• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    3D dahlia-like NiAl-LDH/CdS heterosystem coordinating with 2D/2D interface for efficient and selective conversion of CO2

    2022-06-20 06:22:00XioyueZhngYongYngLijunXiongTinyuWngZhengTngPnjieLiNnYinAiwuSunJinyouShen
    Chinese Chemical Letters 2022年4期

    Xioyue Zhng,Yong Yng,Lijun Xiong,Tinyu Wng,Zheng Tng,Pnjie Li,Nn Yin,Aiwu Sun,c,Jinyou Shen,*

    a Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse,School of Environmental and Biological Engineering,Nanjing University of Science and Technology,Nanjing 210094,China

    b Key Laboratory of Soft Chemistry and Functional Materials,Ministry of Education,School of Chemistry and Chemical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China

    c Faculty of Chemical Engineering,Huaiyin Institute of Technology,Huaiyin 223001,China

    ABSTRACT Developing photocatalyst with high activity,superior stability and prominent selectivity for CO2 conversion is of great importance for the target of carbon neutralization.Herein,3D dahlia-like NiAl-LDH/CdS heterosystem is developed through in-situ decoration of exfoliated CdS nanosheets on the scaffold of NiAl-LDH and the on-spot self-assembly.The formation of a hierarchical architecture collaborating with well-defined 2D/2D interfacial interaction is constructed by optimizing the ratio of CdS integrated in the formation of the heterojunction.The light-harvesting capacity of NiAl-LDH/CdS is improved by this unique scaffold,and the charge transfer between NiAl-LDH and CdS is effectively facilitated by virtue of the unique 2D/2D interface.As a result,the 3D hierarchical NiAl-LDH/CdS heterosystem presents 12.45 μmol g-1 h-1 of CO production(3.3 and 1.6 folds of pristine NiAl-LDH and CdS)with 96% selectivity and superior stability.This 3D hierarchical design collaborating with 2D/2D interfacial interaction provides a new avenue to develop ideal catalysts for artificial photosynthesis.

    Keywords:Photocatalysis CdS Photocorrosion NiAl-LDH CO2Conversion

    Environmental issue has aroused great concern to the human society,especially the global warming caused by the enormous discharge of CO2in the atmosphere.Currently,fossil fuels are still the main source of energy,resulting great energy and environmental crises.In this circumstance,there is an urgent need to develop new sustainable energy production and protection technologies in an environmentally and economically feasible way[1-3].Photocatalytic technology uses clean and inexhaustible solar energy to convert CO2into renewable fuels,which is considered one of the most promising strategy.Although great progress has been made,the efficiency of photocatalytic CO2conversion is still unsatisfied[4-7].Development of efficient and stable photocatalysts is the top priority in order to fulfil the idea of "artificial photosynthesis"[8-11].

    Among most of the semiconductors,CdS presents superior light harvesting capacity and strong redox ability[12-15],which shows great potential in the field of CO2conversion[16-19].However,the rapid recombination of photogenerated charge carriers restricts the catalytic efficiency of bulk CdS.In particular,the severe photocorrosion is detrimental to the stability and practical performance of CdS.Therefore,noble metal modification,morphology modulation and integration with different semiconductors have been widely investigated[20-23].However,most works concerning the protection of CdS against photocorrosion are physical shielding,and the photoinduced holes may accumulate on CdS,resulting in oxidation of S2-.Effective strategies should be proposed to alleviate the holes accumulation and strengthen the photon capture as well as the CO2adsorption.

    Layered double hydroxides(LDHs)have received extensive attention due to their strong visible light response,controllable metal cation composition and tunable band structure.In addition,the abundant hydroxyl groups on the surface of LDHs are beneficial for the adsorption of CO2,which is fundamental to the conversion[24,25].What is more,the 2D structure provides a unique platform for collaborating with other semiconductors.Herein,a dahlialike NiAl-LDH/CdS hybrid with well-defined 2D/2D interface is developed.The construction of three-dimensional hierarchical architecture endow the hybrid with enhanced light harvesting capacity due to the multiple scattering cross section.The formation of type-II heterojunction effectively promotes the separation of photoinduced charge carriers.In particular,the photoinduced holes can be exported from CdS to NiAl-LDH.As a consequence,the optimized NiAl-LDH/CdS presents significantly improved photocatalytic activity and prominent stability.These improvement and the corresponding mechanism are in-depth investigated by spectral and electrochemical characterizations.

    Fig.1.(a)Illustration of the synthesis of the 3D hierarchical NiAl-LDH/CdS hybrid.(b)XPS survey spectra of NiAl-LDH,CdS and NiAl-LDH/CdS-2.(c)Ni 2p,(d)Al 2p,(e)S 2p,(f)Cd 3d and core-level XPS spectra.

    CdS was preparedviahydrothermal reaction and exfoliated with ultrasound.The as-obtained CdS nanosheet wasin-situdeposited on NiAl-LDH during the process of crystallization(Fig.1a).As shown in Fig.S1(Supporting information),CdS presents a hexagonal wurtzite phase structure(JCPDS No.41-1049)[26],and a typical hydrotalcite structure can be declared for NiAl-LDH.After combination,NiAl-LDH/CdS composites exhibit similar diffraction pattern to the pristine NiAl-LDH owing to the uniform distribution of CdS.In order to determine the content of CdS in the hybrid,ICP-MS was conducted and showed in Table S3(Supporting information).The weight ratio of CdS is 11.1%,21.2%,26.5% in NiAl-LDH/CdS-1,NiAl-LDH/CdS-2,NiAl-LDH/CdS-3.XPS was used for investigation of the composition and charge transfer of the samples.As shown in Fig.1b,NiAl-LDH is composed of Ni,Al,C and O elements,and CdS is comprised by Cd and S elements.For NiAl-LDH/CdS-2,the peaks of Cd and S can be observed,though the intensity of them are weak.Moreover,the co-existence of Ni,Al,Cd and S elements in the hybrid can be demonstrated from their highresolution spectra.Figs.1c and d show the high-resolution spectra of Ni 2p and Al 2p of the sample.The peaks at 856.0 eV and 873.6 eV are attributed to Ni 2p3/2and Ni 2p1/2,respectively[27].After doping with CdS,the Ni 2p3/2and Ni 2p1/2in NiAl-LDH/CdS-2 transfer to 856.2 eV and 873.8 eV with higher binding energies.For Al3+,its high-resolution spectrum can be decomposed into two peaks of 68.2 eV and 74.2 eV[28].After compounding CdS,the binding energy of these two signals is also significantly increased.For pristine CdS(Fig.1e),the Cd 3d high-resolution spectrum can be divided into two peaks located at 405.1 eV and 411.8 eV,corresponding to Cd 3d5/2and Cd 3d3/2[29].After hybridization,the binding energy of Cd 3d reduced to 404.8 eV and 411.5 eV.The binding energies at 158.8 eV and 161.3 eV are corresponded to S 2p3/2and S 2p1/2,respectively,which proves the existence of S2-(Fig.1f).The peaks for S 2p3/2and S 2p1/2decreased to 158.5 eV and 161.0 eV in the NiAl-LDH/CdS.According to the variation of binding energy for NiAl-LDH and CdS after the integration,the electron migration from NiAl-LDH to CdS can be proposed[30].

    Fig.2.FE-SEM images of(a)CdS,(b)NiAl-LDH/CdS-1,(c)NiAl-LDH/CdS-2 and(d)NiAl-LDH/CdS-3.(e)The whole TEM image and(f)EDS elemental mapping images of NiAl-LDH/CdS-2.(g)HAADF-STEM image and(h)HRTEM image from the edge of the NiAl-LDH/CdS-2.

    As shown in Fig.S2(Supporting information),the bare NiAl-LDH presents a 3D hierarchical architecture,which is comprised by a large number of self-assembled and stacked nanosheets.The diameter of a particle is about 5 μm.Figs.2a-d show the SEM images of CdS and NiAl-LDH/CdS composites.CdS displays a two-dimensional sheet structure.After integration,NiAl-LDH/CdS-1(Fig.2b)and NiAl-LDH/CdS-2(Fig.2c)present the similar appearance with pristine NiAl-LDH due to the low content of CdS.It is worth noting that the volume of the cavity between the NiAl-LDH layers decreases in NiAl-LDH/CdS-2.This suggests that CdS nanosheets are decorated on the scaffold of NiAl-LDH plates.When 30 mL CdS suspension was used,the number of stuffed cavities increases for NiAl-LDH/CdS-3,and many aggregates present on the surface of the sample(Fig.2d).Based on the above observations,the formation of uniform interface between CdS and NiAl-LDH can be proposed in NiAl-LDH/CdS-1 and NiAl-LDH/CdS-2.Whereas,NiAl-LDH/CdS-3 has a large number of separated blocks.

    TEM investigation was then performed on NiAl-LDH/CdS-2.As shown in Fig.2e,NiAl-LDH/CdS-2 is composed of a large number of nanosheets,which is consistent with the result observed in the SEM.From the lower left corner of a particle(Fig.2g),the twodimensional and sheet-like stacked structure can be further clarified.As observed in the high-resolution transmission electron microscope(HRTEM)image(Fig.2h),the lattice spacing of 0.37 nm is corresponded to the(0 0 2)crystal plane of NiAl-LDH[31],and 0.26 nm can be designated to the(1 0 2)crystal plane of CdS[32].The interface between the two materials is clearly visible.In particular,the unique 2D/2D stacking structure can be confirmed,which is beneficial for the charge transfer between the components during the photocatalysis[33].Moreover,the corresponding EDS elemental mapping images(Fig.2f)of Ni,Al,O,S and Cd clearly illustrate the homogeneous composition of NiAl-LDH and CdS.Zeta potential was also measured to illustrate the formation mechanism of NiAl-LDH/CdS.As shown in the Fig.S6(Supporting information),NiAl-LDH exhibits a positive zeta potential,while CdS is negatively charged.The metal cations in NiAl-LDH are mainly involved in the construction of NiAl-LDH.Through the self-assembly,a 3D dahlialike NiAl-LDH/CdS can be built based on electrostatic interaction.Due to the coverage of NiAl-LDH by negatively charged CdS,the zeta potential after hybridization changed significantly.

    Fig.3a shows the UV-DRS spectra of CdS,NiAl-LDH and composite materials.As it can be seen,the pristine CdS shows strong absorption in the ultraviolet and visible regions,which is consistent with its yellow color.NiAl-LDH presents three absorption bands at 200-300 nm,300-500 nm and 600-800 nm.The absorption at 200-300 nm is originated from the ligand to metal charge transfer from O 2p to Ni 3d t2g,and the other two bands are produced by the d-d transition of Ni2+ions in the octahedral field[34].For NiAl-LDH/CdS composites,their absorption profiles are similar to that of the pristine NiAl-LDH.The slight improvement of the absorption below 520 nm is resulted from CdS in NiAl-LDH/CdS-1 and NiAl-LDH/CdS-2,whereas,further increase of CdS and the agglomeration does not contribute to the enhancement of absorption.According to the UV-DRS and the empirical formulaαhυ= A(hυ-Eg)n/2,the band gap of CdS(2.31 eV)and NiAl-LDH(2.36 eV)can be obtained(Fig.S3 in Supporting information),which are basically consistent with previous reports[35,36].

    Fig.3b shows the N2adsorption-desorption isotherms of the samples.NiAl-LDH and NiAl-LDH/CdS-2 show typical type IV and H3 hysteresis curves,indicating the presence of mesoporous structure constructed by the aggregation of nanosheets.By contrast,CdS exhibits a type II and H4 hysteresis loop.The BET specific surface areas of CdS and NiAl-LDH are 11.18 m2/g and 54.08 m2/g,respectively.The hybridization results in the decrease of BET specific surface area for NiAl-LDH,and this value for NiAl-LDH/CdS-2 is 31.5 m2/g.As observed from the pore size distribution curves(Fig.3b),NiAl-LDH and NiAl-LDH/CdS-2 show two pore size distribution ranges at 2 nm and 5-70 nm,whereas CdS is nonporous.The loosely packed NiAl-LDH plates resulted in a wide aperture range,signifying a multiple and complicated pore structure.After deposition of CdS,it is worth noting that the proportion of large pores is significantly decreased,and the tightly packed structure lead to the pore size centralized around 18 nm.Meanwhile,the content of small pores around 2 nm decreases owing to the closely stacked nanosheets in NiAl-LDH/CdS-2.These unambiguously demonstrate the formation of a close 2D/2D interface,which is beneficial for the charge transfer between the two components.As shown in Fig.S4(Supporting information),the bare CdS showed a CO2uptake capacity of 3.93 cm3/g(P/P0= 0.03).Whereas,NiAl-LDH shows a powerful CO2capture capacity(20.1 cm3/g atP/P0= 0.03).The inherent basic property of NiAl-LDH is benefit to CO2accumulation.Moreover,the 3D hierarchical architecture promotes the diffusion of CO2in the system,thereby improving the surface utilization of active sites.After combination of these two materials,NiAl-LDH/CdS-2 shows a moderate CO2adsorption performance(6.27 cm3/g)due to the decreased BET specific surface areas and the covering of NiAl-LDH plates.

    Fig.3.(a)UV-vis diffuse reflectance spectra of the synthesized CdS,LDH and composites.(b)Nitrogen adsorption-desorption isotherm curves for(1)NiAl-LDH,(2)NiAl-LDH/CdS-2 and(3)CdS,and Diameter distribution curves of the samples.(c)Time evolution of CO over different samples.(d)Average gas production rates over different catalysts.(e)Stability tests for CO production over NiAl-LDH/CdS-2.(f)The isotope analysis of 13CO using 13CO2 as carbon source by GC-MS.Inset shows the mass spectrum of 13CO.

    The photocatalytic CO2conversion were then performed on NiAl-LDH,CdS and the composites,of which the main product was CO.Fig.3c shows the time evolution amount of CO over different samples,and the histogram of CO and CH4yield are presented in Fig.3d.After 6 h irradiation,the CO yield on bare NiAl-LDH and CdS are 22.74 μmol/g and 45.9 μmol/g,corresponding to the production rate of 3.79 μmol g-1h-1and 7.65 μmol g-1h-1.For NiAl-LDH/CdS composites,their performances are significantly improved.As the content of CdS increases in the hybrids,the photocatalytic activity of the catalysts gradually enhances.However,there is an optimal ratio between NiAl-LDH and CdS.NiAl-LDH/CdS-2 displays the best performance,and its yield and production rate reach 74.7 μmol/g and 12.45 μmol g-1h-1,respectively.Whereas,the photocatalytic efficiencies for NiAl-LDH/CdS-1 and NiAl-LDH/CdS-3 are lower than that of NiAl-LDH/CdS-2.As it can be seen,the selectivity towards CO is beyond 96% on NiAl-LDH/CdS-2,which is also the optimum among the composites.After four cycles of testing,the CO yield of NiAl-LDH/CdS-2 did not show any significant decrease(Fig.3e).Moreover,the XRD and SEM characterizations for the recycled catalyst were performed.As observed in Figs.S8 and S9(Supporting information),neglectable variation occurs on NiAl-LDH/CdS-2 before and after the photocatalysis,proving its good durability and stability.Then,control experiment was performed,and none of the products can be detected in the absence of radiation,CO2or catalyst(Fig.S7 in Supporting information),this strongly demonstrates that the photocatalytic CO2reduction is driven by the irradiation on the photocatalysts.In addition,an isotropic experiment was conducted using13CO2to investigate the carbon source of the products.As shown in Fig.3f,the introduced13CO2and the generated13CO are well separated,which can be observed at 1.6 min and 1.2 min in the chromatogram,respectively.After ionization of13CO,the signals ofm/z= 13,16,and 29 are detected.This undoubtedly confirms that the carbon source of the products is the introduced CO2.

    Fig.4.(a)Photoluminescence spectra,and(b)time-resolved fluorescence decay traces of the samples(the excitation wavelength is 355 nm).(c)transient photocurrent responses of the as-prepared samples.(d)Electrochemical impedance spectra(EIS)of the samples.(e)Schematic diagram of the possible photocatalytic mechanism of NiAl-LDH/CdS.(f) In-situ DRIFTS spectra of CO2 photoconversion over different samples under the dark condition and light irradiation.

    In order to clarify the photocatalytic mechanism for the different samples,fluorescence spectroscopy was used to analyze the charge transfer behavior of the materials.As shown in Fig.4a,NiAl-LDH shows two main emission bands located at 468 nm and 520 nm,which are attributed to the blue light and inter-band emissions.The absorption peak at 520 nm is approximately equal to the band gap absorption of NiAl-LDH(2.36 eV).After decoration of CdS,the fluorescence intensity of LDH/CdS-2 quenched significantly,indicating the decreased radiation recombination of photoinduced electron and hole pairs.Subsequently,nanosecond-scale fluorescence decay spectroscopy was used to characterize the dynamics of charge migration(Fig.4b).The fluorescence radiation lifetime(τ)was obtained by fitting of the curve based on doubleexponential function.The average fluorescence lifetime(τ= 2.62 ns)of the photogenerated charge carriers in NiAl-LDH/CdS-2 is prolonged than that of the pristine NiAl-LDH(τ= 1.23 ns)(Table S2 in Supporting information).The improvement of charge transfer ability on NiAl-LDH/CdS-2 can thus be proposed.Then,NiAl-LDH,CdS and NiAl-LDH/CdS composites are separately coated on FTO,and photocurrent was recorded by switching the light on and off for several cycles.As displayed in Fig.4c,no current is generated in the absence of light.After the lamp is turned on,the current increases sharply due to the excitation of NiAl-LDH and CdS,and the process can be repeated stably.Compared with pure semiconductors,the photocurrent intensity of NiAl-LDH/CdS composites is significantly enhanced,and the charge separation is effectively improved.The order of the photocurrent intensity of the composite sample is:NiAl-LDH/CdS-2>NiAl-LDH/CdS-3>NiAl-LDH/CdS-1,which is in accordance with their photocatalytic performances.The separation efficiency of photogenerated electrons and holes is firstly promoted with the increase of the doping amount of CdS,and excessive of CdS results in the agglomeration of the materials,thereby interrupting the uniform interface and efficient charge separation.Therefore,the AC impedance spectroscopy(EIS)test is then conducted for revealing the interfacial charge transfer behaviour.As shown in Fig.4d,a smaller arc corresponds to a lower interfacial charge transfer impedance[37].It can be clearly seen that NiAl-LDH/CdS-2 exhibits the smallest arc among the samples.The most effective charge separation and interfacial transport can be demonstrated in NiAl-LDH/CdS-2.

    Based on the above investigations,a mechanism was proposed concerning the improved photocatalytic performance of hierarchical NiAl-LDH/CdS heterosystem.The conduction band potential of CdS and NiAl-LDH is estimated to be-0.56 V and-0.72 V based on the Mott-Schottky tests(Fig.S5 in Supporting information)[38-40].The corresponding valence band positions of CdS and NiAl-LDH can thus be calculated to be 1.75 V and 1.64 V from the above-obtained band gap of the materials.Accordingly,the energy alignment of the composite system can be depicted in Fig.4e.When the NiAl-LDH/CdS hybrid is exposed to light irradiation,the electrons in NiAl-LDH and CdS are both excited from their VB to CB.Since the conduction band position of NiAl-LDH is more negative than CdS,electrons will transfer from NiAl-LDH to CdS,and thus reducing the CO2to CO on the surface of CdS.At the same time,the holes migrate from the VB of CdS to the VB of NiAl-LDH,and the oxidation of CdS can be largely depressed.The construction of this type-II heterojunction not only realizes the effective separation of photogenerated carriers,but also restricts the photocorrosion of chalcogenide semiconductor.Thus the photocatalytic activity and stability are simultaneously elevated.Thereafter,the reaction pathway and existing intermediates during the photocatalytic CO2reduction were examined by thein-situDRIFTS spectra(Fig.4f).Upon light irradiation,the absorptions at 1516 cm-1and 1576 cm-1are assigned to the monodentate and bidentate carbonates(m-CO32-and b-CO32-)generated by the chemical adsorption of CO2on the photocatalyst surfaces.Then*COOH is formed at 1555 cm-1through the hydrogenation of CO2(H+is provided by H2O).Finally,*CO is formed around 2133 cm-1via dehydration reaction and CO is liberated from the surface of the catalysts.The reaction process can thus be determined as CO2→*CO2→*COOH →*CO+H2O →CO+H2O,which is similar to previous reports[41,42].For NiAl-LDH/CdS-2,the absorptions belong to these intermediates are significantly higher than that of the pristine CdS and NiAl-LDH,which is in consistence with their photocatalytic performances.

    In summary,3D dahlia-like NiAl-LDH/CdS hybrid was fabricated byin-situdecoration of exfoliated CdS nanosheets on the scaffold of NiAl-LDH and the on-spot self-assembly.A unique hierarchical architecture coordinating with 2D/2D interface interaction was successfully constructed.The as-developed NiAl-LDH/CdS presents significantly improved photocatalytic performance for CO2conversion(12.45 μmol g-1h-1),which is 3.3 and 1.6 folds of pristine NiAl-LDH and CdS.In particular,the photocorrosion towards CdS is largely restricted by virtue of the type-II heterojunction,thus the stability and cycling performance of the photocatalyst are significantly improved.In combination with the increased photon scattering cross-section,this 3D hierarchical structure collaborating with 2D/2D interfacial interaction provides a new strategy to develop ideal and efficient photocatalysts.

    Declaration of competing interest

    The authors declare no competing interest that could have appeared to influence the work reported in this paper.

    Acknowledgments

    We are grateful to the National Natural Science Foundation of China for Excellent Young Scholars(No.51922050),the National Natural Science Foundation of China(No.51303083),the Natural Science Foundation of Jiangsu Province(No.BK20191293),and the Fundamental Research Funds for the Central Universities(No.30920021123)for financial support.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.08.053.

    午夜福利18| www.自偷自拍.com| 欧美激情 高清一区二区三区| 一夜夜www| 99热6这里只有精品| 欧美一级a爱片免费观看看 | 国产私拍福利视频在线观看| 国产亚洲av嫩草精品影院| 午夜成年电影在线免费观看| 又紧又爽又黄一区二区| 亚洲成人国产一区在线观看| 成人手机av| 级片在线观看| 国产精品亚洲一级av第二区| 午夜福利欧美成人| 18禁美女被吸乳视频| 精品一区二区三区四区五区乱码| 国产亚洲精品av在线| 大型黄色视频在线免费观看| 亚洲av日韩精品久久久久久密| 欧美乱妇无乱码| 级片在线观看| 成人特级黄色片久久久久久久| 日本 av在线| 成人午夜高清在线视频 | 亚洲激情在线av| 国产精品久久久久久人妻精品电影| 欧美黄色淫秽网站| 少妇熟女aⅴ在线视频| 国产野战对白在线观看| 极品教师在线免费播放| 欧美中文日本在线观看视频| 一区二区三区国产精品乱码| 2021天堂中文幕一二区在线观 | 欧美不卡视频在线免费观看 | 免费搜索国产男女视频| 久久久久精品国产欧美久久久| 无限看片的www在线观看| 免费看a级黄色片| 一个人免费在线观看的高清视频| 亚洲成国产人片在线观看| 精品国产乱子伦一区二区三区| 一本精品99久久精品77| 草草在线视频免费看| 国产真人三级小视频在线观看| 国产三级在线视频| 婷婷精品国产亚洲av在线| 又紧又爽又黄一区二区| 久久香蕉精品热| 又黄又粗又硬又大视频| 日韩精品中文字幕看吧| 不卡av一区二区三区| 精品久久久久久久人妻蜜臀av| 老司机福利观看| 日韩欧美国产在线观看| 9191精品国产免费久久| 亚洲中文字幕日韩| 日本黄色视频三级网站网址| 久久精品人妻少妇| 日韩欧美一区视频在线观看| 国产高清激情床上av| 精品国产一区二区三区四区第35| 国产免费av片在线观看野外av| 亚洲av日韩精品久久久久久密| tocl精华| 精品午夜福利视频在线观看一区| 欧美最黄视频在线播放免费| 亚洲一区中文字幕在线| 自线自在国产av| 一a级毛片在线观看| 中文字幕人妻丝袜一区二区| 日本免费a在线| 精品免费久久久久久久清纯| 国产黄a三级三级三级人| 久久久久久久精品吃奶| 老司机福利观看| 一区二区三区国产精品乱码| 色综合婷婷激情| 婷婷亚洲欧美| 97碰自拍视频| 大型av网站在线播放| 在线观看日韩欧美| 99热这里只有精品一区 | 亚洲精品国产区一区二| 欧美在线黄色| 国产一区二区三区在线臀色熟女| 真人一进一出gif抽搐免费| 色av中文字幕| 日韩中文字幕欧美一区二区| 国产午夜精品久久久久久| 一本一本综合久久| 国产av一区在线观看免费| 精品高清国产在线一区| 岛国在线观看网站| 国产成人欧美| 久热这里只有精品99| 淫秽高清视频在线观看| 在线观看免费日韩欧美大片| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产欧美网| 熟女电影av网| 久久久国产欧美日韩av| 1024香蕉在线观看| 国产av不卡久久| www.www免费av| 国产精品亚洲av一区麻豆| 真人做人爱边吃奶动态| 国产一区在线观看成人免费| 给我免费播放毛片高清在线观看| 亚洲午夜理论影院| 搡老岳熟女国产| 黄色视频,在线免费观看| 国产麻豆成人av免费视频| 国产在线精品亚洲第一网站| 大型黄色视频在线免费观看| 亚洲av第一区精品v没综合| 欧美另类亚洲清纯唯美| 亚洲成人免费电影在线观看| 日韩视频一区二区在线观看| 久久这里只有精品19| 黄片播放在线免费| 激情在线观看视频在线高清| 午夜福利在线在线| 51午夜福利影视在线观看| 国产激情久久老熟女| 国产视频一区二区在线看| 亚洲久久久国产精品| 别揉我奶头~嗯~啊~动态视频| 亚洲av成人一区二区三| 男女做爰动态图高潮gif福利片| 国产成人精品无人区| 日韩一卡2卡3卡4卡2021年| 国产激情欧美一区二区| 亚洲熟女毛片儿| 久久久水蜜桃国产精品网| 一级作爱视频免费观看| 成人一区二区视频在线观看| 女同久久另类99精品国产91| 成人三级黄色视频| 俺也久久电影网| 免费观看精品视频网站| 中文字幕人成人乱码亚洲影| 男人操女人黄网站| 少妇熟女aⅴ在线视频| 1024香蕉在线观看| 国产亚洲欧美98| 又黄又爽又免费观看的视频| 亚洲国产欧洲综合997久久, | 亚洲国产毛片av蜜桃av| 男人操女人黄网站| 久久久久国产精品人妻aⅴ院| 久久精品国产清高在天天线| 日本撒尿小便嘘嘘汇集6| 亚洲一区中文字幕在线| 亚洲中文av在线| 国产v大片淫在线免费观看| 国产亚洲av高清不卡| 欧美黑人欧美精品刺激| 亚洲成av人片免费观看| svipshipincom国产片| 国产亚洲精品一区二区www| 日韩欧美国产一区二区入口| 久久中文字幕一级| 人人澡人人妻人| 久久欧美精品欧美久久欧美| 国产精品 国内视频| 中文字幕久久专区| 一区福利在线观看| 99久久国产精品久久久| 国产精品亚洲一级av第二区| 久久中文看片网| 国产精华一区二区三区| 中出人妻视频一区二区| 亚洲国产日韩欧美精品在线观看 | 性欧美人与动物交配| 国产精品一区二区精品视频观看| 天天添夜夜摸| √禁漫天堂资源中文www| 色哟哟哟哟哟哟| 国产精品精品国产色婷婷| 日本在线视频免费播放| 午夜福利18| 18禁裸乳无遮挡免费网站照片 | 99热只有精品国产| 成年女人毛片免费观看观看9| 国产视频一区二区在线看| 欧美日韩中文字幕国产精品一区二区三区| 99久久综合精品五月天人人| 国产精品综合久久久久久久免费| 久久精品91无色码中文字幕| 国产激情偷乱视频一区二区| 久久精品夜夜夜夜夜久久蜜豆 | 免费看日本二区| 欧美成人午夜精品| 日本a在线网址| 正在播放国产对白刺激| 成人三级黄色视频| 黄色片一级片一级黄色片| 白带黄色成豆腐渣| 淫秽高清视频在线观看| 我的亚洲天堂| 久久国产精品男人的天堂亚洲| 麻豆av在线久日| 免费在线观看日本一区| 亚洲电影在线观看av| 中文字幕人成人乱码亚洲影| 满18在线观看网站| www国产在线视频色| 亚洲专区字幕在线| 久久人人精品亚洲av| 久久久精品欧美日韩精品| 国产精品亚洲av一区麻豆| 亚洲成人免费电影在线观看| 国产成人精品久久二区二区91| 免费观看精品视频网站| 他把我摸到了高潮在线观看| 首页视频小说图片口味搜索| 熟女电影av网| 国内毛片毛片毛片毛片毛片| 九色国产91popny在线| 欧美一区二区精品小视频在线| 欧美性猛交╳xxx乱大交人| av片东京热男人的天堂| 91在线观看av| 国产男靠女视频免费网站| 国产精品九九99| 国产成人av教育| av电影中文网址| 97人妻精品一区二区三区麻豆 | 国产区一区二久久| 国产精品1区2区在线观看.| 琪琪午夜伦伦电影理论片6080| 亚洲国产精品久久男人天堂| 日韩欧美国产一区二区入口| 亚洲五月天丁香| 啦啦啦观看免费观看视频高清| 欧美一区二区精品小视频在线| 女性生殖器流出的白浆| 人人妻人人澡人人看| 国产成人精品久久二区二区免费| 日本五十路高清| 久久中文字幕一级| 午夜精品在线福利| 久久人妻av系列| 老汉色∧v一级毛片| 久久久国产精品麻豆| 免费在线观看黄色视频的| 亚洲国产日韩欧美精品在线观看 | 久久午夜亚洲精品久久| 国产黄片美女视频| 免费观看人在逋| 久久久久久久久免费视频了| 亚洲 国产 在线| 亚洲自拍偷在线| 国产91精品成人一区二区三区| 亚洲五月天丁香| 日韩一卡2卡3卡4卡2021年| 国产精品野战在线观看| 999久久久精品免费观看国产| 2021天堂中文幕一二区在线观 | 国产激情欧美一区二区| 久久国产精品男人的天堂亚洲| 操出白浆在线播放| 国产成人欧美| 国产色视频综合| 91九色精品人成在线观看| 日本精品一区二区三区蜜桃| 成人18禁高潮啪啪吃奶动态图| 亚洲成人精品中文字幕电影| 久久久精品国产亚洲av高清涩受| 国内少妇人妻偷人精品xxx网站 | 中国美女看黄片| 国产成+人综合+亚洲专区| 19禁男女啪啪无遮挡网站| 丰满人妻熟妇乱又伦精品不卡| 亚洲自拍偷在线| 日韩有码中文字幕| 国产一区二区三区视频了| 老鸭窝网址在线观看| 91九色精品人成在线观看| 亚洲精品美女久久av网站| 高清在线国产一区| 国产av一区二区精品久久| 亚洲成国产人片在线观看| 天天躁夜夜躁狠狠躁躁| 亚洲一卡2卡3卡4卡5卡精品中文| 999久久久精品免费观看国产| 欧美黑人巨大hd| 搞女人的毛片| 制服丝袜大香蕉在线| 国产99久久九九免费精品| 国产av一区二区精品久久| 成年女人毛片免费观看观看9| 成人国产一区最新在线观看| 麻豆成人午夜福利视频| 亚洲中文字幕一区二区三区有码在线看 | 国产99久久九九免费精品| 香蕉av资源在线| 校园春色视频在线观看| 国产又色又爽无遮挡免费看| 国产成人欧美在线观看| 国产三级在线视频| bbb黄色大片| 999久久久精品免费观看国产| 亚洲精华国产精华精| 国产精品乱码一区二三区的特点| 精品免费久久久久久久清纯| 亚洲va日本ⅴa欧美va伊人久久| 视频区欧美日本亚洲| 啦啦啦观看免费观看视频高清| 国产91精品成人一区二区三区| 美女扒开内裤让男人捅视频| 久久狼人影院| 婷婷丁香在线五月| 国产精品久久久av美女十八| www国产在线视频色| 亚洲精品在线观看二区| 热99re8久久精品国产| 99久久久亚洲精品蜜臀av| 又大又爽又粗| 午夜两性在线视频| 大香蕉久久成人网| 999久久久精品免费观看国产| 亚洲精品久久国产高清桃花| 国产视频一区二区在线看| 啪啪无遮挡十八禁网站| 老司机在亚洲福利影院| 亚洲精华国产精华精| 日韩精品中文字幕看吧| 亚洲国产精品成人综合色| 波多野结衣巨乳人妻| 一级a爱片免费观看的视频| 欧美激情高清一区二区三区| e午夜精品久久久久久久| 99国产精品99久久久久| 亚洲精品在线观看二区| 欧美日韩亚洲综合一区二区三区_| xxxwww97欧美| 99国产精品一区二区三区| 草草在线视频免费看| 午夜免费激情av| xxx96com| 色哟哟哟哟哟哟| 国产精品日韩av在线免费观看| 亚洲人成伊人成综合网2020| 国产成+人综合+亚洲专区| 国产又色又爽无遮挡免费看| 俺也久久电影网| 欧美乱色亚洲激情| 国产私拍福利视频在线观看| 欧美黄色淫秽网站| 亚洲精品在线美女| 国内毛片毛片毛片毛片毛片| 男女那种视频在线观看| 999精品在线视频| 欧美黑人精品巨大| 中国美女看黄片| 久久久久久久久中文| 18禁观看日本| 日韩视频一区二区在线观看| 欧美日韩亚洲国产一区二区在线观看| 亚洲国产高清在线一区二区三 | 国产成人精品久久二区二区免费| 听说在线观看完整版免费高清| 亚洲国产欧美网| 90打野战视频偷拍视频| 美国免费a级毛片| 精品久久久久久久毛片微露脸| 国产成人精品久久二区二区免费| 丝袜美腿诱惑在线| 日韩国内少妇激情av| 亚洲av第一区精品v没综合| 国产免费男女视频| 亚洲精品中文字幕一二三四区| 一本综合久久免费| 满18在线观看网站| 亚洲精品一卡2卡三卡4卡5卡| 亚洲五月天丁香| 国产精品1区2区在线观看.| 亚洲精华国产精华精| 少妇 在线观看| av超薄肉色丝袜交足视频| 国产精品一区二区精品视频观看| 俺也久久电影网| 亚洲电影在线观看av| 两性夫妻黄色片| 老汉色∧v一级毛片| 午夜精品久久久久久毛片777| 亚洲国产欧美日韩在线播放| 久久久精品国产亚洲av高清涩受| 精品久久久久久,| 成人国语在线视频| 一区福利在线观看| 成人18禁高潮啪啪吃奶动态图| 岛国视频午夜一区免费看| 欧美一级a爱片免费观看看 | xxxwww97欧美| 美女免费视频网站| 亚洲免费av在线视频| 色在线成人网| 国产精品久久电影中文字幕| 免费电影在线观看免费观看| 日日夜夜操网爽| 欧美激情极品国产一区二区三区| 日本 av在线| 成人18禁在线播放| 美女高潮喷水抽搐中文字幕| 亚洲av中文字字幕乱码综合 | 欧美激情久久久久久爽电影| 麻豆av在线久日| 日本黄色视频三级网站网址| 国产极品粉嫩免费观看在线| 村上凉子中文字幕在线| 校园春色视频在线观看| 亚洲第一青青草原| 国产1区2区3区精品| 天天添夜夜摸| 亚洲午夜精品一区,二区,三区| 久久天躁狠狠躁夜夜2o2o| 日韩中文字幕欧美一区二区| 可以在线观看的亚洲视频| 久久久久亚洲av毛片大全| 国产区一区二久久| 国产主播在线观看一区二区| svipshipincom国产片| 国产91精品成人一区二区三区| 欧美一级a爱片免费观看看 | 成人国语在线视频| 欧美黑人精品巨大| 亚洲欧美日韩高清在线视频| 国产精品爽爽va在线观看网站 | 91成年电影在线观看| 久久精品国产综合久久久| 天天添夜夜摸| 精品久久久久久久人妻蜜臀av| 日韩欧美三级三区| 97超级碰碰碰精品色视频在线观看| 一级a爱视频在线免费观看| 国产精品免费一区二区三区在线| 久久久久久亚洲精品国产蜜桃av| 亚洲三区欧美一区| av在线天堂中文字幕| 黄色丝袜av网址大全| 午夜福利在线在线| 日韩有码中文字幕| 18禁观看日本| 可以免费在线观看a视频的电影网站| 久久精品夜夜夜夜夜久久蜜豆 | av天堂在线播放| 99久久精品国产亚洲精品| 久久国产精品男人的天堂亚洲| 国产精品永久免费网站| 天堂动漫精品| 韩国av一区二区三区四区| 国产成人精品无人区| 午夜两性在线视频| 午夜老司机福利片| 搡老岳熟女国产| 亚洲第一电影网av| 国产精品九九99| 一本大道久久a久久精品| 国产精品 国内视频| 不卡一级毛片| 久久久久久亚洲精品国产蜜桃av| 婷婷六月久久综合丁香| 日韩大尺度精品在线看网址| 久久人妻福利社区极品人妻图片| 少妇 在线观看| 欧美人与性动交α欧美精品济南到| 欧美+亚洲+日韩+国产| 国产视频内射| 99国产极品粉嫩在线观看| 人人妻人人澡人人看| 日本成人三级电影网站| 一进一出抽搐gif免费好疼| 18禁黄网站禁片免费观看直播| 97超级碰碰碰精品色视频在线观看| 亚洲自拍偷在线| 国产97色在线日韩免费| 国产精品影院久久| 欧美黄色淫秽网站| 欧美在线黄色| 国产精品永久免费网站| 免费av毛片视频| 高清在线国产一区| 久久精品aⅴ一区二区三区四区| 欧美日韩亚洲国产一区二区在线观看| 丁香欧美五月| 99久久综合精品五月天人人| 精品国产一区二区三区四区第35| 午夜成年电影在线免费观看| 国产蜜桃级精品一区二区三区| 国产精品永久免费网站| 亚洲精品久久成人aⅴ小说| 中文字幕最新亚洲高清| 88av欧美| 免费一级毛片在线播放高清视频| 久久久久久大精品| 搞女人的毛片| cao死你这个sao货| 亚洲专区国产一区二区| 精品久久久久久久末码| 亚洲电影在线观看av| 欧美色视频一区免费| 免费在线观看影片大全网站| 99久久国产精品久久久| 身体一侧抽搐| av福利片在线| 999久久久国产精品视频| aaaaa片日本免费| 亚洲精品在线观看二区| 亚洲一区高清亚洲精品| 97人妻精品一区二区三区麻豆 | 一卡2卡三卡四卡精品乱码亚洲| www日本黄色视频网| 色尼玛亚洲综合影院| 久久99热这里只有精品18| xxx96com| 中文字幕人妻丝袜一区二区| 欧美最黄视频在线播放免费| 精品久久久久久久毛片微露脸| 中文字幕高清在线视频| 免费在线观看完整版高清| 国产人伦9x9x在线观看| 欧美黑人精品巨大| 国产激情偷乱视频一区二区| 国产精品久久久久久人妻精品电影| 色哟哟哟哟哟哟| 亚洲第一欧美日韩一区二区三区| 波多野结衣高清作品| 日韩国内少妇激情av| tocl精华| 国产又色又爽无遮挡免费看| 国产精品野战在线观看| av超薄肉色丝袜交足视频| 好男人电影高清在线观看| 国产亚洲欧美精品永久| 国产一区二区在线av高清观看| 色老头精品视频在线观看| 在线观看日韩欧美| 欧美黑人精品巨大| 看黄色毛片网站| 在线观看午夜福利视频| 人人妻人人澡欧美一区二区| 久久人妻av系列| 欧美激情高清一区二区三区| 国产一区二区三区视频了| 99久久综合精品五月天人人| 国产黄a三级三级三级人| 老熟妇乱子伦视频在线观看| 三级毛片av免费| 丰满的人妻完整版| 国产亚洲精品一区二区www| 国产精华一区二区三区| 97人妻精品一区二区三区麻豆 | 国产精品久久久久久精品电影 | 在线观看午夜福利视频| 欧美日本亚洲视频在线播放| 亚洲在线自拍视频| av视频在线观看入口| 精品电影一区二区在线| 色尼玛亚洲综合影院| 成在线人永久免费视频| 久久久久久免费高清国产稀缺| 亚洲欧美精品综合久久99| 国产午夜精品久久久久久| 国语自产精品视频在线第100页| 亚洲人成伊人成综合网2020| 亚洲,欧美精品.| 欧美性长视频在线观看| 免费在线观看黄色视频的| 国产蜜桃级精品一区二区三区| 在线观看舔阴道视频| 久久九九热精品免费| 美女大奶头视频| 国产激情欧美一区二区| 午夜福利在线观看吧| 最好的美女福利视频网| 国内精品久久久久精免费| 夜夜爽天天搞| 免费看a级黄色片| 高潮久久久久久久久久久不卡| 日韩av在线大香蕉| 欧美又色又爽又黄视频| 久久久久久久久免费视频了| 欧美zozozo另类| 国产精品久久久久久亚洲av鲁大| xxx96com| 亚洲国产精品成人综合色| 亚洲精品在线观看二区| 黄色a级毛片大全视频| cao死你这个sao货| 婷婷精品国产亚洲av在线| 淫妇啪啪啪对白视频| 免费搜索国产男女视频| av中文乱码字幕在线| 男女那种视频在线观看| cao死你这个sao货| 人人妻,人人澡人人爽秒播| 黄色a级毛片大全视频| 夜夜爽天天搞| 91成人精品电影| 精品国内亚洲2022精品成人| 久久精品成人免费网站| 欧美av亚洲av综合av国产av| 日日摸夜夜添夜夜添小说| 十八禁人妻一区二区| 美女午夜性视频免费| 亚洲午夜理论影院| 真人一进一出gif抽搐免费| 国产高清激情床上av| 一本大道久久a久久精品| 国产极品粉嫩免费观看在线| 亚洲,欧美精品.| 亚洲色图av天堂|