• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sub-5 nm porous polymer decoration toward superhydrophobic MOFs with enhanced stability and processability

    2022-06-20 06:22:16SiyiRongPengchengSuShizhengChenMiaomiaoJiaWanbinLi
    Chinese Chemical Letters 2022年4期

    Siyi Rong,Pengcheng Su,Shizheng Chen,Miaomiao Jia,Wanbin Li

    Guangdong Key Laboratory of Environmental Pollution and Health,School of Environment,Jinan University,Guangzhou 511443,China

    ABSTRACT Metal-organic frameworks(MOFs)show great potential for various applications,but many of them suffer from the drawbacks of hydrolysis propensity and poor processability.Herein,we employ polymers of intrinsic microporosity(PIMs)with hydrophobic pores to decorate MOFs toward substantially improved water stability and shapeability.Through simple PIM-1 decoration,the sub-5 nm polymer layers can be uniformly deposited on MOF surfaces with almost no deterioration in porosity.Owing to the existence of superhydrophobic coating and the obstruction of water entrance into MOFs,the PIM-1 coated CuBTC exhibits impressive water resistance and excellent pore preservation ability after exposure in water,even in acidic and alkaline solutions.Moreover,polymer decoration improves the processability of MOFs,while various MOF/PIM-1 bulk wafers and oil-water separators can be obtained straightforwardly.

    Keywords:Metal-organic framework Porous polymer decoration Hydrophobicity Stability Processability

    Metal-organic frameworks(MOFs),as a kind of porous crystalline materials coordinated with metal ions/clusters and organic linkers,show bright prospect and fabulous performance in numerous applications,such as,but not limited to,adsorption[1–4],molecular separation[5–7],catalysis[8–10],energy storage[11]and biomedicine[12],due to their exceptional porosities,large surface areas,and adjustable chemical properties.However,since metal-linker coordination bonds have propensity to be hydrolyzed,many of MOFs suffer from the bottleneck of poor moisture and water stability and may collapse in water and moist environments[13–15].

    Various strategies have been developed for diminishing MOF vulnerability to water.Generally,design of MOFs with highvalent metal cations or hydrophobic linkers,e.g.,F(xiàn)MOF-1,UiO-66 and BIT-66,is beneficial to form forceful coordination bonds or build hydrophobic cavities for achieving admirable water resistance[16–20].Unfortunately,for many MOFs with desirable function but poor stability,this fashion is unavailable.In order to ameliorate MOF stability to water,post-synthetic modification approaches,based on pore impregnation and surface decoration,are exploited for restraining the combination between water molecules and metal centers.For pore impregnation,the hydrophobic moieties are incorporated into the pores of frameworks and react with the active sites of MOFs[21–24].Such as,the hydrophobic alkyl chains or aromatic acetylenes could be grafted or polymerized into MOFs to repel water association at metal centers for enhancing the moisture resistance[23,24].Nevertheless,this method has strict requirements on the reactive sites of frameworks and inserted components,which will narrow the type scopes of MOFs to be modified and molecules used for grafting.Meanwhile,the inherent porosities and physicochemical characteristics will be degraded and altered.For surface decoration,the hydrophobic molecules or polymers are grafted or deposited on surface to prevent water from entering MOF inside[25–29].For examples,MOF stabilization could be performed through grafting by fluorination michael addition and deposition of hydrophobic polydimethylsiloxane on crystal surfaces to restrict hydrolysis of coordination bonds[28,29].Surface grafting is limited by the tedious procedures and the MOF reactive sites as well.Moreover,the additional nonporous layers may cause the declines in specific surface area and diffusion rate of molecules in coated layers.It is of greatly scientific interest to implement MOF stabilization in a facile and general manner under the premise of maintaining MOF properties.

    Herein,we apply polymers of intrinsic microporosity(PIMs)with hydrophobic pores to decorate MOFs for simultaneously realizing MOF stabilization and pore preservation.Through simply immersion coating,an ultrathin polymer layer below 5 nm can be deposited on MOF surface for reducing the entry of water into MOFs(Fig.1).The PIM-1 coated CuBTC shows the features of superhydrophobicity,well-maintained inherent pore accessibility,and substantially improved water stability,which can retain their crystalline structures and adsorption behaviors even after treating by acidic and alkaline aqueous solutions.Moreover,limited by the features of insolubility and fragility,MOFs are far less processable than some other materials,for example polymers.The inferior processability is another drawback of MOFs for application.Profiting from the outstanding moldability of polymers,the PIM-1 decoration can make up the poorly processable issue of MOF crystals.Various MOF/PIM-1 bulk devices,including wafers and oil-water separators,can be straightforwardly prepared.

    Fig.1.PIM-1 decoration of MOFs.(a)Schematic illustration of PIM-1 decoration for improving water stability of MOFs.After decoration,the blue CuBTC turns to aquamarine of CuBTC/PIM-1.(b)Structure of the MOF/PIM-1 bulk wafer.(c)Structure of the MOF/PIM-1 separator.

    CuBTC,composed by paddle wheel copper centers and 1,3,5-benzenetricarboxylic acid(BTC)linkers,is promising for diverse applications but relatively sensitive to water[30,31].PIM-1,consisted of rigid and contorted polymer chains,possesses superhydrophobic porous structures[32,33].Thus,CuBTC and PIM-1 were employed as probes to demonstrate the feasibility of the reported simple coating method for improving water stability of MOFs.The PIM-1 powder,synthesized by polycondensation between 2,3,5,6-tetrafluoroterephthalonitrile and 5,5′,6,6′-tetrahydroxy-3,3,3′,3′-tetramethyl-1,1′-spirobisindane,exhibited Brunauer-Emmett-Teller(BET)specific surface area of 807 m2/g and pore volume of 0.62 mL/g(Fig.S1 in Supporting information).For fabrication of CuBTC/PIM-1,the PIM-1 powder was dissolved in chloroform and then coated on the surface of CuBTC crystals by simple immersion method.The color of CuBTC/PIM-1 was aquamarine caused by the mixture of blue from CuBTC and yellow from PIM-1(Fig.S2 in Supporting information).As observed from Fourier transform infrared(FTIR)spectrum of PIM-1(Fig.2a),there were characteristic peaks for–CH at 2955 cm-1,–CN at 2240 cm-1and C–O–C at 1265 and 1310 cm-1[34].The CuBTC and CuBTC/PIM-1 particles had analogous FTIR spectra with Cu-O peak at 730 cm-1and O–C=O peak at 1365,1455 and 1645 cm-1.No obvious PIM-1 characteristic peaks in CuBTC/PIM-1 might be explained by too low PIM-1 content.X-ray photoelectron spectrophotometry(XPS)spectra illuminated the appearance of a new C–O–C peak and the increase of nitrogen content to 2.6%,which corroborated the successful PIM-1 decoration(Fig.2b,F(xiàn)ig.S3 and Table S1 in Supporting information).It was noteworthy that the copper signal of CuBTC could still be observed in XPS spectrum of CuBTC/PIM-1,though the element content decreased from 5.3% to 1.8%.Considering the detection depth of XPS at several nanometers[35–37],it could be deduced that the PIM-1 coating layer was ultrathin.

    Scanning electron microscopy(SEM)and optical microscopy images verified that the CuBTC and CuBTC/PIM-1 powders had similar octahedral structures(Fig.S4 in Supporting information).To visually examine the PIM-1 layer,transmission electron microscopy(TEM)images of CuBTC and CuBTC/PIM-1 were captured.It was clear that an ultrathin polymer layer below 5 nm was uniformly deposited on the CuBTC crystal(Fig.2c and Fig.S5 in Supporting information),which agreed with the XPS and FTIR results.This decorated layer was much thinner than the deposited coats of MOF composites reported in previous studies with thickness of tens of nanometers at least[28,29].X-ray energy dispersion spectroscopy mapping images of CuBTC/PIM-1 confirmed the homogeneous distributions of oxygen(CuBTC,PIM-1),carbon(CuBTC,PIM-1),copper(CuBTC)and nitrogen(PIM-1)(Fig.2d).X-ray diffraction(XRD)patterns and nitrogen adsorption-desorption isotherms at 77 K were collected to study the crystalline and porous structures(Figs.2e and f).For PIM-1,the bread peak in XRD pattern validated its amorphous structure.The CuBTC/PIM-1 displayed a consistent XRD pattern as experimental and simulated ones,suggesting the typical CuBTC textures and the intact crystalline structures after PIM-1 decoration(Fig.2e).Nitrogen isotherms indicated that the BET specific surface area and pore volume of the CuBTC crystal were 1116 m2/g and 0.61 mL/g,respectively.Given that the PIM-1 layer was ultrathin and porous,the CuBTC/PIM-1 exhibited almost the same porosity with surface area and pore volume of 1070 m2/g and 0.60 mL/g,respectively(Fig.2f and Table S2 in Supporting information).To study the thermal stability of CuBTC/PIM-1,thermogravimetric analysis(TGA)measurement was conducted in N2atmosphere.In Fig.S6(Supporting information),the weight loss(8.5 wt%)of CuBTC/PIM-1 below 150 °C corresponded to the evaporation of water and guest molecules[38,39].And a plateau could be captured within temperature range from 150 °C to 300 °C,indicating the good thermal stability of CuBTC/PIM-1 below 300 °C.

    To investigate the stability,the prepared MOF powders were dispersed in water.After exposure for three days,by reason of hydrolysis,the deep blue CuBTC crystals changed to light blue(Fig.3a).The morphology of H2O-CuBTC became distorted from regular octahedron to rod and the XRD patterns varied dramatically(Figs.3a and b,F(xiàn)ig.S7 in Supporting information),revealing its structural transformation.As well,the emergence of new-OH peak from Cu(OH)2at 3000-3300 cm-1and the diversifications of Cu-O at 730 cm-1and-COOH at 1720 cm-1in FTIR spectrum of H2O-CuBTC manifested the hydrolysis of coordination bonds and decomposition of chemical structures(Fig.S8 in Supporting information)[40].As expected,the BET specific surface area and pore volume sharply dropped to 89 m2/g and 0.11 mL/g,respectively(Fig.2f and Table S2).All above results illustrated the serious corrosion of CuBTC caused by water molecule attack after water treatment.In contrast,the H2O-CuBTC/PIM-1 showed hardly any changes in color,morphology,XRD pattern and FTIR spectrum compared with the original one(Figs.3a and b,F(xiàn)igs.S7 and S8 in Supporting information).The porous merit of H2O-CuBTC/PIM-1 was well-inherited,with BET specific surface area of 998 m2/g and pore volume of 0.67 mL/g(Fig.2f and Table S2).The identically crystalline,chemical,and porous properties of CuBTC/PIM-1 and H2O-CuBTC/PIM-1 demonstrated that the MOF water stability had been substantially improved after PIM-1 decoration.As presented in Fig.3c,the PIM-1 decoration had competitive porosity preservation capability during MOF modification and water treatment processes.The preservation ratios of surface areas after PIM-1 modification(PM)and water treatment(PW)for CuBTC/PIM-1 and H2OCuBTC/PIM-1 were calculated up to 96% and 93%,respectively(Table S3).These values were in good correlation with the above characterization results(e.g.,SEM,F(xiàn)TIR and XRD)and superior to those of most reported MOFs.

    Fig.2.Characterizations of CuBTC/PIM-1.(a)FTIR spectra of PIM-1,CuBTC and CuBTC/PIM-1.(b)C 1s XPS spectra of CuBTC and CuBTC/PIM-1.(c)TEM images of CuBTC/PIM-1.(d)X-ray energy dispersion spectroscopy mapping images of CuBTC/PIM-1.(e)XRD patterns of PIM-1,simulated CuBTC,CuBTC and CuBTC/PIM-1.(f)Nitrogen uptakes of CuBTC,CuBTC/PIM-1,H2O-CuBTC and H2O-CuBTC/PIM-1 at 77 K.

    Fig.3.Stability of CuBTC/PIM-1.(a)Digital photographs and SEM images of H2O-CuBTC and H2O-CuBTC/PIM-1 after water treatment for three days.(b)XRD patterns of H2OCuBTC and H2O-CuBTC/PIM-1 after water treatment for three days.XRD pattern of CuBTC is presented for comparison.(c)Comparison of MOF/PIM-1 in this study with other modified MOFs for preservation ratios of BET specific surface areas. PM and PW are preservation ratios during modification and water treatment processes,respectively.The related data are listed in Table S3(Supporting information).(d)Digital photographs and water contact angle images of CuBTC and CuBTC/PIM-1.(e)Water vapor adsorptiondesorption isotherms of PIM-1,CuBTC,and CuBTC/PIM-1 at 298 K.(f)XRD patterns of CuBTC/PIM-1 after treating by acidic and alkaline solutions with different pH for three days.

    For understanding stabilization mechanism,we measured the water contact angles and water vapor adsorption-desorption behaviors of CuBTC and CuBTC/PIM-1.The water droplet was quickly absorbed by the CuBTC powder within 3 s,and the corresponding water contact angle was ~0°(Fig.3d),suggesting the good hydrophilicity.Comparatively,for CuBTC/PIM-1,the spherical water droplet could be held on the powder,and the water contact angle reached as high as 155°(Fig.3d).This phenomenon proved that the PIM-1 decoration endowed the CuBTC/PIM-1 composite with superhydrophobicity.Fig.3e showed the water vapor isotherms of PIM-1,CuBTC,and CuBTC/PIM-1.The PIM-1 powder had typical water vapor adsorption-desorption curves of porous materials with superhydrophobic pores[41].As a result of open metal sites,the CuBTC particle possessed good hydrophilicity with rapid adsorption at low pressure and high water uptake of 582 mL/g.Meanwhile,owning to the strong affinity of metal centers to water molecules,a clear hysteresis loop appeared in isotherms[41].For CuBTC/PIM-1,the water adsorption capacity had great reduction to 416 mL/g,especially at low pressure.Interestingly,the adsorption for CuBTC/PIM-1 took longer times to reach equilibrium than that for CuBTC,indicating the effective limitation of water molecule diffusion through PIM-1 layers.Therefore,the significantly improved water resistance of CuBTC/PIM-1 was attributed to the remarkably enhanced hydrophobicity and the effective hindrance of PIM-1 to water.We further assessed the stability of MOF/PIM-1 under harsh conditions,through exposure in acidic and alkaline solutions with different pH for three days.The unaltered XRD patterns testified that CuBTC/PIM-1 maintained its intrinsic crystalline structures(Fig.3f).The identical characteristic peaks of FTIR spectra for CuBTC/PIM-1 after treatment in different acidic and alkaline solutions revealed the unvaried chemical structures(Fig.S9 in Supporting information).These results confirmed the commendable stability of the CuBTC/PIM-1 even under harsh conditions.

    Fig.4.Gas adsorption performances.(a)CO2 and(b)N2 adsorption isotherms of CuBTC,CuBTC/PIM-1,H2O-CuBTC,and H2O-CuBTC/PIM-1.(c)CO2 and N2 uptakes of CuBTC,CuBTC/PIM-1,H2O-CuBTC,and H2O-CuBTC/PIM-1.(d)CO2/N2 adsorption selectivity.The selectivity was calculated by ideal adsorption solution theory based on fitting adsorption isotherms with single-site Langmuir-Freundlich model.The H2O-CuBTC and H2O-CuBTC/PIM-1 samples were prepared by treating CuBTC and CuBTC/PIM-1 in water for three days,respectively.

    Gas adsorption properties of the prepared MOF materials before and after water treatment were evaluated at 298 K.All MOFs showed gas adsorption capacities with order of CO2and N2(Figs.4a and b),which were in accordance with the quadrupole moments and polarizabilities of three gases[42,43].Thanks to the well-maintained pore accessibility from ultrathin porous layer and the unprecedented stability of the MOF composite,the CuBTC/PIM-1 and H2O-CuBTC/PIM-1 powders displayed similar gas uptakes as CuBTC,with CO2adsorption capacities in the range of 45–48 mL/g at 100 kPa,respectively(Fig.4c and Table S4 in Supporting infomation).It should be noted,the difference in times of equilibrium adsorption for three materials was negligible,which illustrated that the ultrathin and porous PIM-1 layers did not affect the gas diffusion in MOFs.Conversely,the gas uptakes of H2OCuBTC deteriorated grievously,yet the CO2adsorption capacities were still achieved at 23.5 mL/g,respectively.Compared with the decline ratios of surface area(92%)and pore volume(82%),the reduction of CO2(51%)adsorption capacity was not so severe.The CO2adsorption isotherm of H2O-CuBTC was more convex than other prepared MOFs,with larger growth rate at low pressure related to maximum adsorption capacity(Fig.S10 in Supporting infomation).Gas adsorption behavior is governed by porous features and active sites of adsorbents.The serious deformation in surface area and pore volume of H2O-CuBTC resulted in the degeneration of gas uptakes,while the existence of Cu(II)metal sites and the exposure of polar carboxyl groups in decomposed CuBTC after hydrolysis still contributed to gas adsorption[40,44].Hence,the H2O-CuBTC particle had less degradation of gas adsorption than porosity and showed more convex isotherms than other MOFs.The CO2/N2adsorption selectivity was calculated by ideal adsorption solution theory based on fitting adsorption isotherms with singlesite Langmuir-Freundlich model.For CO2/N2(50:50)system,the CuBTC CuBTC/PIM-1,H2O-CuBTC and H2O-CuBTC/PIM-1 powders showed similar selectivity about 20 at 100 kPa(Fig.4d and Table S4).Because of the more convex curve for CO2,the H2O-CuBTC powder had higher CO2/N2selectivity at low pressure than others.Relative to water-vulnerable CuBTC,the superhydrophobic and water-stable CuBTC/PIM-1 displayed invariable gas adsorption capacity and selectivity,even after water treatment.

    Fig.5.Applicability of PIM-1 decoration.(a)Digital photograph and SEM images of CuBTC/PIM-1 bulk wafer.(b)Digital photographs of the original PP net,CuBTC/PIM-1/PP,MIL-101/PIM-1/PP and UiO-66-NH2/PIM-1/PP nets.The water and n-hexane droplets were dropped on nets for illuminating the hydrophobicity and lipophilicity,respectively.(c-e)Digital photographs of the CuBTC/PIM-1/PP,MIL-101/PIM-1/PP,and UiO-66-NH2/PIM-1/PP nets for oil-water separation.The water was colored by dye for clarifying.

    For crystalline MOF materials,the inferior processability is one of bottlenecks for application[45–48].Inspired by the excellent moldability of polymers,we attempted to shape MOFs into bulk materials by combining PIM-1.Through solidification of the CuBTC/PIM-1 suspension in a cylindrical mold,the CuBTC/PIM-1 bulk wafer with high MOF content of 97 wt% could be prepared simply(Fig.5a).The PIM-1 polymer could play the role of glue to bond the CuBTC particles together.Besides molding bulk materials,the MOF/PIM-1 could be coated on the surfaces of various materials.We decorated the polypropylene(PP)textile fiber nets from masks by MOF/PIM-1.After deposition of CuBTC/PIM-1,the white fiber net changed to aquamarine(Fig.5b).The prepared CuBTC/PIM-1/PP net had remarkable hydrophobicity but excellent n-hexane wettability.Intrigued by these merits,the CuBTC/PIM-1/PP net was applied for separating oil-water mixture.As shown in Fig.5c,the transparent organicn-hexane phase immediately and totally passed through the CuBTC/PIM-1/PP separator and entered into the beaker,while the purple water was intercepted completely with the separation efficiency large than 99%.The reproducibility test of CuBTC/PIM-1/PP in the oil-water separation was conducted.As shown in Fig.S11(Supporting information),the separation efficiency of CuBTC/PIM-1/PP was not influenced by the cycle time and maintained above 99%,proving its excellent recyclability.The XRD patterns of CuBTC/PIM-1/PP before and after oil-water separation were measured and displayed in Fig.S12(Supporting information).Obviously,the CuBTC/PIM-1/PP displayed good stability and maintained its crystal structure after five cycles of oil-water separation.To present the universality of decoration,the MIL-101,composed by chromium-based centers and 1,4-benzenedicarboxylic acid linkers,and UiO-66-NH2,made by zirconium-based centers and 2-aminoterephthalic acid linkers,were further utilized for coating on the PP nets.The green MIL-101/PIM-1/PP and yellow UiO-66-NH2/PIM-1/PP separators exhibited fantastic hydrophobicity and lipophilicity(Fig.5b),and displayed excellent oil-water separation performances with the separation efficiencies all above 99%(Figs.5d and e).

    In summary,we developed a facile,mild,and versatile strategy for improving the water resistance of MOFs,based on the combination of porous polymers with hydrophobic pores.The PIM-1 layers with ultrathin thickness below 5 nm were uniformly coated on MOF surfaces by simple immersion.Because of the ultrathin and porous properties of the polymer layers,the PIM-1 coated CuBTC showed almost no decrease in surface area and pore volume.Since the PIM-1 layers could endow CuBTC/PIM-1 with superhydrophobicity and provide the hindrance for water into MOFs,the prepared composites had substantially enhanced stability to water and could keep their crystalline and chemical structures,porous features,and gas adsorption performances after exposure in water for several days at least,even in acidic and alkaline solutions.Moreover,the introduction of polymers facilitated the processability of MOFs.Through simple polymer solidification,the MOF/PIM-1 could be shaped into bulk wafer using molds and coated on nets to prepare oil-water separators.Overall,the strategy reported herein offers an alternative route for obtaining MOF composites and devices with impressive stability and performance in a scalable,highly processable and general manner.

    Declaration of competing interest

    The authors report no declaration of interest.

    Acknowledgments

    This work was financially supported by National Natural Science Foundation of China(No.51708252)and Guangdong Basic and Applied Basic Research Foundation(Nos.2020B1515120036,2021A1515010187).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.09.012.

    青春草国产在线视频| 黄色配什么色好看| 一级毛片电影观看 | 性色avwww在线观看| 久久亚洲精品不卡| 九草在线视频观看| 一卡2卡三卡四卡精品乱码亚洲| 综合色丁香网| av播播在线观看一区| 最近最新中文字幕大全电影3| 亚洲最大成人手机在线| 久久久久精品久久久久真实原创| 国产午夜精品一二区理论片| 国内精品宾馆在线| 久久久久久久久久黄片| 精品不卡国产一区二区三区| 秋霞伦理黄片| 亚洲av电影不卡..在线观看| 午夜福利视频1000在线观看| 国产精品三级大全| 亚洲欧美日韩无卡精品| 亚洲国产成人一精品久久久| 69av精品久久久久久| 亚洲欧洲日产国产| 国产一区二区在线观看日韩| 三级经典国产精品| 国产伦精品一区二区三区四那| 久久久久性生活片| 亚洲综合精品二区| 青春草亚洲视频在线观看| 日本与韩国留学比较| 高清av免费在线| 国产在线男女| 麻豆精品久久久久久蜜桃| 午夜亚洲福利在线播放| 亚洲av中文av极速乱| 黄色一级大片看看| 成人亚洲精品av一区二区| 亚洲欧美日韩高清专用| 狂野欧美激情性xxxx在线观看| 精品久久久噜噜| 超碰97精品在线观看| 97热精品久久久久久| 欧美性猛交黑人性爽| av免费在线看不卡| av播播在线观看一区| 成年女人看的毛片在线观看| 国产欧美日韩精品一区二区| 久久草成人影院| 午夜免费激情av| 日日干狠狠操夜夜爽| 成人毛片a级毛片在线播放| 久久精品熟女亚洲av麻豆精品 | 国产成人午夜福利电影在线观看| 久久精品国产亚洲网站| 色播亚洲综合网| 亚洲av免费在线观看| 欧美精品一区二区大全| 日本黄色视频三级网站网址| 啦啦啦韩国在线观看视频| 婷婷色av中文字幕| 一边摸一边抽搐一进一小说| 九色成人免费人妻av| 亚洲自拍偷在线| 国产精品一区二区性色av| 日韩国内少妇激情av| 国产探花在线观看一区二区| 中文字幕亚洲精品专区| 国产成人a∨麻豆精品| 淫秽高清视频在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 最近最新中文字幕大全电影3| 丰满少妇做爰视频| 一边亲一边摸免费视频| 精品国产三级普通话版| 欧美又色又爽又黄视频| 两个人的视频大全免费| 国产免费一级a男人的天堂| 国产高清不卡午夜福利| www.av在线官网国产| 97超碰精品成人国产| 免费一级毛片在线播放高清视频| 国产免费又黄又爽又色| 乱码一卡2卡4卡精品| 成人二区视频| 在线免费观看不下载黄p国产| 久久久久性生活片| 亚洲欧美一区二区三区国产| 国产真实乱freesex| 麻豆av噜噜一区二区三区| 久久久色成人| 禁无遮挡网站| 欧美成人一区二区免费高清观看| 久久综合国产亚洲精品| 综合色丁香网| 国产黄片视频在线免费观看| 日本av手机在线免费观看| 超碰av人人做人人爽久久| 我要搜黄色片| 69av精品久久久久久| 国语对白做爰xxxⅹ性视频网站| 久久国内精品自在自线图片| 国产片特级美女逼逼视频| 精品人妻熟女av久视频| av女优亚洲男人天堂| 深爱激情五月婷婷| 搡女人真爽免费视频火全软件| 日本-黄色视频高清免费观看| 欧美极品一区二区三区四区| 国产亚洲精品久久久com| 99久久中文字幕三级久久日本| 欧美精品一区二区大全| av在线亚洲专区| 又黄又爽又刺激的免费视频.| 建设人人有责人人尽责人人享有的 | 99热这里只有精品一区| 日本一二三区视频观看| АⅤ资源中文在线天堂| 高清日韩中文字幕在线| eeuss影院久久| 成人毛片60女人毛片免费| 精品人妻偷拍中文字幕| 亚洲经典国产精华液单| 精品酒店卫生间| 免费人成在线观看视频色| 免费人成在线观看视频色| 热99re8久久精品国产| 99久久精品热视频| 国产女主播在线喷水免费视频网站 | 看非洲黑人一级黄片| 成人高潮视频无遮挡免费网站| 国产精品电影一区二区三区| 亚洲av不卡在线观看| 韩国av在线不卡| 女人十人毛片免费观看3o分钟| 五月玫瑰六月丁香| 男人舔女人下体高潮全视频| 只有这里有精品99| 国产精品一区二区性色av| 亚洲成人av在线免费| 你懂的网址亚洲精品在线观看 | 久久精品夜色国产| 我要看日韩黄色一级片| 久久精品久久久久久噜噜老黄 | 国产精品一及| 中文天堂在线官网| 亚洲欧美成人精品一区二区| 99久国产av精品| 一本一本综合久久| 18禁在线无遮挡免费观看视频| 日本免费a在线| 国产黄色小视频在线观看| 久久久久久久午夜电影| 久久精品久久久久久噜噜老黄 | 国产精品爽爽va在线观看网站| 国产成人91sexporn| av免费观看日本| 国产熟女欧美一区二区| 国产精品久久久久久久电影| 在线观看66精品国产| 国产精品电影一区二区三区| 直男gayav资源| 国产亚洲一区二区精品| 91在线精品国自产拍蜜月| 日本wwww免费看| 亚洲国产欧美人成| 国产精品人妻久久久影院| 高清日韩中文字幕在线| 国产精品久久久久久精品电影| 亚洲精品成人久久久久久| 又粗又爽又猛毛片免费看| 纵有疾风起免费观看全集完整版 | 国产一级毛片七仙女欲春2| 欧美+日韩+精品| 久久鲁丝午夜福利片| 啦啦啦韩国在线观看视频| 国产欧美日韩精品一区二区| 大又大粗又爽又黄少妇毛片口| 欧美高清性xxxxhd video| 亚洲av电影不卡..在线观看| 在线播放国产精品三级| 成年av动漫网址| 国产精品伦人一区二区| 麻豆乱淫一区二区| 青春草国产在线视频| 亚洲欧美一区二区三区国产| 国产精品一区www在线观看| 国产真实乱freesex| 国产人妻一区二区三区在| 天天躁日日操中文字幕| 亚洲欧美精品自产自拍| 亚洲电影在线观看av| 天堂中文最新版在线下载 | 国产精品一二三区在线看| 成人午夜高清在线视频| 狠狠狠狠99中文字幕| 色播亚洲综合网| 18禁在线无遮挡免费观看视频| 午夜老司机福利剧场| 国产精品嫩草影院av在线观看| 校园人妻丝袜中文字幕| 久久久精品94久久精品| 国产精品一区二区三区四区久久| 亚洲电影在线观看av| 成年女人看的毛片在线观看| 插逼视频在线观看| 欧美最新免费一区二区三区| 波野结衣二区三区在线| 亚洲色图av天堂| 精品酒店卫生间| 欧美日本视频| 久久人妻av系列| 亚洲天堂国产精品一区在线| 高清在线视频一区二区三区 | 舔av片在线| 色吧在线观看| 亚洲精品乱码久久久久久按摩| 精品熟女少妇av免费看| 两个人的视频大全免费| 中文字幕av成人在线电影| 精品人妻偷拍中文字幕| 日本午夜av视频| 在线观看一区二区三区| 亚洲国产精品sss在线观看| 26uuu在线亚洲综合色| 最新中文字幕久久久久| 亚洲自拍偷在线| www日本黄色视频网| 菩萨蛮人人尽说江南好唐韦庄 | 黄色日韩在线| 亚洲在线自拍视频| 高清毛片免费看| 亚洲欧美精品综合久久99| 别揉我奶头 嗯啊视频| 成人二区视频| 亚洲av不卡在线观看| 在线播放国产精品三级| 天堂网av新在线| 91精品一卡2卡3卡4卡| 国产探花极品一区二区| 又黄又爽又刺激的免费视频.| 精品久久久久久成人av| 精品久久久久久久久久久久久| 色尼玛亚洲综合影院| 亚洲三级黄色毛片| 国产伦一二天堂av在线观看| av在线亚洲专区| 久久亚洲国产成人精品v| 久久久久国产网址| 欧美不卡视频在线免费观看| 少妇高潮的动态图| 伦理电影大哥的女人| 亚洲电影在线观看av| 国产极品精品免费视频能看的| 日产精品乱码卡一卡2卡三| 久久久久精品久久久久真实原创| 免费电影在线观看免费观看| 久久婷婷人人爽人人干人人爱| 丰满人妻一区二区三区视频av| 久久久久久久午夜电影| 青春草亚洲视频在线观看| 99久久无色码亚洲精品果冻| 亚洲四区av| 国产精品熟女久久久久浪| 国产黄色小视频在线观看| 青青草视频在线视频观看| 亚洲精品乱久久久久久| 最近视频中文字幕2019在线8| 校园人妻丝袜中文字幕| 能在线免费看毛片的网站| 国产片特级美女逼逼视频| 禁无遮挡网站| 狂野欧美白嫩少妇大欣赏| 一卡2卡三卡四卡精品乱码亚洲| 男女那种视频在线观看| 久久这里有精品视频免费| 精品少妇黑人巨大在线播放 | 久久久久久久久久久免费av| 高清午夜精品一区二区三区| 永久免费av网站大全| 在线观看一区二区三区| 97在线视频观看| 亚洲国产精品成人综合色| 日韩高清综合在线| 国产精品美女特级片免费视频播放器| 亚洲av不卡在线观看| 黄色欧美视频在线观看| 久久久久国产网址| av.在线天堂| 欧美日韩精品成人综合77777| 亚洲精品乱久久久久久| 成人漫画全彩无遮挡| 免费大片18禁| 亚洲国产最新在线播放| 啦啦啦啦在线视频资源| 久久久a久久爽久久v久久| 亚洲在线观看片| 亚洲最大成人中文| 精品国产露脸久久av麻豆 | 在线观看av片永久免费下载| 久久久久久九九精品二区国产| 3wmmmm亚洲av在线观看| 亚洲av免费在线观看| 精品免费久久久久久久清纯| 国产亚洲av嫩草精品影院| 亚洲欧美中文字幕日韩二区| 中文字幕制服av| 老女人水多毛片| www.av在线官网国产| 午夜福利网站1000一区二区三区| 少妇丰满av| 青青草视频在线视频观看| 男人和女人高潮做爰伦理| 中文字幕亚洲精品专区| 国产探花在线观看一区二区| 日本-黄色视频高清免费观看| 日韩精品青青久久久久久| 亚洲av.av天堂| 一区二区三区高清视频在线| www.av在线官网国产| 1000部很黄的大片| 最近中文字幕2019免费版| 国产乱人视频| 大话2 男鬼变身卡| 亚洲欧美日韩无卡精品| 亚洲精品色激情综合| av视频在线观看入口| 久久久久网色| 免费黄网站久久成人精品| 国产亚洲精品av在线| 1000部很黄的大片| 神马国产精品三级电影在线观看| 大香蕉久久网| 久久热精品热| 国产午夜精品久久久久久一区二区三区| av在线播放精品| 免费电影在线观看免费观看| 一区二区三区四区激情视频| 男人狂女人下面高潮的视频| 国产精品蜜桃在线观看| 中文字幕精品亚洲无线码一区| 能在线免费看毛片的网站| 精品无人区乱码1区二区| 国产在线一区二区三区精 | 最近视频中文字幕2019在线8| 国产亚洲精品久久久com| 干丝袜人妻中文字幕| 99热这里只有精品一区| 免费人成在线观看视频色| 日韩,欧美,国产一区二区三区 | 国产精品.久久久| 午夜福利在线观看免费完整高清在| 91午夜精品亚洲一区二区三区| 色网站视频免费| 亚洲精品久久久久久婷婷小说 | 亚洲欧美日韩无卡精品| 黄片无遮挡物在线观看| 亚洲自拍偷在线| 久久久久久久久大av| 亚洲国产欧洲综合997久久,| 两个人视频免费观看高清| 国产视频内射| 国产高清三级在线| 国内精品一区二区在线观看| 夫妻性生交免费视频一级片| 国产高潮美女av| 日产精品乱码卡一卡2卡三| 日韩欧美精品v在线| 亚洲国产欧美人成| 国产亚洲精品久久久com| 午夜精品国产一区二区电影 | 亚洲精品国产成人久久av| 欧美激情在线99| 99在线视频只有这里精品首页| 欧美成人午夜免费资源| 身体一侧抽搐| 亚洲精品国产成人久久av| 麻豆精品久久久久久蜜桃| 亚洲成av人片在线播放无| 日韩精品有码人妻一区| 一边摸一边抽搐一进一小说| 国产 一区 欧美 日韩| 久久久亚洲精品成人影院| 一夜夜www| 国产亚洲av片在线观看秒播厂 | 国产亚洲一区二区精品| 国产精品一区二区在线观看99 | 一边亲一边摸免费视频| 超碰av人人做人人爽久久| 亚洲人与动物交配视频| 观看免费一级毛片| 国产精品国产高清国产av| 91aial.com中文字幕在线观看| 亚洲av福利一区| 午夜老司机福利剧场| 99久久人妻综合| 欧美激情久久久久久爽电影| 熟女电影av网| 九九久久精品国产亚洲av麻豆| 深夜a级毛片| 久久精品久久久久久噜噜老黄 | 波多野结衣高清无吗| 国产精品福利在线免费观看| 村上凉子中文字幕在线| 亚洲成人精品中文字幕电影| 国产av在哪里看| 午夜a级毛片| 国产av不卡久久| 青春草亚洲视频在线观看| 两个人视频免费观看高清| 亚洲av熟女| 国产亚洲精品久久久com| 亚洲欧美中文字幕日韩二区| 一级毛片aaaaaa免费看小| 黄色日韩在线| 精品人妻偷拍中文字幕| 色综合站精品国产| 99热全是精品| 日韩国内少妇激情av| 久久精品夜夜夜夜夜久久蜜豆| 久久韩国三级中文字幕| 乱码一卡2卡4卡精品| 两个人的视频大全免费| 免费不卡的大黄色大毛片视频在线观看 | 久久久国产成人精品二区| 色综合色国产| 97超视频在线观看视频| 熟女人妻精品中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 在线观看一区二区三区| 99久国产av精品国产电影| 久久久欧美国产精品| 自拍偷自拍亚洲精品老妇| 成人无遮挡网站| 国产高清三级在线| 精品久久久久久电影网 | 国产三级中文精品| 1024手机看黄色片| 国产免费福利视频在线观看| 两个人视频免费观看高清| 国产精品99久久久久久久久| 久久久久久国产a免费观看| 亚洲在线观看片| 亚洲av男天堂| 午夜激情欧美在线| 中文字幕免费在线视频6| 2021天堂中文幕一二区在线观| 麻豆成人午夜福利视频| 国产免费一级a男人的天堂| 精品久久久久久久末码| 精品久久久久久久人妻蜜臀av| 亚洲内射少妇av| 久久人妻av系列| 色综合亚洲欧美另类图片| 国产91av在线免费观看| 国产一区二区在线观看日韩| 国产乱来视频区| 91av网一区二区| 国产精品一二三区在线看| 亚洲精品乱码久久久久久按摩| 久久久国产成人免费| 国产极品精品免费视频能看的| 六月丁香七月| 亚洲欧美成人精品一区二区| 国产精品,欧美在线| videos熟女内射| 久久久成人免费电影| 中文字幕免费在线视频6| 日本午夜av视频| 干丝袜人妻中文字幕| 成人毛片60女人毛片免费| 亚洲av熟女| 免费观看精品视频网站| 久久人人爽人人爽人人片va| 大又大粗又爽又黄少妇毛片口| 亚洲av免费在线观看| 热99re8久久精品国产| 三级男女做爰猛烈吃奶摸视频| 亚洲高清免费不卡视频| .国产精品久久| 天天躁日日操中文字幕| 国产精品一区二区三区四区免费观看| 偷拍熟女少妇极品色| 少妇高潮的动态图| 亚洲高清免费不卡视频| 在线a可以看的网站| 午夜福利在线观看吧| 91狼人影院| 天美传媒精品一区二区| 成人高潮视频无遮挡免费网站| 亚洲av熟女| 岛国毛片在线播放| 中文字幕熟女人妻在线| 国产精品麻豆人妻色哟哟久久 | 色噜噜av男人的天堂激情| 婷婷色av中文字幕| 亚洲欧美日韩无卡精品| 特大巨黑吊av在线直播| www日本黄色视频网| 中文字幕亚洲精品专区| 免费观看a级毛片全部| 国产在视频线在精品| 97超视频在线观看视频| 亚洲在线自拍视频| 精品久久国产蜜桃| 中文在线观看免费www的网站| 97超视频在线观看视频| 国产成人a区在线观看| 亚洲精品乱久久久久久| 欧美丝袜亚洲另类| 一区二区三区四区激情视频| 一级爰片在线观看| 综合色丁香网| 精品熟女少妇av免费看| 欧美3d第一页| 久久久久久伊人网av| 看黄色毛片网站| 日本猛色少妇xxxxx猛交久久| 精品久久久久久成人av| 高清日韩中文字幕在线| 亚洲在线自拍视频| 日韩欧美三级三区| 国产精品不卡视频一区二区| 日本av手机在线免费观看| 女人久久www免费人成看片 | 日韩精品青青久久久久久| 99热这里只有精品一区| 日韩视频在线欧美| 一个人观看的视频www高清免费观看| 岛国在线免费视频观看| 国产精品一二三区在线看| 黄色欧美视频在线观看| 国产熟女欧美一区二区| 亚洲精品色激情综合| 夫妻性生交免费视频一级片| 色吧在线观看| 中文字幕精品亚洲无线码一区| 级片在线观看| 网址你懂的国产日韩在线| 在线天堂最新版资源| 欧美日韩一区二区视频在线观看视频在线 | 三级国产精品片| 网址你懂的国产日韩在线| 91久久精品国产一区二区三区| 亚洲不卡免费看| 男的添女的下面高潮视频| 69人妻影院| 啦啦啦观看免费观看视频高清| 3wmmmm亚洲av在线观看| 国产精品美女特级片免费视频播放器| 九草在线视频观看| 男女国产视频网站| 女人被狂操c到高潮| 亚洲综合色惰| 国产精品人妻久久久久久| 性插视频无遮挡在线免费观看| 我的老师免费观看完整版| 成年免费大片在线观看| 久久久久久久久大av| 中文字幕av在线有码专区| 一个人观看的视频www高清免费观看| 男的添女的下面高潮视频| 晚上一个人看的免费电影| 国产精品国产三级国产av玫瑰| 国产伦精品一区二区三区四那| 一区二区三区四区激情视频| 亚洲第一区二区三区不卡| 啦啦啦啦在线视频资源| 在线免费观看的www视频| 日日摸夜夜添夜夜添av毛片| 国模一区二区三区四区视频| 亚洲av中文av极速乱| 日本三级黄在线观看| 日本猛色少妇xxxxx猛交久久| 亚洲国产精品合色在线| 亚洲欧美中文字幕日韩二区| 久久精品久久久久久噜噜老黄 | 美女xxoo啪啪120秒动态图| 精品不卡国产一区二区三区| 三级毛片av免费| 婷婷六月久久综合丁香| 国产亚洲精品av在线| 国语对白做爰xxxⅹ性视频网站| 只有这里有精品99| 老女人水多毛片| 免费大片18禁| 天堂中文最新版在线下载 | 免费看美女性在线毛片视频| 高清午夜精品一区二区三区| 国产乱来视频区| 最近最新中文字幕免费大全7| 国产成人午夜福利电影在线观看| 欧美成人一区二区免费高清观看| 波多野结衣高清无吗| 色尼玛亚洲综合影院| 中国国产av一级| 国产精品久久久久久久电影| 国产视频内射| 国产高清视频在线观看网站| 亚洲国产精品合色在线| 成人性生交大片免费视频hd| 成人国产麻豆网| 成人一区二区视频在线观看| 毛片一级片免费看久久久久| 波多野结衣高清无吗| 真实男女啪啪啪动态图| 观看美女的网站| 国产精品综合久久久久久久免费| 好男人在线观看高清免费视频| 国产极品精品免费视频能看的| 亚洲高清免费不卡视频| 伦理电影大哥的女人| 一夜夜www| 日韩在线高清观看一区二区三区| 色哟哟·www|