• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhanced degradation of organic contaminants by Fe(III)/peroxymonosulfate process with L-cysteine

    2022-06-20 06:22:10ChengduQiYanniWenYijieZhaoYinhaoDaiYanpingLiChenminXuShaoguiYangHuanHe
    Chinese Chemical Letters 2022年4期

    Chengdu Qi,Yanni Wen,Yijie Zhao,Yinhao Dai,Yanping Li,Chenmin Xu,Shaogui Yang,Huan He

    School of Environment,Nanjing Normal University,Nanjing 210023,China

    ABSTRACT The difficulty in Fe(III)/Fe(II)conversion in the Fe(III)/peroxymonosulfate(PMS)process limits its effi-ciency and application.Herein,L-cysteine(Cys),a green natural organic ligand with reducing capability,was innovatively introduced into Fe(III)/PMS to construct an excellent Cys/Fe(III)/PMS process.The Cys/Fe(III)/PMS process,at room temperature,can degrade a variety of organic contaminants,including dyes,phenolic compounds,and pharmaceuticals.In subsequent experiments with acid orange 7(AO7),the AO7 degradation efficiency followed pseudo-first-order kinetic which exhibited an initial“fast stage”and a second“slow stage”.The rate constant values ranged depending on the initial Cys,F(xiàn)e(III),PMS,and AO7 concentrations,reaction temperature,and pH values.In addition,the presence of Cl-,NO3-,and SO42- had negligible impact while HCO3- and humic acid inhibited the degradation of AO7.Furthermore,radical scavenger experiments and methyl phenyl sulfoxide(PMSO)transformation assay indicated that sulfate radical,hydroxyl radical,and ferryl ion(Fe(IV))were the dominant reactive species involved in the Cys/Fe(III)/PMS process.Finally,based on the results of gas chromatography-mass spectrometry,several AO7 degradation pathways,including N=N cleavage,hydroxylation,and ring opening were proposed.This study provided a new insight to improve the efficiency of Fe(III)/PMS process by accelerating Fe(III)/Fe(II)cycle with Cys.

    Keywords:Advanced oxidation process Peroxymonosulfate Fe(II)recycle L-cysteine Reactive species Degradation pathway

    Recently,advanced oxidation processes(AOPs)involved in highly reactive species,including but not limited to hydroxyl radical(HO·)and sulfate radical(SO4·-),have received increasing attention in destroying refractory organic contaminants in water/wastewater.Compared with classical HO·based AOPs,the emerging SO4·-based AOPs has advantages in high redox potential(2.5–3.1 V),long half-life(30–40 μs),and wide operation pH(pH 2.0–8.0)[1].Peroxymonosulfate(PMS),an important precursor of SO4·-,can be activated by transition metals[2,3],UV[4,5],heat[6],alkali[7]and other catalysts(Eq.1)[8–11].

    Among which transition metals(cobalt and iron)have been proven to effectively initiate the reactive species generation under mild conditions.Although Co has shown superior ability to activate PMS,the inherent toxicity impeded its widely application.Thus,the high effectiveness and environmentally friendly properties of iron make it the most promising PMS activator in application[12].However,the iron/PMS process still has some disadvantages,such as the difficulty of Fe(II)regeneration,the narrow range of pH and the accumulation of iron sludge,which limit its actual usage[13].

    To overcome these negative impacts,reducing agents,such as ascorbic acid,hydroxylamine and metal sulfides,are introduced into the iron activated PMS process to overcome the limitations[14–16].Compared with aforementioned reducing agents,L-cysteine(Cys)shows superior reducibility and active chelating groups,could relieve the Fe(III)precipitation[17].In addition,Cys,a naturally occurring amino acid,has no harmful effect on aquatic environment[18,19].Furthermore,the complex of Fe(III)-Cys may provide a convenient channel for the conversion Fe(III)to Fe(II)[20].Considering these advantages,Cys could be applied in iron activated PMS process to reduce the precipitation of Fe(III)and accelerate the Fe(III)/Fe(II)conversion.However,to the best of our knowledge,the evaluation of Cys acted as chelating and reducing agents in Fe(III)/PMS process for organic contaminants degradation has never been reported.

    Fig.1.(a)AO7 degradation efficiencies in different processes and(b)kinetics of AO7 degradation in the Cys/Fe(III)/PMS process(reaction conditions:[AO7]0 = 20 μmol/L,[Cys]0 =[Fe(III)]0 =[Fe(II)]0 = 0.1 mmol/L,[PMS]0 = 1 mmol/L, T = 25 °C).

    In this work,Cys was tentatively introduced into Fe(III)/PMS and the performance of Cys/Fe(III)/PMS process was evaluated for degradation of acid orange(AO7),a typical azo dye which brings serious environmental and ecological problems.Subsequently,the effects of initial Cys,F(xiàn)e(III),and PMS dosages,initial AO7 concentration,reaction temperature and solution pH on AO7 degradation efficiency were investigated.And then,water constituents including chloride ion,nitrate ion,sulfate ion,bicarbonate ion and humic acid that affected the degradation performance of the Cys/Fe(III)/PMS process were evaluated.In addition,radical scavenger experiments and methyl phenyl sulfoxide(PMSO)transformation assay were conducted to detect the reactive species participated in AO7 degradation.Furthermore,gas chromatography–mass spectrometry(GC–MS)was applied to identify the intermediates of AO7 to deduce the possible degradation pathway.

    The chemicals,experimental procedure,and analysis methods are exhibited in Text S1(Supporting information).

    As shown in Fig.1,the degradation efficiency of AO7 was negligible in the Cys(0.3%),PMS(1.1%),Cys/Fe(III)(2.4%),and Cys/PMS(5.0%)process,which suggest that the abovementioned processes are unreactive toward AO7[7,21].When Fe(III)was added,the decolorization efficiency of AO7 was 17.2%,which could be ascribed to the formation of complex AO7-Fe(III)(Fig.S1 in Supporting information)[22].However,the combination of Fe(III)and PMS,i.e.,F(xiàn)e(III)/PMS process,could only obtain about 12.2% of degradation efficiency of AO7,which could be related to the low activation ability of PMS by Fe(III)[23].Meanwhile,the degradation efficiency of AO7 could only reach 35.1% in Fe(II)/PMS process.Strikingly,when Cys was introduced into the Fe(III)/PMS process,the decay of AO7 became extremely quick and exhibited a distinct two-stage oxidation process,i.e.,an initial fast stage(the first 5 min)followed by a slow one(the post 55 min),which could be contributed to that the introduction of Cys could enhance the Fe(II)generation firstly and then gradually consumption.The degradation efficiency of AO7 rapidly reached to 55.8% in the fast stage within 5 min while then proceeded slowly and obtained 91.4% of removal within 60 min.To further elucidate the degradation process,thepseudo-first order kinetic was used to simulate the two-stage reactions and the corresponding rate constants are designated askobs1andkobs2,respectively.As shown in Fig.1b,the fittedkobs1andkobs2for AO7 degradation were 0.163 min-1and 0.0302 min-1,respectively.And thekobs1was 5 times higher thankobs2,indicating PMS activation in the Cys/Fe(III)/PMS process was controlled by different processes in these two stages[21,24].Besides,effects of PS type,iron valent on AO7 degradation and the degradation other organic contaminants were investigated(Text S2 in Supporting information).The above results indicated that the Cys/Fe(III)/PMS process could be employed for removal of various kinds of organic contaminants from wastewater.

    As shown in Fig.2a,the AO7 degradation efficiency increased with the increase in Cys concentration from 0.02 mmol/L to 0.2 mmol/L.However,the further increase of Cys concentration to 0.5 mmol/L resulted in a reduction of AO7 degradation,which could be ascribed to the quenching and scavenging of reactive oxygen species by excess Cys[20,21].The AO7 degradation effi-ciency increased with the increase in Fe(III)concentration from 0.02 mmol/L to 0.1 mmol/L(Fig.2b).However,the continued increasing of Fe(III)concentration from 0.2 mmol/L to 0.5 mmol/L only accelerated the degradation rate of AO7 but had negligible effects on the overall AO7 degradation efficiency,which could be attributed to that the generated amount of Fe(II)from Fe(III)by Cys was stable at the identical Cys concentration and the formation rate of Fe(II)was higher at a higher initial Fe(III)concentration.The AO7 degradation efficiency increased with the increase in PMS concentration from 0.2 mmol/L to 0.5 mmol/L(Fig.2c).However,the further increase of PMS resulted in the decrease of AO7 degradation,which may be ascribed to the quenching and scavenging of reactive oxygen species by excess PMS[25].As shown in Fig.2d,the degradation of AO7 was gradually suppressed as the pH values increased,satisfied AO7 degradation efficiency(76.1%–93.2%)could be obtained at the solution pH range of 3.19–6.17,while AO7 degradation efficiency was reduced to<50% with the higher solution pH(49.5% at pH 7.90 and 41.3% at pH 8.95).Such pH–dependency AO7 degradation could be attributed to the changes in Fe speciation.Although Fe(II)species are readily soluble in the wide pH range of 2–9,the oxidized product Fe(III)will quickly precipitate in the form of ferric oxyhydroxide at pH above 3.The presence of Cys could act as complexing agents toward Fe(III),facilitating the redox cycle of Fe and finally expanding the working pH to 4[20,21].In addition,the effect of the AO7 concentration and reaction temperature were evaluated and the results were presented in Text S3(Supporting information).

    As shown in Figs.S5a-c(Supporting information),the existence of chloride ion(Cl-),nitrate ion(NO3-)or sulfate ion(SO42-)in the tested concentrations(0.1–5 mmol/L)had a negligible impact on the degradation of AO7,implying the good adaptability of Cys/Fe(III)/PMS process(Text S4 in Support information).However,bicarbonate(HCO3-)at low concentration(0.1 mmol/L)had a negligible impact,whereas high concentrations(1–5 mmol/L)remarkably suppress AO7 degradation in the Cys/Fe(III)/PMS process Fig.3a).The degradation efficiency of AO7 decreased from 91.0% to 42.0% within 60 min with increasing HCO3-concentration from 0 to 5 mmol/L.Thekobs,especially the kobs2values declined from 0.0300 min-1to 0.00170 min-1(Fig.S6a in Supporting information).This result could be rationalized by the fact that the addition of HCO3-could cause the pH value rise(the solution pH was 3.19,3.22,4.70,and 7.01 after adding 0,0.1,1,and 5 mmol/L HCO3-,respectively)which had a negative impact on AO7 degradation and HCO3-could reacted with SO4·-and HO·to form HCO3·-/CO3·-Eqs.2 and(3)with lower redox potential(1.59 V)and higher selectivity,making it less available for reacting with AO7[26].In addition,humic acid(HA),a representative natural organic matter,significantly inhibited the degradation of AO7 in the Cys/Fe(III)/PMS process with the tested concentrations(0.1–5 mg/L)(Fig.3b).The degradation efficiency of AO7 decreased from 87.9% to 67.8% with increasing HA concentration from 0 to 5 mg/L.Thekobs,especially the kobs1values declined from 0.161 min-1to 0.0588 min-1(Fig.S6b in Supporting information).This result could be explained by the fact that HA competitively reacted with SO4·-and HO·(Eq.4),making it less available for reacting with AO7[27].

    Fig.2.Effect of(a)Cys-concentration,(b)Fe(III)concentration,(c)PMS concentration,and(d)solution pH on AO7 degradation efficiencies in the Cys/Fe(III)/PMS process(Except for the investigated parameter,the other parameters were fixed at:[AO7]0 = 20 μmol/L,[Cys]0 =[Fe(III)]0 = 0.1 mmol/L,[PMS]0 = 1 mmol/L,pH 3.19, T = 25 °C).

    Fig.3.Effect of(a)HCO3– and(b)humic acid on AO7 degradation efficiencies in the Cys/Fe(III)/PMS process(reaction conditions:[AO7]0 = 20 μmol/L,[Cys]0 =[Fe(III)]0 = 0.1 mmol/L,[PMS]0 = 1 mmol/L, T = 25 °C).

    SO4·-and HO·are recognized as the primary reactive oxygen species involved in various activated PMS processes.In order to identify the reactive oxygen species involved in the Cys/Fe(III)/PMS process,radical quenching experiment was performed by adding different amounts of TBA and EtOH,respectively.EtOH usually acts as a scavenger for both SO4·-and HO·(kEtOH,HO· =(1.8–2.8)× 109L mol-1s-1,kEtOH,SO4·-=(1.6–7.7)× 107L mol-1s-1)while TBA for HO·(kTBA,HO· =(3.8–7.6)× 108L mol-1s-1,kTBA,SO4·-=(4.0–9.1)× 105L mol-1s-1).As shown in Fig.4a,91.5% of AO7 was degraded in the absence of radical scavengers.However,AO7 degradation efficiencies were suppressed with different dosages of TBA or EtOH addition,indicating that SO4·-and HO·might be the dominating reactive oxygen species.When 0.1 mol/L TBA was added,the degradation efficiency of AO7 decreased to 76.7%,indicating 16.2% of the degradation inhibition occurred because of HO·.As the concentration of TBA increased to 0.5 mol/L,the degradation efficiency of AO7 reduced significantly to 58.1%.It has fully been proven that the enhancement restraint of target organic contaminant removal may due to the scavenging of TBA with both the SO4·-and HO·other than the HO·alone,especially with a high TBA level.Thus,0.1 mol/L TBA was appropriate for completely scavenging of HO·in the present study.In the presence of 0.1 mol/L EtOH,the degradation efficiency of AO7 decreased to 52.6%.As the dosage of EtOH increased to 0.5 mol/L,the degradation efficiency of AO7 reduced to 23.9%,showing 0.5 mol/L EtOH was appropriate for completely scavenging of SO4·-and HO·and 57.7% of the degradation restraint happened because of SO4·-.The remaining 26.1% of degradation efficiency of AO7 may due to other reactive species(e.g.,PMS and SO4·-).

    It has been reported that Fe(IV)could be produced in iron activated PMS process[28].To explore the possible existence of Fe(IV)in the Cys/Fe(III)/PMS process,PMSO was used as the probe compound as Fe(IV)could selectively transform PMSO to a unique oxygen product PMSO2,which was different from the radical-induced byproducts.As shown in Fig.4b,the concentration of produced PMSO2was 30 μmol/L and the concentration of PMSO decreased by 40 μmol/L after 60 min,indicating that Fe(IV)was generated in the Cys/Fe(III)/PMS process.Moreover,the yield of PMSO2,which means the molar ratio of PMSO2produced to PMSO lost,can be used to evaluate the contribution of Fe(IV)to PMSO degradation.In this study,the yield of PMSO2was identified as 70.8%-73.3%during the reaction period(Fig.4b).The yield below 100% may be due to the PMSO degradation caused by reactive oxygen species generated[29].To sum up,F(xiàn)e(IV)could be also presented in the Cys/Fe(III)/PMS process.

    In addition,the effect of oxygen on AO7 degradation in the Cys/Fe(III)/PMS process was investigated by purging air or nitrogen.As depicted in Fig.4c,the degradation efficiency of AO7 was high(around 90%)in the atmosphere rich in oxygen,while the decolorization was strongly retarded to 47.8% in the absence of oxygen(purging nitrogen).Besides,the concentration of dissolved oxygen(DO)were monitored and DO kept stable during the degradation process(Fig.S7 in Supporting information).This could be ascribed to the evolution of O2·-in the presence of oxygen.Fe(II)generated from the reduction of Fe(III)by Cys could react with oxygen to form O2·-,which would quickly activate HSO5-to generate SO4·-[24].Owing to this additional activation pathway,reactive oxygen species would be continuously generated and consequently promote the degradation of AO7.

    Based on the aforementioned results,we assumed that the introduction of Cys into the Fe(III)/PMS process significantly accelerated the transformation from Fe(III)to Fe(II)and thus generated more reactive species and improved the oxidation efficiency.To verify our hypothesis,the variation of Fe(II),Cys and PMS concentration with time in the Cys/Fe(III)/PMS process was monitored.As shown in Fig.4d,F(xiàn)e(II)was rapidly generated along with the addition of Cys in the first 5 min.It has been reported that the sulfhydryl group(-SH)in Cys could act as electron donor to transform the Fe(III)into Fe(II)(Liet al.,2016).And then,the concentration of Fe(II)decreased gradually with the proceeding of AO7 degradation.Besides,the degradation of AO7 was almost suppressed(5.9% removal efficiency)in Fe(II)/PMS process with 0.1 mmol/L EDTA(Fig.S8 in Supporting information),a strong Fe(II)chelator,which proved the importance role of Fe(II)in the Cys/Fe(III)/PMS process for AO7 degradation.Meanwhile,the level of Cys was also reduced gradually,which could be associated with the reaction between Cys and Fe(III)for the regeneration of Fe(II)[21].The decay pattern of PMS was similar to that of Cys,which could be attributed with the reaction between PMS and the regenerated Fe(II)[13].

    Combined with the above results,the activation mechanism of the Cys/Fe(III)/PMS process could be tentatively proposed(Scheme S1 in Supporting information).Serving as electron donor,Cys converted to Cystine which accompanied with transferring electrons to Fe(III),triggered the redox cycle of Fe(III)/Fe(II)and resulted in the regeneration of Fe(II)Eq.5).And then,PMS was activated Fe(II)with the formation of SO4·-and HO·(Eqs.6 and(7).Besides,HO·can also be formed through the reactions of SO4·-with H2O/OH-(Eq.8).In addition,the reaction of Fe(II)and PMS can generate Fe(IV)(Eq.9),which was finally converted to Fe(III)via secondary reactions with Fe(II),H2O or PMS(Eq.10)[13].Meanwhile,a portion of Cys could regenerated by the reaction between Cystine and HO·(Eq.11)[19,30].It should be noted that in this process,F(xiàn)e(II)was continuously regenerated by Cys and then was consumed by PMS,generating multiple reactive species and consequently degrading AO7.

    Fig.4.Effect of(a)radical scavengers,(c)dissolved oxygen on AO7 degradation efficiencies,(b)PMSO loss,PMSO2 generation,and η[PMSO2]values in the Cys/Fe(III)/PMS process.(d)Changes of Fe(II),Cys-and PMS in the Fe(III)/PMS and Cys/Fe(III)/PMS processes(reaction conditions:[AO7]0 = 20 μmol/L or[PMSO]0 = 100 μmol/L,[Cys]0 =[Fe(III)]0 = 0.1 mmol/L,[PMS]0 = 1 mmol/L, T = 25 °C).

    Furthermore,AO7 degradation pathways were proposed based on the results of gas chromatography-mass spectrometry(Text S5 in Supporting information).

    To sum up,Cys was successful proved to have the enhancement impact for the degradation of AO7 in the Fe(III)/PMS process and the AO7 degradation exhibited a distinct two-stage oxidation process,i.e.,an initial fast stage followed by a slow one.Besides dyes,phenolic compounds and pharmaceuticals can also be degraded in the Cys/Fe(III)/PMS process.The AO7 degradation efficiency increased with the increase in Cys,F(xiàn)e(III)concentration,and reaction temperature.However,the superfluous PMS was not favor for the AO7 degradation.The higher the pH was applied,the poor degradation of AO7 was observed.The existence of Cl-,NO3-or SO42-had a negligible impact while HCO3-and humic acid inhibited on the degradation of AO7.Sulfate radical,hydroxyl radical,and ferryl ion(Fe(IV))were deduced as the dominant reactive species involved in the Cys/Fe(III)/PMS process by the results of radical scavenger experiments and methyl phenyl sulfoxide(PMSO)transformation assay.N=N cleavage,hydroxylation,and ring opening were proposed as AO7 degradation pathways based on the results of GCMS.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the Natural Science Foundation of Jiangsu Province ,China(No.BK20200721),the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province,China(No.19KJB610016),the National Natural Science Foundation of China(No.21777067),the Six Talent Peaks Project in Jiangsu Province,China(No.JNHB–10),and Primary Research&Development Plan of Jiangsu Province,China(No.BE2019743).The authors would like to thank Xueyan Liu from Shiyanjia Lab(www.shiyanjia.com)for the GC-MS analysis.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.10.087.

    成人免费观看视频高清| 久久久久久久久中文| 人妻久久中文字幕网| 国产区一区二久久| 午夜激情福利司机影院| 免费看日本二区| 人人妻人人澡人人看| 国产精华一区二区三区| 国产极品粉嫩免费观看在线| 久久精品91无色码中文字幕| 色播亚洲综合网| 中国美女看黄片| 在线观看免费午夜福利视频| 99久久国产精品久久久| 久久久久久大精品| 成人av一区二区三区在线看| 老司机靠b影院| 黄网站色视频无遮挡免费观看| 777久久人妻少妇嫩草av网站| 777久久人妻少妇嫩草av网站| 亚洲人成网站在线播放欧美日韩| 熟女电影av网| 精品福利观看| 激情在线观看视频在线高清| 亚洲中文字幕一区二区三区有码在线看 | bbb黄色大片| 99精品久久久久人妻精品| 亚洲成国产人片在线观看| 国产成人啪精品午夜网站| 亚洲精品国产一区二区精华液| 黄片播放在线免费| 中文字幕久久专区| 看片在线看免费视频| 99国产精品一区二区三区| 亚洲国产欧美网| 熟妇人妻久久中文字幕3abv| 欧美精品啪啪一区二区三区| 熟妇人妻久久中文字幕3abv| 国产熟女xx| 亚洲午夜精品一区,二区,三区| 国产亚洲欧美在线一区二区| a级毛片a级免费在线| 性色av乱码一区二区三区2| av超薄肉色丝袜交足视频| 日韩高清综合在线| 精品熟女少妇八av免费久了| 国产97色在线日韩免费| 在线av久久热| 91大片在线观看| 好看av亚洲va欧美ⅴa在| 欧美性长视频在线观看| 亚洲国产毛片av蜜桃av| av超薄肉色丝袜交足视频| 日韩欧美在线二视频| 成年版毛片免费区| 久久中文看片网| 日韩大码丰满熟妇| 啦啦啦观看免费观看视频高清| 欧美三级亚洲精品| 99热只有精品国产| 黄色片一级片一级黄色片| 一区二区三区国产精品乱码| 日韩欧美国产一区二区入口| 女生性感内裤真人,穿戴方法视频| 两性夫妻黄色片| 黄色a级毛片大全视频| 国产一级毛片七仙女欲春2 | 国产亚洲精品av在线| 午夜福利在线在线| 欧美日韩亚洲综合一区二区三区_| 国产区一区二久久| 亚洲午夜精品一区,二区,三区| 国内揄拍国产精品人妻在线 | 女人爽到高潮嗷嗷叫在线视频| 人人妻人人澡欧美一区二区| 国产精品 国内视频| 伦理电影免费视频| 一进一出抽搐gif免费好疼| 欧美激情极品国产一区二区三区| 最新在线观看一区二区三区| 欧美性长视频在线观看| 在线免费观看的www视频| 一本一本综合久久| 欧美日本视频| 两个人免费观看高清视频| 免费看十八禁软件| 国产精品野战在线观看| 国产成人系列免费观看| 母亲3免费完整高清在线观看| 国产精品 欧美亚洲| 国产视频一区二区在线看| 在线免费观看的www视频| 欧美色视频一区免费| 亚洲 欧美一区二区三区| 国产精品综合久久久久久久免费| 久久中文字幕人妻熟女| 成人亚洲精品av一区二区| 777久久人妻少妇嫩草av网站| 久久天堂一区二区三区四区| 亚洲人成电影免费在线| 欧美乱码精品一区二区三区| 日本 av在线| 视频在线观看一区二区三区| 亚洲av中文字字幕乱码综合 | 精品久久久久久久久久久久久 | 母亲3免费完整高清在线观看| 高清在线国产一区| 男人舔女人的私密视频| 两个人视频免费观看高清| 亚洲国产中文字幕在线视频| 国产成人欧美| 国产亚洲精品久久久久5区| 狂野欧美激情性xxxx| www日本在线高清视频| 国产av一区二区精品久久| 久久久久九九精品影院| 国产激情偷乱视频一区二区| 男人舔女人下体高潮全视频| 亚洲成av人片免费观看| 搞女人的毛片| 久久婷婷人人爽人人干人人爱| 丝袜人妻中文字幕| 麻豆一二三区av精品| 国产爱豆传媒在线观看 | 黄频高清免费视频| 国产片内射在线| 黄网站色视频无遮挡免费观看| 欧美黄色片欧美黄色片| 国产成人av教育| 91在线观看av| av欧美777| 亚洲精品久久国产高清桃花| 成人一区二区视频在线观看| 国产野战对白在线观看| 99国产精品一区二区蜜桃av| 国产99久久九九免费精品| 午夜福利在线在线| 一本久久中文字幕| 亚洲中文日韩欧美视频| 国产高清激情床上av| 午夜免费激情av| 免费观看精品视频网站| 巨乳人妻的诱惑在线观看| 一个人观看的视频www高清免费观看 | a级毛片a级免费在线| 久久草成人影院| 国语自产精品视频在线第100页| 精品国产美女av久久久久小说| 真人一进一出gif抽搐免费| 男男h啪啪无遮挡| 亚洲国产精品999在线| 视频在线观看一区二区三区| 免费一级毛片在线播放高清视频| 国产又色又爽无遮挡免费看| 亚洲人成电影免费在线| 少妇熟女aⅴ在线视频| 丰满的人妻完整版| 桃色一区二区三区在线观看| 亚洲三区欧美一区| av有码第一页| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品国产区一区二| 久久中文字幕一级| 夜夜躁狠狠躁天天躁| 亚洲真实伦在线观看| 国产黄色小视频在线观看| 黄色丝袜av网址大全| 国内少妇人妻偷人精品xxx网站 | 国产伦人伦偷精品视频| 精品国产乱子伦一区二区三区| 午夜免费成人在线视频| 在线观看免费日韩欧美大片| 欧美乱色亚洲激情| 午夜福利18| 免费女性裸体啪啪无遮挡网站| 伦理电影免费视频| 免费看a级黄色片| 母亲3免费完整高清在线观看| 免费在线观看日本一区| 国产主播在线观看一区二区| 国产成人一区二区三区免费视频网站| 少妇 在线观看| 天堂√8在线中文| 亚洲成a人片在线一区二区| 777久久人妻少妇嫩草av网站| 亚洲熟妇熟女久久| 久久伊人香网站| 少妇粗大呻吟视频| 中国美女看黄片| 一区二区三区国产精品乱码| 欧美黄色片欧美黄色片| 成人三级做爰电影| 又紧又爽又黄一区二区| 国产伦人伦偷精品视频| 一区二区三区国产精品乱码| 国产高清激情床上av| 操出白浆在线播放| 一二三四在线观看免费中文在| 国产91精品成人一区二区三区| 后天国语完整版免费观看| 一本大道久久a久久精品| 一进一出好大好爽视频| 很黄的视频免费| 超碰成人久久| 国产精品九九99| 午夜老司机福利片| 熟女电影av网| 亚洲黑人精品在线| 国产精品亚洲美女久久久| 欧美黄色片欧美黄色片| 特大巨黑吊av在线直播 | 成年免费大片在线观看| 丝袜在线中文字幕| 啪啪无遮挡十八禁网站| 国产伦一二天堂av在线观看| 波多野结衣高清作品| 99久久综合精品五月天人人| 好男人电影高清在线观看| 国产精品 国内视频| 亚洲中文日韩欧美视频| 长腿黑丝高跟| 天堂影院成人在线观看| 日韩精品免费视频一区二区三区| 国产日本99.免费观看| 黑人巨大精品欧美一区二区mp4| 免费高清在线观看日韩| 亚洲欧洲精品一区二区精品久久久| 自线自在国产av| 亚洲五月天丁香| 国产亚洲精品av在线| 99热只有精品国产| 一卡2卡三卡四卡精品乱码亚洲| 国产精品综合久久久久久久免费| 国产精华一区二区三区| 亚洲专区国产一区二区| 69av精品久久久久久| 精品高清国产在线一区| 一二三四社区在线视频社区8| 欧美成人免费av一区二区三区| 一进一出抽搐gif免费好疼| 老鸭窝网址在线观看| 国产亚洲精品综合一区在线观看 | 欧美成狂野欧美在线观看| 少妇熟女aⅴ在线视频| 变态另类丝袜制服| 国产在线精品亚洲第一网站| 草草在线视频免费看| aaaaa片日本免费| 欧美三级亚洲精品| 这个男人来自地球电影免费观看| 久久久久国产精品人妻aⅴ院| 国产一区二区在线av高清观看| 精品久久久久久成人av| 久久国产乱子伦精品免费另类| 国产亚洲av嫩草精品影院| 韩国av一区二区三区四区| 丁香欧美五月| 亚洲熟妇熟女久久| 精品一区二区三区av网在线观看| 国产亚洲精品综合一区在线观看 | 18禁黄网站禁片午夜丰满| 怎么达到女性高潮| 国产私拍福利视频在线观看| 午夜成年电影在线免费观看| 国产真人三级小视频在线观看| 女警被强在线播放| 欧美成人午夜精品| a级毛片在线看网站| 搡老熟女国产l中国老女人| 欧美黄色片欧美黄色片| 91大片在线观看| 美女午夜性视频免费| 黄色片一级片一级黄色片| 日本黄色视频三级网站网址| 久久精品91无色码中文字幕| 精品福利观看| av视频在线观看入口| 久久伊人香网站| 国产精品久久久av美女十八| 两人在一起打扑克的视频| 亚洲精品中文字幕在线视频| 国产色视频综合| 亚洲av五月六月丁香网| 免费观看人在逋| 丁香六月欧美| 亚洲精品粉嫩美女一区| 50天的宝宝边吃奶边哭怎么回事| 他把我摸到了高潮在线观看| 国产精品久久电影中文字幕| www日本黄色视频网| 国内精品久久久久久久电影| www.自偷自拍.com| 女警被强在线播放| 国产一级毛片七仙女欲春2 | 午夜免费成人在线视频| 国内精品久久久久久久电影| 日韩中文字幕欧美一区二区| 久久久久久久精品吃奶| 少妇熟女aⅴ在线视频| 成在线人永久免费视频| 亚洲国产欧美网| 19禁男女啪啪无遮挡网站| 日韩欧美国产在线观看| 男女午夜视频在线观看| 日本撒尿小便嘘嘘汇集6| 亚洲成人久久性| 老鸭窝网址在线观看| 亚洲一区二区三区不卡视频| 听说在线观看完整版免费高清| 国产激情欧美一区二区| 久久香蕉国产精品| 国产1区2区3区精品| 国产精品二区激情视频| 精品第一国产精品| 日韩欧美三级三区| 日本一本二区三区精品| 亚洲久久久国产精品| 精品久久久久久久久久久久久 | 在线av久久热| 在线视频色国产色| 成年女人毛片免费观看观看9| 日韩精品青青久久久久久| 国产真实乱freesex| 不卡一级毛片| 最近在线观看免费完整版| 国产精品免费视频内射| 男女视频在线观看网站免费 | 国产高清激情床上av| 91麻豆av在线| 99re在线观看精品视频| 欧洲精品卡2卡3卡4卡5卡区| 国产蜜桃级精品一区二区三区| 亚洲男人的天堂狠狠| 国产在线观看jvid| 国产亚洲欧美精品永久| 亚洲片人在线观看| 亚洲第一电影网av| 久久精品国产清高在天天线| 久久久久精品国产欧美久久久| x7x7x7水蜜桃| 丝袜在线中文字幕| 日韩有码中文字幕| 嫩草影视91久久| 国产真实乱freesex| 色哟哟哟哟哟哟| 一本久久中文字幕| 亚洲精品国产区一区二| 精品熟女少妇八av免费久了| 日韩精品青青久久久久久| 18禁黄网站禁片午夜丰满| 99久久久亚洲精品蜜臀av| 成人手机av| 黄网站色视频无遮挡免费观看| www.www免费av| 国产精品亚洲一级av第二区| 91国产中文字幕| 亚洲三区欧美一区| 99在线视频只有这里精品首页| 亚洲国产高清在线一区二区三 | 色综合婷婷激情| 久久香蕉国产精品| 国产激情偷乱视频一区二区| 日韩视频一区二区在线观看| 国产伦在线观看视频一区| 欧美日韩亚洲综合一区二区三区_| 韩国av一区二区三区四区| 国产精品精品国产色婷婷| 99久久99久久久精品蜜桃| 成人免费观看视频高清| 国产亚洲精品综合一区在线观看 | av片东京热男人的天堂| 一级a爱片免费观看的视频| 亚洲第一欧美日韩一区二区三区| 亚洲国产看品久久| 丰满人妻熟妇乱又伦精品不卡| 精品久久久久久,| 少妇的丰满在线观看| 精品人妻1区二区| av片东京热男人的天堂| www日本黄色视频网| 狂野欧美激情性xxxx| 久久国产精品男人的天堂亚洲| 两人在一起打扑克的视频| 国产男靠女视频免费网站| 国产真实乱freesex| 日本免费一区二区三区高清不卡| 国内精品久久久久久久电影| 午夜福利18| 久久久久国产一级毛片高清牌| 亚洲国产精品999在线| 亚洲欧美精品综合久久99| 久久国产精品男人的天堂亚洲| 校园春色视频在线观看| 香蕉av资源在线| 久久久久久久久免费视频了| 国产亚洲欧美在线一区二区| 看黄色毛片网站| 久久中文字幕人妻熟女| 欧美不卡视频在线免费观看 | 国产片内射在线| 国产欧美日韩一区二区三| 欧美国产日韩亚洲一区| 草草在线视频免费看| 国产人伦9x9x在线观看| 国产av不卡久久| 久久久久久久久中文| 亚洲九九香蕉| 国产精品国产高清国产av| 免费人成视频x8x8入口观看| 午夜两性在线视频| 免费在线观看黄色视频的| 午夜福利在线在线| 成熟少妇高潮喷水视频| 欧美激情 高清一区二区三区| 黄片播放在线免费| 91成年电影在线观看| 亚洲一区二区三区不卡视频| 欧美zozozo另类| 国语自产精品视频在线第100页| 亚洲精品中文字幕一二三四区| 在线十欧美十亚洲十日本专区| or卡值多少钱| 日韩精品中文字幕看吧| 午夜福利视频1000在线观看| 老汉色∧v一级毛片| 精品熟女少妇八av免费久了| 久久国产乱子伦精品免费另类| 人妻久久中文字幕网| 他把我摸到了高潮在线观看| 国产精品电影一区二区三区| 免费高清在线观看日韩| 曰老女人黄片| 青草久久国产| 久久欧美精品欧美久久欧美| 成熟少妇高潮喷水视频| 免费在线观看完整版高清| 亚洲 欧美一区二区三区| 免费高清在线观看日韩| 亚洲国产欧美网| 深夜精品福利| 精品日产1卡2卡| 少妇粗大呻吟视频| 国产精品久久视频播放| 亚洲av成人一区二区三| 男女下面进入的视频免费午夜 | 丁香六月欧美| 岛国视频午夜一区免费看| 欧美国产日韩亚洲一区| 一a级毛片在线观看| 国产成人欧美在线观看| 午夜免费成人在线视频| 中文字幕人妻熟女乱码| 在线观看www视频免费| 久久天躁狠狠躁夜夜2o2o| 亚洲国产精品合色在线| 免费高清在线观看日韩| 国产激情偷乱视频一区二区| 国产欧美日韩精品亚洲av| 国产片内射在线| 一区福利在线观看| 精品久久蜜臀av无| 神马国产精品三级电影在线观看 | xxx96com| 999久久久国产精品视频| 亚洲精品在线美女| 日本a在线网址| 国产伦一二天堂av在线观看| 国产av不卡久久| 国内精品久久久久精免费| 日本 av在线| 成熟少妇高潮喷水视频| 女人高潮潮喷娇喘18禁视频| 这个男人来自地球电影免费观看| 久久久久免费精品人妻一区二区 | 亚洲狠狠婷婷综合久久图片| 精品久久久久久久人妻蜜臀av| 黄片小视频在线播放| 成人亚洲精品av一区二区| 亚洲精品一区av在线观看| 一本一本综合久久| 夜夜看夜夜爽夜夜摸| 日本a在线网址| 国产亚洲精品一区二区www| 亚洲国产欧洲综合997久久, | 88av欧美| 我的亚洲天堂| 叶爱在线成人免费视频播放| 国产精品亚洲一级av第二区| 很黄的视频免费| 亚洲片人在线观看| 日日爽夜夜爽网站| 51午夜福利影视在线观看| 又紧又爽又黄一区二区| 非洲黑人性xxxx精品又粗又长| 国产一区在线观看成人免费| 成人18禁高潮啪啪吃奶动态图| 国产精品日韩av在线免费观看| 又黄又粗又硬又大视频| 成人手机av| 男女午夜视频在线观看| 黄色丝袜av网址大全| 琪琪午夜伦伦电影理论片6080| www日本在线高清视频| 国产色视频综合| 欧美日本亚洲视频在线播放| 最新美女视频免费是黄的| 一个人免费在线观看的高清视频| 老熟妇乱子伦视频在线观看| 久99久视频精品免费| 日韩 欧美 亚洲 中文字幕| 国产aⅴ精品一区二区三区波| 午夜福利免费观看在线| 一级a爱视频在线免费观看| 在线观看免费日韩欧美大片| 亚洲精品一区av在线观看| 精品久久久久久久久久久久久 | 日韩三级视频一区二区三区| 搞女人的毛片| 制服诱惑二区| 97人妻精品一区二区三区麻豆 | 他把我摸到了高潮在线观看| 国产成人av激情在线播放| 成人亚洲精品一区在线观看| 少妇 在线观看| 国产成人一区二区三区免费视频网站| 日韩精品免费视频一区二区三区| 日日摸夜夜添夜夜添小说| cao死你这个sao货| 亚洲专区中文字幕在线| 久久伊人香网站| 亚洲无线在线观看| 麻豆成人av在线观看| 亚洲欧美激情综合另类| 18禁国产床啪视频网站| 国产精品亚洲美女久久久| 亚洲五月婷婷丁香| 国产成人系列免费观看| 午夜免费鲁丝| 99国产精品一区二区蜜桃av| 亚洲专区中文字幕在线| 国内久久婷婷六月综合欲色啪| 国产亚洲欧美在线一区二区| 黄色成人免费大全| 久久久精品国产亚洲av高清涩受| 欧美午夜高清在线| 91在线观看av| 亚洲五月婷婷丁香| 亚洲第一av免费看| 我的亚洲天堂| 黄频高清免费视频| 老司机靠b影院| 99久久综合精品五月天人人| 啦啦啦 在线观看视频| 亚洲国产精品合色在线| 国产精品美女特级片免费视频播放器 | 最新美女视频免费是黄的| 亚洲精品美女久久久久99蜜臀| 国产精品乱码一区二三区的特点| 在线观看日韩欧美| 久久精品国产亚洲av香蕉五月| 久久久久久久久中文| 99riav亚洲国产免费| 色在线成人网| 久久青草综合色| 99久久无色码亚洲精品果冻| 此物有八面人人有两片| 一本精品99久久精品77| 国产黄色小视频在线观看| 每晚都被弄得嗷嗷叫到高潮| √禁漫天堂资源中文www| 免费高清在线观看日韩| 欧美三级亚洲精品| 成熟少妇高潮喷水视频| 视频区欧美日本亚洲| 国产精品亚洲一级av第二区| 国产成人欧美在线观看| 欧美激情极品国产一区二区三区| 国产精品免费视频内射| 十分钟在线观看高清视频www| 91麻豆精品激情在线观看国产| 亚洲专区字幕在线| 午夜精品在线福利| 国产又色又爽无遮挡免费看| 午夜日韩欧美国产| 久久久久九九精品影院| 久久国产精品男人的天堂亚洲| 久久国产亚洲av麻豆专区| 久久精品成人免费网站| 亚洲欧美日韩无卡精品| 成人欧美大片| 国产精品久久视频播放| 精品久久久久久,| 窝窝影院91人妻| 久久精品成人免费网站| 美女大奶头视频| 真人做人爱边吃奶动态| 大香蕉久久成人网| 在线观看一区二区三区| 久久精品国产综合久久久| 久久九九热精品免费| 在线观看一区二区三区| 韩国av一区二区三区四区| 真人一进一出gif抽搐免费| 久热这里只有精品99| 成人永久免费在线观看视频| 欧美日韩一级在线毛片| 国产私拍福利视频在线观看| 亚洲国产精品合色在线| 亚洲人成伊人成综合网2020| 88av欧美| 亚洲欧美精品综合一区二区三区| 日本撒尿小便嘘嘘汇集6| 久久精品影院6| 精品少妇一区二区三区视频日本电影| 狂野欧美激情性xxxx|