精品国产清高在天天线| 亚洲欧美日韩高清在线视频| 日韩欧美免费精品| 波野结衣二区三区在线| 一进一出抽搐动态| 欧美bdsm另类| 十八禁国产超污无遮挡网站| 黄色视频,在线免费观看| 三级男女做爰猛烈吃奶摸视频| 18禁黄网站禁片午夜丰满| 91av网一区二区| 国产久久久一区二区三区| 高清日韩中文字幕在线| 成年女人毛片免费观看观看9| 波多野结衣巨乳人妻| 成人av一区二区三区在线看| 日韩有码中文字幕| 在线观看av片永久免费下载| 国产成人aa在线观看| 国产乱人视频| 国产人妻一区二区三区在| 日韩人妻高清精品专区| 中文字幕精品亚洲无线码一区| 婷婷精品国产亚洲av在线| 欧美丝袜亚洲另类 | 国产精品国产高清国产av| 天美传媒精品一区二区| 好看av亚洲va欧美ⅴa在| 久久久精品欧美日韩精品| 国产精品不卡视频一区二区 | 久久精品国产亚洲av香蕉五月| 亚洲欧美激情综合另类| 一进一出抽搐gif免费好疼| 亚洲国产色片| 精品一区二区三区人妻视频| 国产精品99久久久久久久久| 亚洲精品影视一区二区三区av| 久久精品91蜜桃| 色精品久久人妻99蜜桃| 日本黄色片子视频| 成人高潮视频无遮挡免费网站| 高清日韩中文字幕在线| 首页视频小说图片口味搜索| 香蕉av资源在线| 久99久视频精品免费| 欧美激情国产日韩精品一区| 99热只有精品国产| 免费在线观看成人毛片| 变态另类成人亚洲欧美熟女| 午夜福利免费观看在线| 亚洲avbb在线观看| av中文乱码字幕在线| 免费观看的影片在线观看| 久久久久国产精品人妻aⅴ院| 我要看日韩黄色一级片| 美女被艹到高潮喷水动态| 国产精品三级大全| 日日夜夜操网爽| 成人特级av手机在线观看| 国产精品永久免费网站| 亚洲专区中文字幕在线| 日本一二三区视频观看| 日韩精品中文字幕看吧| 九九热线精品视视频播放| 国产综合懂色| 午夜福利欧美成人| 精品无人区乱码1区二区| 成年版毛片免费区| 亚洲性夜色夜夜综合| 亚洲人成网站高清观看| 免费av毛片视频| 丰满人妻熟妇乱又伦精品不卡| 香蕉av资源在线| 精品久久久久久成人av| 人人妻人人澡欧美一区二区| 欧美色视频一区免费| 黄色一级大片看看| 久久久久久大精品| 国产av一区在线观看免费| 国内揄拍国产精品人妻在线| 无人区码免费观看不卡| 久久国产精品影院| 嫩草影院新地址| 99热精品在线国产| 国产蜜桃级精品一区二区三区| 免费看日本二区| 人人妻,人人澡人人爽秒播| 一本一本综合久久| 女同久久另类99精品国产91| 久久6这里有精品| 中文资源天堂在线| 国产一区二区在线av高清观看| av在线老鸭窝| 久久婷婷人人爽人人干人人爱| 精品久久久久久成人av| 3wmmmm亚洲av在线观看| 在线免费观看不下载黄p国产 | 久久久久国产精品人妻aⅴ院| 黄色视频,在线免费观看| 麻豆一二三区av精品| 欧美黑人欧美精品刺激| 亚洲国产精品久久男人天堂| 少妇人妻一区二区三区视频| 精品熟女少妇八av免费久了| 欧美日韩综合久久久久久 | 最好的美女福利视频网| 亚洲一区高清亚洲精品| 韩国av一区二区三区四区| 色哟哟·www| 老女人水多毛片| 国产精品免费一区二区三区在线| 久久久久精品国产欧美久久久| 五月伊人婷婷丁香| 久久草成人影院|