• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    3D dahlia-like NiAl-LDH/CdS heterosystem coordinating with 2D/2D interface for efficient and selective conversion of CO2

    2022-06-20 06:22:00XioyueZhngYongYngLijunXiongTinyuWngZhengTngPnjieLiNnYinAiwuSunJinyouShen
    Chinese Chemical Letters 2022年4期

    Xioyue Zhng,Yong Yng,Lijun Xiong,Tinyu Wng,Zheng Tng,Pnjie Li,Nn Yin,Aiwu Sun,c,Jinyou Shen,*

    a Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse,School of Environmental and Biological Engineering,Nanjing University of Science and Technology,Nanjing 210094,China

    b Key Laboratory of Soft Chemistry and Functional Materials,Ministry of Education,School of Chemistry and Chemical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China

    c Faculty of Chemical Engineering,Huaiyin Institute of Technology,Huaiyin 223001,China

    ABSTRACT Developing photocatalyst with high activity,superior stability and prominent selectivity for CO2 conversion is of great importance for the target of carbon neutralization.Herein,3D dahlia-like NiAl-LDH/CdS heterosystem is developed through in-situ decoration of exfoliated CdS nanosheets on the scaffold of NiAl-LDH and the on-spot self-assembly.The formation of a hierarchical architecture collaborating with well-defined 2D/2D interfacial interaction is constructed by optimizing the ratio of CdS integrated in the formation of the heterojunction.The light-harvesting capacity of NiAl-LDH/CdS is improved by this unique scaffold,and the charge transfer between NiAl-LDH and CdS is effectively facilitated by virtue of the unique 2D/2D interface.As a result,the 3D hierarchical NiAl-LDH/CdS heterosystem presents 12.45 μmol g-1 h-1 of CO production(3.3 and 1.6 folds of pristine NiAl-LDH and CdS)with 96% selectivity and superior stability.This 3D hierarchical design collaborating with 2D/2D interfacial interaction provides a new avenue to develop ideal catalysts for artificial photosynthesis.

    Keywords:Photocatalysis CdS Photocorrosion NiAl-LDH CO2Conversion

    Environmental issue has aroused great concern to the human society,especially the global warming caused by the enormous discharge of CO2in the atmosphere.Currently,fossil fuels are still the main source of energy,resulting great energy and environmental crises.In this circumstance,there is an urgent need to develop new sustainable energy production and protection technologies in an environmentally and economically feasible way[1-3].Photocatalytic technology uses clean and inexhaustible solar energy to convert CO2into renewable fuels,which is considered one of the most promising strategy.Although great progress has been made,the efficiency of photocatalytic CO2conversion is still unsatisfied[4-7].Development of efficient and stable photocatalysts is the top priority in order to fulfil the idea of "artificial photosynthesis"[8-11].

    Among most of the semiconductors,CdS presents superior light harvesting capacity and strong redox ability[12-15],which shows great potential in the field of CO2conversion[16-19].However,the rapid recombination of photogenerated charge carriers restricts the catalytic efficiency of bulk CdS.In particular,the severe photocorrosion is detrimental to the stability and practical performance of CdS.Therefore,noble metal modification,morphology modulation and integration with different semiconductors have been widely investigated[20-23].However,most works concerning the protection of CdS against photocorrosion are physical shielding,and the photoinduced holes may accumulate on CdS,resulting in oxidation of S2-.Effective strategies should be proposed to alleviate the holes accumulation and strengthen the photon capture as well as the CO2adsorption.

    Layered double hydroxides(LDHs)have received extensive attention due to their strong visible light response,controllable metal cation composition and tunable band structure.In addition,the abundant hydroxyl groups on the surface of LDHs are beneficial for the adsorption of CO2,which is fundamental to the conversion[24,25].What is more,the 2D structure provides a unique platform for collaborating with other semiconductors.Herein,a dahlialike NiAl-LDH/CdS hybrid with well-defined 2D/2D interface is developed.The construction of three-dimensional hierarchical architecture endow the hybrid with enhanced light harvesting capacity due to the multiple scattering cross section.The formation of type-II heterojunction effectively promotes the separation of photoinduced charge carriers.In particular,the photoinduced holes can be exported from CdS to NiAl-LDH.As a consequence,the optimized NiAl-LDH/CdS presents significantly improved photocatalytic activity and prominent stability.These improvement and the corresponding mechanism are in-depth investigated by spectral and electrochemical characterizations.

    Fig.1.(a)Illustration of the synthesis of the 3D hierarchical NiAl-LDH/CdS hybrid.(b)XPS survey spectra of NiAl-LDH,CdS and NiAl-LDH/CdS-2.(c)Ni 2p,(d)Al 2p,(e)S 2p,(f)Cd 3d and core-level XPS spectra.

    CdS was preparedviahydrothermal reaction and exfoliated with ultrasound.The as-obtained CdS nanosheet wasin-situdeposited on NiAl-LDH during the process of crystallization(Fig.1a).As shown in Fig.S1(Supporting information),CdS presents a hexagonal wurtzite phase structure(JCPDS No.41-1049)[26],and a typical hydrotalcite structure can be declared for NiAl-LDH.After combination,NiAl-LDH/CdS composites exhibit similar diffraction pattern to the pristine NiAl-LDH owing to the uniform distribution of CdS.In order to determine the content of CdS in the hybrid,ICP-MS was conducted and showed in Table S3(Supporting information).The weight ratio of CdS is 11.1%,21.2%,26.5% in NiAl-LDH/CdS-1,NiAl-LDH/CdS-2,NiAl-LDH/CdS-3.XPS was used for investigation of the composition and charge transfer of the samples.As shown in Fig.1b,NiAl-LDH is composed of Ni,Al,C and O elements,and CdS is comprised by Cd and S elements.For NiAl-LDH/CdS-2,the peaks of Cd and S can be observed,though the intensity of them are weak.Moreover,the co-existence of Ni,Al,Cd and S elements in the hybrid can be demonstrated from their highresolution spectra.Figs.1c and d show the high-resolution spectra of Ni 2p and Al 2p of the sample.The peaks at 856.0 eV and 873.6 eV are attributed to Ni 2p3/2and Ni 2p1/2,respectively[27].After doping with CdS,the Ni 2p3/2and Ni 2p1/2in NiAl-LDH/CdS-2 transfer to 856.2 eV and 873.8 eV with higher binding energies.For Al3+,its high-resolution spectrum can be decomposed into two peaks of 68.2 eV and 74.2 eV[28].After compounding CdS,the binding energy of these two signals is also significantly increased.For pristine CdS(Fig.1e),the Cd 3d high-resolution spectrum can be divided into two peaks located at 405.1 eV and 411.8 eV,corresponding to Cd 3d5/2and Cd 3d3/2[29].After hybridization,the binding energy of Cd 3d reduced to 404.8 eV and 411.5 eV.The binding energies at 158.8 eV and 161.3 eV are corresponded to S 2p3/2and S 2p1/2,respectively,which proves the existence of S2-(Fig.1f).The peaks for S 2p3/2and S 2p1/2decreased to 158.5 eV and 161.0 eV in the NiAl-LDH/CdS.According to the variation of binding energy for NiAl-LDH and CdS after the integration,the electron migration from NiAl-LDH to CdS can be proposed[30].

    Fig.2.FE-SEM images of(a)CdS,(b)NiAl-LDH/CdS-1,(c)NiAl-LDH/CdS-2 and(d)NiAl-LDH/CdS-3.(e)The whole TEM image and(f)EDS elemental mapping images of NiAl-LDH/CdS-2.(g)HAADF-STEM image and(h)HRTEM image from the edge of the NiAl-LDH/CdS-2.

    As shown in Fig.S2(Supporting information),the bare NiAl-LDH presents a 3D hierarchical architecture,which is comprised by a large number of self-assembled and stacked nanosheets.The diameter of a particle is about 5 μm.Figs.2a-d show the SEM images of CdS and NiAl-LDH/CdS composites.CdS displays a two-dimensional sheet structure.After integration,NiAl-LDH/CdS-1(Fig.2b)and NiAl-LDH/CdS-2(Fig.2c)present the similar appearance with pristine NiAl-LDH due to the low content of CdS.It is worth noting that the volume of the cavity between the NiAl-LDH layers decreases in NiAl-LDH/CdS-2.This suggests that CdS nanosheets are decorated on the scaffold of NiAl-LDH plates.When 30 mL CdS suspension was used,the number of stuffed cavities increases for NiAl-LDH/CdS-3,and many aggregates present on the surface of the sample(Fig.2d).Based on the above observations,the formation of uniform interface between CdS and NiAl-LDH can be proposed in NiAl-LDH/CdS-1 and NiAl-LDH/CdS-2.Whereas,NiAl-LDH/CdS-3 has a large number of separated blocks.

    TEM investigation was then performed on NiAl-LDH/CdS-2.As shown in Fig.2e,NiAl-LDH/CdS-2 is composed of a large number of nanosheets,which is consistent with the result observed in the SEM.From the lower left corner of a particle(Fig.2g),the twodimensional and sheet-like stacked structure can be further clarified.As observed in the high-resolution transmission electron microscope(HRTEM)image(Fig.2h),the lattice spacing of 0.37 nm is corresponded to the(0 0 2)crystal plane of NiAl-LDH[31],and 0.26 nm can be designated to the(1 0 2)crystal plane of CdS[32].The interface between the two materials is clearly visible.In particular,the unique 2D/2D stacking structure can be confirmed,which is beneficial for the charge transfer between the components during the photocatalysis[33].Moreover,the corresponding EDS elemental mapping images(Fig.2f)of Ni,Al,O,S and Cd clearly illustrate the homogeneous composition of NiAl-LDH and CdS.Zeta potential was also measured to illustrate the formation mechanism of NiAl-LDH/CdS.As shown in the Fig.S6(Supporting information),NiAl-LDH exhibits a positive zeta potential,while CdS is negatively charged.The metal cations in NiAl-LDH are mainly involved in the construction of NiAl-LDH.Through the self-assembly,a 3D dahlialike NiAl-LDH/CdS can be built based on electrostatic interaction.Due to the coverage of NiAl-LDH by negatively charged CdS,the zeta potential after hybridization changed significantly.

    Fig.3a shows the UV-DRS spectra of CdS,NiAl-LDH and composite materials.As it can be seen,the pristine CdS shows strong absorption in the ultraviolet and visible regions,which is consistent with its yellow color.NiAl-LDH presents three absorption bands at 200-300 nm,300-500 nm and 600-800 nm.The absorption at 200-300 nm is originated from the ligand to metal charge transfer from O 2p to Ni 3d t2g,and the other two bands are produced by the d-d transition of Ni2+ions in the octahedral field[34].For NiAl-LDH/CdS composites,their absorption profiles are similar to that of the pristine NiAl-LDH.The slight improvement of the absorption below 520 nm is resulted from CdS in NiAl-LDH/CdS-1 and NiAl-LDH/CdS-2,whereas,further increase of CdS and the agglomeration does not contribute to the enhancement of absorption.According to the UV-DRS and the empirical formulaαhυ= A(hυ-Eg)n/2,the band gap of CdS(2.31 eV)and NiAl-LDH(2.36 eV)can be obtained(Fig.S3 in Supporting information),which are basically consistent with previous reports[35,36].

    Fig.3b shows the N2adsorption-desorption isotherms of the samples.NiAl-LDH and NiAl-LDH/CdS-2 show typical type IV and H3 hysteresis curves,indicating the presence of mesoporous structure constructed by the aggregation of nanosheets.By contrast,CdS exhibits a type II and H4 hysteresis loop.The BET specific surface areas of CdS and NiAl-LDH are 11.18 m2/g and 54.08 m2/g,respectively.The hybridization results in the decrease of BET specific surface area for NiAl-LDH,and this value for NiAl-LDH/CdS-2 is 31.5 m2/g.As observed from the pore size distribution curves(Fig.3b),NiAl-LDH and NiAl-LDH/CdS-2 show two pore size distribution ranges at 2 nm and 5-70 nm,whereas CdS is nonporous.The loosely packed NiAl-LDH plates resulted in a wide aperture range,signifying a multiple and complicated pore structure.After deposition of CdS,it is worth noting that the proportion of large pores is significantly decreased,and the tightly packed structure lead to the pore size centralized around 18 nm.Meanwhile,the content of small pores around 2 nm decreases owing to the closely stacked nanosheets in NiAl-LDH/CdS-2.These unambiguously demonstrate the formation of a close 2D/2D interface,which is beneficial for the charge transfer between the two components.As shown in Fig.S4(Supporting information),the bare CdS showed a CO2uptake capacity of 3.93 cm3/g(P/P0= 0.03).Whereas,NiAl-LDH shows a powerful CO2capture capacity(20.1 cm3/g atP/P0= 0.03).The inherent basic property of NiAl-LDH is benefit to CO2accumulation.Moreover,the 3D hierarchical architecture promotes the diffusion of CO2in the system,thereby improving the surface utilization of active sites.After combination of these two materials,NiAl-LDH/CdS-2 shows a moderate CO2adsorption performance(6.27 cm3/g)due to the decreased BET specific surface areas and the covering of NiAl-LDH plates.

    Fig.3.(a)UV-vis diffuse reflectance spectra of the synthesized CdS,LDH and composites.(b)Nitrogen adsorption-desorption isotherm curves for(1)NiAl-LDH,(2)NiAl-LDH/CdS-2 and(3)CdS,and Diameter distribution curves of the samples.(c)Time evolution of CO over different samples.(d)Average gas production rates over different catalysts.(e)Stability tests for CO production over NiAl-LDH/CdS-2.(f)The isotope analysis of 13CO using 13CO2 as carbon source by GC-MS.Inset shows the mass spectrum of 13CO.

    The photocatalytic CO2conversion were then performed on NiAl-LDH,CdS and the composites,of which the main product was CO.Fig.3c shows the time evolution amount of CO over different samples,and the histogram of CO and CH4yield are presented in Fig.3d.After 6 h irradiation,the CO yield on bare NiAl-LDH and CdS are 22.74 μmol/g and 45.9 μmol/g,corresponding to the production rate of 3.79 μmol g-1h-1and 7.65 μmol g-1h-1.For NiAl-LDH/CdS composites,their performances are significantly improved.As the content of CdS increases in the hybrids,the photocatalytic activity of the catalysts gradually enhances.However,there is an optimal ratio between NiAl-LDH and CdS.NiAl-LDH/CdS-2 displays the best performance,and its yield and production rate reach 74.7 μmol/g and 12.45 μmol g-1h-1,respectively.Whereas,the photocatalytic efficiencies for NiAl-LDH/CdS-1 and NiAl-LDH/CdS-3 are lower than that of NiAl-LDH/CdS-2.As it can be seen,the selectivity towards CO is beyond 96% on NiAl-LDH/CdS-2,which is also the optimum among the composites.After four cycles of testing,the CO yield of NiAl-LDH/CdS-2 did not show any significant decrease(Fig.3e).Moreover,the XRD and SEM characterizations for the recycled catalyst were performed.As observed in Figs.S8 and S9(Supporting information),neglectable variation occurs on NiAl-LDH/CdS-2 before and after the photocatalysis,proving its good durability and stability.Then,control experiment was performed,and none of the products can be detected in the absence of radiation,CO2or catalyst(Fig.S7 in Supporting information),this strongly demonstrates that the photocatalytic CO2reduction is driven by the irradiation on the photocatalysts.In addition,an isotropic experiment was conducted using13CO2to investigate the carbon source of the products.As shown in Fig.3f,the introduced13CO2and the generated13CO are well separated,which can be observed at 1.6 min and 1.2 min in the chromatogram,respectively.After ionization of13CO,the signals ofm/z= 13,16,and 29 are detected.This undoubtedly confirms that the carbon source of the products is the introduced CO2.

    Fig.4.(a)Photoluminescence spectra,and(b)time-resolved fluorescence decay traces of the samples(the excitation wavelength is 355 nm).(c)transient photocurrent responses of the as-prepared samples.(d)Electrochemical impedance spectra(EIS)of the samples.(e)Schematic diagram of the possible photocatalytic mechanism of NiAl-LDH/CdS.(f) In-situ DRIFTS spectra of CO2 photoconversion over different samples under the dark condition and light irradiation.

    In order to clarify the photocatalytic mechanism for the different samples,fluorescence spectroscopy was used to analyze the charge transfer behavior of the materials.As shown in Fig.4a,NiAl-LDH shows two main emission bands located at 468 nm and 520 nm,which are attributed to the blue light and inter-band emissions.The absorption peak at 520 nm is approximately equal to the band gap absorption of NiAl-LDH(2.36 eV).After decoration of CdS,the fluorescence intensity of LDH/CdS-2 quenched significantly,indicating the decreased radiation recombination of photoinduced electron and hole pairs.Subsequently,nanosecond-scale fluorescence decay spectroscopy was used to characterize the dynamics of charge migration(Fig.4b).The fluorescence radiation lifetime(τ)was obtained by fitting of the curve based on doubleexponential function.The average fluorescence lifetime(τ= 2.62 ns)of the photogenerated charge carriers in NiAl-LDH/CdS-2 is prolonged than that of the pristine NiAl-LDH(τ= 1.23 ns)(Table S2 in Supporting information).The improvement of charge transfer ability on NiAl-LDH/CdS-2 can thus be proposed.Then,NiAl-LDH,CdS and NiAl-LDH/CdS composites are separately coated on FTO,and photocurrent was recorded by switching the light on and off for several cycles.As displayed in Fig.4c,no current is generated in the absence of light.After the lamp is turned on,the current increases sharply due to the excitation of NiAl-LDH and CdS,and the process can be repeated stably.Compared with pure semiconductors,the photocurrent intensity of NiAl-LDH/CdS composites is significantly enhanced,and the charge separation is effectively improved.The order of the photocurrent intensity of the composite sample is:NiAl-LDH/CdS-2>NiAl-LDH/CdS-3>NiAl-LDH/CdS-1,which is in accordance with their photocatalytic performances.The separation efficiency of photogenerated electrons and holes is firstly promoted with the increase of the doping amount of CdS,and excessive of CdS results in the agglomeration of the materials,thereby interrupting the uniform interface and efficient charge separation.Therefore,the AC impedance spectroscopy(EIS)test is then conducted for revealing the interfacial charge transfer behaviour.As shown in Fig.4d,a smaller arc corresponds to a lower interfacial charge transfer impedance[37].It can be clearly seen that NiAl-LDH/CdS-2 exhibits the smallest arc among the samples.The most effective charge separation and interfacial transport can be demonstrated in NiAl-LDH/CdS-2.

    Based on the above investigations,a mechanism was proposed concerning the improved photocatalytic performance of hierarchical NiAl-LDH/CdS heterosystem.The conduction band potential of CdS and NiAl-LDH is estimated to be-0.56 V and-0.72 V based on the Mott-Schottky tests(Fig.S5 in Supporting information)[38-40].The corresponding valence band positions of CdS and NiAl-LDH can thus be calculated to be 1.75 V and 1.64 V from the above-obtained band gap of the materials.Accordingly,the energy alignment of the composite system can be depicted in Fig.4e.When the NiAl-LDH/CdS hybrid is exposed to light irradiation,the electrons in NiAl-LDH and CdS are both excited from their VB to CB.Since the conduction band position of NiAl-LDH is more negative than CdS,electrons will transfer from NiAl-LDH to CdS,and thus reducing the CO2to CO on the surface of CdS.At the same time,the holes migrate from the VB of CdS to the VB of NiAl-LDH,and the oxidation of CdS can be largely depressed.The construction of this type-II heterojunction not only realizes the effective separation of photogenerated carriers,but also restricts the photocorrosion of chalcogenide semiconductor.Thus the photocatalytic activity and stability are simultaneously elevated.Thereafter,the reaction pathway and existing intermediates during the photocatalytic CO2reduction were examined by thein-situDRIFTS spectra(Fig.4f).Upon light irradiation,the absorptions at 1516 cm-1and 1576 cm-1are assigned to the monodentate and bidentate carbonates(m-CO32-and b-CO32-)generated by the chemical adsorption of CO2on the photocatalyst surfaces.Then*COOH is formed at 1555 cm-1through the hydrogenation of CO2(H+is provided by H2O).Finally,*CO is formed around 2133 cm-1via dehydration reaction and CO is liberated from the surface of the catalysts.The reaction process can thus be determined as CO2→*CO2→*COOH →*CO+H2O →CO+H2O,which is similar to previous reports[41,42].For NiAl-LDH/CdS-2,the absorptions belong to these intermediates are significantly higher than that of the pristine CdS and NiAl-LDH,which is in consistence with their photocatalytic performances.

    In summary,3D dahlia-like NiAl-LDH/CdS hybrid was fabricated byin-situdecoration of exfoliated CdS nanosheets on the scaffold of NiAl-LDH and the on-spot self-assembly.A unique hierarchical architecture coordinating with 2D/2D interface interaction was successfully constructed.The as-developed NiAl-LDH/CdS presents significantly improved photocatalytic performance for CO2conversion(12.45 μmol g-1h-1),which is 3.3 and 1.6 folds of pristine NiAl-LDH and CdS.In particular,the photocorrosion towards CdS is largely restricted by virtue of the type-II heterojunction,thus the stability and cycling performance of the photocatalyst are significantly improved.In combination with the increased photon scattering cross-section,this 3D hierarchical structure collaborating with 2D/2D interfacial interaction provides a new strategy to develop ideal and efficient photocatalysts.

    Declaration of competing interest

    The authors declare no competing interest that could have appeared to influence the work reported in this paper.

    Acknowledgments

    We are grateful to the National Natural Science Foundation of China for Excellent Young Scholars(No.51922050),the National Natural Science Foundation of China(No.51303083),the Natural Science Foundation of Jiangsu Province(No.BK20191293),and the Fundamental Research Funds for the Central Universities(No.30920021123)for financial support.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.08.053.

    欧美人与性动交α欧美精品济南到 | 国产色婷婷99| 建设人人有责人人尽责人人享有的| 99九九在线精品视频| 日本爱情动作片www.在线观看| 日韩av免费高清视频| 免费播放大片免费观看视频在线观看| 美女大奶头黄色视频| 久久久国产精品麻豆| 18+在线观看网站| 一级爰片在线观看| 亚洲少妇的诱惑av| 亚洲国产欧美日韩在线播放| 中文乱码字字幕精品一区二区三区| 99久久综合免费| 啦啦啦在线免费观看视频4| av一本久久久久| 久久久久国产一级毛片高清牌| 观看av在线不卡| 中文欧美无线码| 国产福利在线免费观看视频| 日本免费在线观看一区| 国产熟女欧美一区二区| 黄色一级大片看看| 在线天堂中文资源库| 18+在线观看网站| 热99久久久久精品小说推荐| 国产精品国产av在线观看| 亚洲国产看品久久| 国产精品麻豆人妻色哟哟久久| 欧美精品高潮呻吟av久久| 国产亚洲av片在线观看秒播厂| 三上悠亚av全集在线观看| 美女视频免费永久观看网站| 妹子高潮喷水视频| 亚洲欧美日韩另类电影网站| 亚洲欧美中文字幕日韩二区| 五月天丁香电影| 国产精品久久久久久精品电影小说| 99久久精品国产国产毛片| 精品少妇内射三级| 在线观看免费高清a一片| 中文字幕最新亚洲高清| 国产激情久久老熟女| 高清av免费在线| 国产成人精品婷婷| 国产精品 欧美亚洲| 国产精品 欧美亚洲| 欧美国产精品一级二级三级| 又粗又硬又长又爽又黄的视频| 日日撸夜夜添| 日韩制服骚丝袜av| 日本wwww免费看| 国产国语露脸激情在线看| 99香蕉大伊视频| 五月伊人婷婷丁香| 日本色播在线视频| 国产欧美日韩综合在线一区二区| 男人操女人黄网站| 日韩精品有码人妻一区| 美女主播在线视频| 国产麻豆69| 一级毛片 在线播放| 精品久久蜜臀av无| 欧美精品国产亚洲| 久久久久国产一级毛片高清牌| 精品午夜福利在线看| 色吧在线观看| 女人精品久久久久毛片| 汤姆久久久久久久影院中文字幕| 婷婷色麻豆天堂久久| 日产精品乱码卡一卡2卡三| 久久99精品国语久久久| 亚洲色图 男人天堂 中文字幕| 黄片无遮挡物在线观看| 两性夫妻黄色片| 久久精品亚洲av国产电影网| 91aial.com中文字幕在线观看| 欧美人与性动交α欧美精品济南到 | 香蕉丝袜av| 只有这里有精品99| 99热国产这里只有精品6| 欧美bdsm另类| 一区二区av电影网| 国产成人免费观看mmmm| 久久久久视频综合| 国产一区亚洲一区在线观看| 2018国产大陆天天弄谢| 日韩av免费高清视频| 夫妻午夜视频| 国产精品一区二区在线不卡| 久久久久久久久免费视频了| 亚洲,一卡二卡三卡| 午夜日韩欧美国产| 久久久久网色| 一边摸一边做爽爽视频免费| 日韩中文字幕欧美一区二区 | 亚洲,欧美精品.| 黄色一级大片看看| 国产熟女欧美一区二区| 成人毛片60女人毛片免费| 男女下面插进去视频免费观看| 亚洲精品视频女| 国产精品成人在线| 日韩伦理黄色片| av片东京热男人的天堂| 2018国产大陆天天弄谢| 久久ye,这里只有精品| 人人澡人人妻人| 在线观看免费高清a一片| 春色校园在线视频观看| 国产精品久久久久久精品电影小说| 侵犯人妻中文字幕一二三四区| 麻豆乱淫一区二区| 麻豆乱淫一区二区| 天天躁夜夜躁狠狠躁躁| 天天影视国产精品| 欧美+日韩+精品| 成人亚洲精品一区在线观看| 国产成人精品久久久久久| 男女边摸边吃奶| 中文字幕人妻熟女乱码| 极品人妻少妇av视频| 777米奇影视久久| 夫妻午夜视频| 一区二区三区四区激情视频| 最近手机中文字幕大全| 99热全是精品| 亚洲精品国产av蜜桃| 丝袜喷水一区| 人人妻人人爽人人添夜夜欢视频| 国产成人精品在线电影| 欧美激情高清一区二区三区 | 欧美xxⅹ黑人| 欧美精品一区二区免费开放| 菩萨蛮人人尽说江南好唐韦庄| 午夜激情久久久久久久| 制服人妻中文乱码| 国产av国产精品国产| 一本久久精品| 亚洲欧美一区二区三区国产| 久久久久久久国产电影| 精品亚洲成a人片在线观看| 国产xxxxx性猛交| 国产在线免费精品| 午夜福利在线观看免费完整高清在| 久久免费观看电影| 亚洲熟女精品中文字幕| 七月丁香在线播放| 国产精品一区二区在线不卡| 卡戴珊不雅视频在线播放| 久久久久网色| 国产无遮挡羞羞视频在线观看| 97在线人人人人妻| 午夜免费男女啪啪视频观看| 伦理电影大哥的女人| 边亲边吃奶的免费视频| 免费在线观看黄色视频的| 大片电影免费在线观看免费| 男女国产视频网站| 色播在线永久视频| 亚洲精品成人av观看孕妇| 国产精品蜜桃在线观看| 免费黄频网站在线观看国产| 久久精品aⅴ一区二区三区四区 | 成人午夜精彩视频在线观看| 国产一区有黄有色的免费视频| 精品亚洲成国产av| 国产精品国产av在线观看| 黑丝袜美女国产一区| 亚洲精品日韩在线中文字幕| 最黄视频免费看| 日韩中文字幕视频在线看片| 日日爽夜夜爽网站| a 毛片基地| 纯流量卡能插随身wifi吗| 日本欧美视频一区| videosex国产| 欧美亚洲 丝袜 人妻 在线| 一本—道久久a久久精品蜜桃钙片| 两个人看的免费小视频| 大片免费播放器 马上看| 侵犯人妻中文字幕一二三四区| 精品亚洲乱码少妇综合久久| 欧美变态另类bdsm刘玥| 成人亚洲精品一区在线观看| freevideosex欧美| 国产麻豆69| 精品第一国产精品| 免费在线观看视频国产中文字幕亚洲 | 中文精品一卡2卡3卡4更新| 色视频在线一区二区三区| 99久久精品国产国产毛片| 另类精品久久| 天天影视国产精品| 90打野战视频偷拍视频| 亚洲精品日韩在线中文字幕| 精品一区二区免费观看| 中文字幕最新亚洲高清| 又黄又粗又硬又大视频| 丝袜在线中文字幕| 精品人妻在线不人妻| 成人免费观看视频高清| 91午夜精品亚洲一区二区三区| 国产成人91sexporn| 青青草视频在线视频观看| 成年人午夜在线观看视频| 如何舔出高潮| 国产成人午夜福利电影在线观看| 日本免费在线观看一区| 哪个播放器可以免费观看大片| 国产男人的电影天堂91| 久久97久久精品| 超碰成人久久| 在线亚洲精品国产二区图片欧美| av视频免费观看在线观看| 在线天堂最新版资源| 波多野结衣一区麻豆| 亚洲欧洲日产国产| 日本欧美国产在线视频| 狠狠精品人妻久久久久久综合| 国产xxxxx性猛交| 90打野战视频偷拍视频| 日产精品乱码卡一卡2卡三| 久久久久国产一级毛片高清牌| 国精品久久久久久国模美| 黄网站色视频无遮挡免费观看| 国产日韩欧美在线精品| 色94色欧美一区二区| 汤姆久久久久久久影院中文字幕| 日韩三级伦理在线观看| 国产成人免费无遮挡视频| 日韩 亚洲 欧美在线| videos熟女内射| 国产在线视频一区二区| freevideosex欧美| 高清av免费在线| 精品久久久精品久久久| 日韩一区二区三区影片| 久久国产精品男人的天堂亚洲| 国产欧美亚洲国产| 国产极品天堂在线| 亚洲内射少妇av| 久久精品国产综合久久久| 国产无遮挡羞羞视频在线观看| 一区福利在线观看| av.在线天堂| 日韩精品有码人妻一区| 日韩成人av中文字幕在线观看| 欧美日韩av久久| 亚洲国产精品国产精品| 日韩,欧美,国产一区二区三区| 国产极品天堂在线| 有码 亚洲区| 日本欧美国产在线视频| 精品人妻一区二区三区麻豆| 国产在线免费精品| 午夜av观看不卡| 亚洲av电影在线观看一区二区三区| 高清欧美精品videossex| 女人高潮潮喷娇喘18禁视频| 久久av网站| 亚洲人成电影观看| 多毛熟女@视频| av不卡在线播放| 伊人久久国产一区二区| 欧美激情极品国产一区二区三区| 青草久久国产| 搡老乐熟女国产| 97人妻天天添夜夜摸| 国产又爽黄色视频| 人人妻人人澡人人爽人人夜夜| 美女主播在线视频| 国产综合精华液| 麻豆乱淫一区二区| 少妇被粗大的猛进出69影院| 精品福利永久在线观看| 亚洲av.av天堂| 午夜日韩欧美国产| 久久人人97超碰香蕉20202| 国产精品二区激情视频| 中文欧美无线码| 色吧在线观看| 国语对白做爰xxxⅹ性视频网站| 99久久人妻综合| 国产探花极品一区二区| 中文欧美无线码| 久久人人爽av亚洲精品天堂| 亚洲精品成人av观看孕妇| 赤兔流量卡办理| 日韩一本色道免费dvd| 免费久久久久久久精品成人欧美视频| 99九九在线精品视频| 18禁观看日本| 性高湖久久久久久久久免费观看| 久久精品国产自在天天线| 最近中文字幕高清免费大全6| 亚洲精品中文字幕在线视频| 国产不卡av网站在线观看| 寂寞人妻少妇视频99o| 自拍欧美九色日韩亚洲蝌蚪91| 欧美 亚洲 国产 日韩一| 午夜福利在线免费观看网站| 久久精品国产自在天天线| 久久 成人 亚洲| 狠狠精品人妻久久久久久综合| 女人久久www免费人成看片| 一区二区av电影网| 亚洲婷婷狠狠爱综合网| 伊人久久国产一区二区| 熟女电影av网| 各种免费的搞黄视频| 久久国内精品自在自线图片| 国产亚洲精品第一综合不卡| 丝袜美腿诱惑在线| 爱豆传媒免费全集在线观看| 欧美 亚洲 国产 日韩一| 青春草视频在线免费观看| 男女下面插进去视频免费观看| 国产亚洲午夜精品一区二区久久| 人妻少妇偷人精品九色| 赤兔流量卡办理| 欧美日韩成人在线一区二区| 美女xxoo啪啪120秒动态图| 成人二区视频| 亚洲国产日韩一区二区| 久久久久精品久久久久真实原创| 热re99久久国产66热| 久久久久久人妻| 国产精品免费视频内射| 欧美97在线视频| 久久久亚洲精品成人影院| 久久久久人妻精品一区果冻| 亚洲欧美日韩另类电影网站| 欧美+日韩+精品| 欧美bdsm另类| av国产久精品久网站免费入址| 午夜福利视频在线观看免费| 黄频高清免费视频| √禁漫天堂资源中文www| 下体分泌物呈黄色| 18+在线观看网站| 国产精品偷伦视频观看了| 亚洲国产精品一区三区| 亚洲国产成人一精品久久久| 波野结衣二区三区在线| 日韩一卡2卡3卡4卡2021年| 最近手机中文字幕大全| 国产色婷婷99| 日产精品乱码卡一卡2卡三| 观看美女的网站| 精品99又大又爽又粗少妇毛片| 精品国产一区二区三区久久久樱花| 精品午夜福利在线看| 亚洲欧美一区二区三区国产| 黄片小视频在线播放| 观看av在线不卡| 精品卡一卡二卡四卡免费| 久久久国产欧美日韩av| 国产成人精品久久二区二区91 | 老司机影院毛片| 国产成人免费观看mmmm| 中文字幕精品免费在线观看视频| 国产xxxxx性猛交| 2022亚洲国产成人精品| 免费观看无遮挡的男女| 国产乱人偷精品视频| 制服丝袜香蕉在线| 欧美精品av麻豆av| 欧美成人精品欧美一级黄| 99国产综合亚洲精品| 亚洲av福利一区| 久久人人爽人人片av| 欧美黄色片欧美黄色片| 久久精品国产自在天天线| 日日爽夜夜爽网站| 国产日韩欧美亚洲二区| 最近最新中文字幕大全免费视频 | 国产色婷婷99| 一级片免费观看大全| 欧美日韩视频高清一区二区三区二| 女的被弄到高潮叫床怎么办| 在线天堂最新版资源| 亚洲欧洲日产国产| 精品国产超薄肉色丝袜足j| 久久精品人人爽人人爽视色| 国产亚洲欧美精品永久| 99热全是精品| 十八禁网站网址无遮挡| 一本色道久久久久久精品综合| 国产 精品1| 捣出白浆h1v1| 中国三级夫妇交换| 麻豆精品久久久久久蜜桃| 五月开心婷婷网| av网站在线播放免费| 在线免费观看不下载黄p国产| 亚洲,欧美精品.| 又大又黄又爽视频免费| 我要看黄色一级片免费的| kizo精华| 精品国产一区二区久久| 下体分泌物呈黄色| 伦精品一区二区三区| 日韩大片免费观看网站| 欧美成人午夜精品| 亚洲成色77777| 亚洲内射少妇av| 欧美成人精品欧美一级黄| av网站免费在线观看视频| 黄色毛片三级朝国网站| 成年动漫av网址| 久久精品国产自在天天线| av不卡在线播放| 国产午夜精品一二区理论片| 只有这里有精品99| 一区二区三区四区激情视频| 国产乱人偷精品视频| 高清黄色对白视频在线免费看| 精品一区在线观看国产| 国产精品久久久久久久久免| 国产av码专区亚洲av| www.精华液| 三上悠亚av全集在线观看| 亚洲国产精品一区二区三区在线| av一本久久久久| 黑人巨大精品欧美一区二区蜜桃| 永久免费av网站大全| 亚洲情色 制服丝袜| 韩国精品一区二区三区| 亚洲av欧美aⅴ国产| 一二三四中文在线观看免费高清| 国产又爽黄色视频| 91国产中文字幕| 欧美 亚洲 国产 日韩一| 亚洲成av片中文字幕在线观看 | 日韩成人av中文字幕在线观看| 欧美av亚洲av综合av国产av | 伊人亚洲综合成人网| 久久97久久精品| 国产色婷婷99| 五月伊人婷婷丁香| 下体分泌物呈黄色| 美女高潮到喷水免费观看| 国产精品三级大全| 晚上一个人看的免费电影| 美女脱内裤让男人舔精品视频| 亚洲欧洲精品一区二区精品久久久 | 大香蕉久久成人网| 国产免费一区二区三区四区乱码| 免费看不卡的av| 久久这里只有精品19| 亚洲欧美精品综合一区二区三区 | 只有这里有精品99| 一本久久精品| 人妻 亚洲 视频| 免费观看a级毛片全部| 伦理电影大哥的女人| 国产福利在线免费观看视频| 黄片播放在线免费| 欧美在线黄色| 99香蕉大伊视频| 国产精品99久久99久久久不卡 | 亚洲精品久久成人aⅴ小说| 2022亚洲国产成人精品| 热99国产精品久久久久久7| 高清视频免费观看一区二区| 国产精品人妻久久久影院| 国产精品久久久久久精品古装| 大话2 男鬼变身卡| 国产精品久久久久久av不卡| 精品人妻在线不人妻| 99久久中文字幕三级久久日本| 精品少妇一区二区三区视频日本电影 | a级毛片在线看网站| 王馨瑶露胸无遮挡在线观看| 老女人水多毛片| 人成视频在线观看免费观看| 91在线精品国自产拍蜜月| 成人午夜精彩视频在线观看| 久久这里只有精品19| 亚洲av综合色区一区| 亚洲av日韩在线播放| 国产成人免费无遮挡视频| 国产毛片在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久久人妻| 亚洲人成电影观看| 亚洲国产最新在线播放| 伦精品一区二区三区| av网站在线播放免费| 久久精品国产鲁丝片午夜精品| 国产精品偷伦视频观看了| 免费在线观看视频国产中文字幕亚洲 | 免费日韩欧美在线观看| 中文字幕人妻丝袜一区二区 | 成人黄色视频免费在线看| 曰老女人黄片| 亚洲精品美女久久av网站| 免费久久久久久久精品成人欧美视频| 欧美成人午夜免费资源| 男女下面插进去视频免费观看| av国产久精品久网站免费入址| 18+在线观看网站| 精品久久蜜臀av无| www.自偷自拍.com| 大香蕉久久成人网| 国产精品免费视频内射| 人人妻人人澡人人爽人人夜夜| 亚洲国产精品一区三区| 午夜影院在线不卡| 国产精品秋霞免费鲁丝片| 老汉色∧v一级毛片| 91午夜精品亚洲一区二区三区| 春色校园在线视频观看| 国产免费现黄频在线看| 亚洲av电影在线观看一区二区三区| 精品视频人人做人人爽| 各种免费的搞黄视频| 天天躁夜夜躁狠狠躁躁| 久久99精品国语久久久| 亚洲五月色婷婷综合| 在线看a的网站| 一级毛片我不卡| 岛国毛片在线播放| 人人妻人人添人人爽欧美一区卜| 午夜福利一区二区在线看| 亚洲内射少妇av| 亚洲欧美色中文字幕在线| 久久精品国产自在天天线| 精品国产超薄肉色丝袜足j| 男女边摸边吃奶| 老司机亚洲免费影院| 一级毛片黄色毛片免费观看视频| 嫩草影院入口| 国产在线免费精品| 国产精品女同一区二区软件| 亚洲视频免费观看视频| 国产精品 欧美亚洲| 国产在线一区二区三区精| 亚洲欧美成人综合另类久久久| 激情视频va一区二区三区| 午夜日本视频在线| 下体分泌物呈黄色| 天天操日日干夜夜撸| 99久国产av精品国产电影| 99国产综合亚洲精品| av卡一久久| 国产在线免费精品| 成人漫画全彩无遮挡| 精品99又大又爽又粗少妇毛片| 天堂中文最新版在线下载| √禁漫天堂资源中文www| 丝袜在线中文字幕| 天天操日日干夜夜撸| 天美传媒精品一区二区| 丝袜喷水一区| 母亲3免费完整高清在线观看 | 伦理电影免费视频| 国产精品久久久久久精品古装| 中文字幕另类日韩欧美亚洲嫩草| 中文字幕最新亚洲高清| 男人舔女人的私密视频| 寂寞人妻少妇视频99o| 青青草视频在线视频观看| www.自偷自拍.com| 精品人妻偷拍中文字幕| 卡戴珊不雅视频在线播放| 久久精品aⅴ一区二区三区四区 | 久久99蜜桃精品久久| 99九九在线精品视频| 18+在线观看网站| 成人国产麻豆网| 国产 精品1| 伦理电影大哥的女人| xxx大片免费视频| 亚洲精品中文字幕在线视频| 免费女性裸体啪啪无遮挡网站| 综合色丁香网| 久久久久久久亚洲中文字幕| 只有这里有精品99| 国产精品熟女久久久久浪| 高清视频免费观看一区二区| 国产97色在线日韩免费| 777久久人妻少妇嫩草av网站| 国产一区二区激情短视频 | 国产一区亚洲一区在线观看| 欧美精品高潮呻吟av久久| 777米奇影视久久| 美女中出高潮动态图| 有码 亚洲区| 少妇的逼水好多| 在线观看国产h片| 欧美+日韩+精品| 久久99热这里只频精品6学生| 日本黄色日本黄色录像| 国产成人免费无遮挡视频| 欧美最新免费一区二区三区| 色播在线永久视频| 中文字幕另类日韩欧美亚洲嫩草| 春色校园在线视频观看| 久久精品国产亚洲av高清一级| 国产高清不卡午夜福利| 毛片一级片免费看久久久久| 成人亚洲精品一区在线观看| 丝袜美足系列| 肉色欧美久久久久久久蜜桃| 春色校园在线视频观看| 成年美女黄网站色视频大全免费| 2021少妇久久久久久久久久久| 狠狠婷婷综合久久久久久88av| 欧美 亚洲 国产 日韩一| 精品福利永久在线观看| a 毛片基地| 免费人妻精品一区二区三区视频|