• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    3D dahlia-like NiAl-LDH/CdS heterosystem coordinating with 2D/2D interface for efficient and selective conversion of CO2

    2022-06-20 06:22:00XioyueZhngYongYngLijunXiongTinyuWngZhengTngPnjieLiNnYinAiwuSunJinyouShen
    Chinese Chemical Letters 2022年4期

    Xioyue Zhng,Yong Yng,Lijun Xiong,Tinyu Wng,Zheng Tng,Pnjie Li,Nn Yin,Aiwu Sun,c,Jinyou Shen,*

    a Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse,School of Environmental and Biological Engineering,Nanjing University of Science and Technology,Nanjing 210094,China

    b Key Laboratory of Soft Chemistry and Functional Materials,Ministry of Education,School of Chemistry and Chemical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China

    c Faculty of Chemical Engineering,Huaiyin Institute of Technology,Huaiyin 223001,China

    ABSTRACT Developing photocatalyst with high activity,superior stability and prominent selectivity for CO2 conversion is of great importance for the target of carbon neutralization.Herein,3D dahlia-like NiAl-LDH/CdS heterosystem is developed through in-situ decoration of exfoliated CdS nanosheets on the scaffold of NiAl-LDH and the on-spot self-assembly.The formation of a hierarchical architecture collaborating with well-defined 2D/2D interfacial interaction is constructed by optimizing the ratio of CdS integrated in the formation of the heterojunction.The light-harvesting capacity of NiAl-LDH/CdS is improved by this unique scaffold,and the charge transfer between NiAl-LDH and CdS is effectively facilitated by virtue of the unique 2D/2D interface.As a result,the 3D hierarchical NiAl-LDH/CdS heterosystem presents 12.45 μmol g-1 h-1 of CO production(3.3 and 1.6 folds of pristine NiAl-LDH and CdS)with 96% selectivity and superior stability.This 3D hierarchical design collaborating with 2D/2D interfacial interaction provides a new avenue to develop ideal catalysts for artificial photosynthesis.

    Keywords:Photocatalysis CdS Photocorrosion NiAl-LDH CO2Conversion

    Environmental issue has aroused great concern to the human society,especially the global warming caused by the enormous discharge of CO2in the atmosphere.Currently,fossil fuels are still the main source of energy,resulting great energy and environmental crises.In this circumstance,there is an urgent need to develop new sustainable energy production and protection technologies in an environmentally and economically feasible way[1-3].Photocatalytic technology uses clean and inexhaustible solar energy to convert CO2into renewable fuels,which is considered one of the most promising strategy.Although great progress has been made,the efficiency of photocatalytic CO2conversion is still unsatisfied[4-7].Development of efficient and stable photocatalysts is the top priority in order to fulfil the idea of "artificial photosynthesis"[8-11].

    Among most of the semiconductors,CdS presents superior light harvesting capacity and strong redox ability[12-15],which shows great potential in the field of CO2conversion[16-19].However,the rapid recombination of photogenerated charge carriers restricts the catalytic efficiency of bulk CdS.In particular,the severe photocorrosion is detrimental to the stability and practical performance of CdS.Therefore,noble metal modification,morphology modulation and integration with different semiconductors have been widely investigated[20-23].However,most works concerning the protection of CdS against photocorrosion are physical shielding,and the photoinduced holes may accumulate on CdS,resulting in oxidation of S2-.Effective strategies should be proposed to alleviate the holes accumulation and strengthen the photon capture as well as the CO2adsorption.

    Layered double hydroxides(LDHs)have received extensive attention due to their strong visible light response,controllable metal cation composition and tunable band structure.In addition,the abundant hydroxyl groups on the surface of LDHs are beneficial for the adsorption of CO2,which is fundamental to the conversion[24,25].What is more,the 2D structure provides a unique platform for collaborating with other semiconductors.Herein,a dahlialike NiAl-LDH/CdS hybrid with well-defined 2D/2D interface is developed.The construction of three-dimensional hierarchical architecture endow the hybrid with enhanced light harvesting capacity due to the multiple scattering cross section.The formation of type-II heterojunction effectively promotes the separation of photoinduced charge carriers.In particular,the photoinduced holes can be exported from CdS to NiAl-LDH.As a consequence,the optimized NiAl-LDH/CdS presents significantly improved photocatalytic activity and prominent stability.These improvement and the corresponding mechanism are in-depth investigated by spectral and electrochemical characterizations.

    Fig.1.(a)Illustration of the synthesis of the 3D hierarchical NiAl-LDH/CdS hybrid.(b)XPS survey spectra of NiAl-LDH,CdS and NiAl-LDH/CdS-2.(c)Ni 2p,(d)Al 2p,(e)S 2p,(f)Cd 3d and core-level XPS spectra.

    CdS was preparedviahydrothermal reaction and exfoliated with ultrasound.The as-obtained CdS nanosheet wasin-situdeposited on NiAl-LDH during the process of crystallization(Fig.1a).As shown in Fig.S1(Supporting information),CdS presents a hexagonal wurtzite phase structure(JCPDS No.41-1049)[26],and a typical hydrotalcite structure can be declared for NiAl-LDH.After combination,NiAl-LDH/CdS composites exhibit similar diffraction pattern to the pristine NiAl-LDH owing to the uniform distribution of CdS.In order to determine the content of CdS in the hybrid,ICP-MS was conducted and showed in Table S3(Supporting information).The weight ratio of CdS is 11.1%,21.2%,26.5% in NiAl-LDH/CdS-1,NiAl-LDH/CdS-2,NiAl-LDH/CdS-3.XPS was used for investigation of the composition and charge transfer of the samples.As shown in Fig.1b,NiAl-LDH is composed of Ni,Al,C and O elements,and CdS is comprised by Cd and S elements.For NiAl-LDH/CdS-2,the peaks of Cd and S can be observed,though the intensity of them are weak.Moreover,the co-existence of Ni,Al,Cd and S elements in the hybrid can be demonstrated from their highresolution spectra.Figs.1c and d show the high-resolution spectra of Ni 2p and Al 2p of the sample.The peaks at 856.0 eV and 873.6 eV are attributed to Ni 2p3/2and Ni 2p1/2,respectively[27].After doping with CdS,the Ni 2p3/2and Ni 2p1/2in NiAl-LDH/CdS-2 transfer to 856.2 eV and 873.8 eV with higher binding energies.For Al3+,its high-resolution spectrum can be decomposed into two peaks of 68.2 eV and 74.2 eV[28].After compounding CdS,the binding energy of these two signals is also significantly increased.For pristine CdS(Fig.1e),the Cd 3d high-resolution spectrum can be divided into two peaks located at 405.1 eV and 411.8 eV,corresponding to Cd 3d5/2and Cd 3d3/2[29].After hybridization,the binding energy of Cd 3d reduced to 404.8 eV and 411.5 eV.The binding energies at 158.8 eV and 161.3 eV are corresponded to S 2p3/2and S 2p1/2,respectively,which proves the existence of S2-(Fig.1f).The peaks for S 2p3/2and S 2p1/2decreased to 158.5 eV and 161.0 eV in the NiAl-LDH/CdS.According to the variation of binding energy for NiAl-LDH and CdS after the integration,the electron migration from NiAl-LDH to CdS can be proposed[30].

    Fig.2.FE-SEM images of(a)CdS,(b)NiAl-LDH/CdS-1,(c)NiAl-LDH/CdS-2 and(d)NiAl-LDH/CdS-3.(e)The whole TEM image and(f)EDS elemental mapping images of NiAl-LDH/CdS-2.(g)HAADF-STEM image and(h)HRTEM image from the edge of the NiAl-LDH/CdS-2.

    As shown in Fig.S2(Supporting information),the bare NiAl-LDH presents a 3D hierarchical architecture,which is comprised by a large number of self-assembled and stacked nanosheets.The diameter of a particle is about 5 μm.Figs.2a-d show the SEM images of CdS and NiAl-LDH/CdS composites.CdS displays a two-dimensional sheet structure.After integration,NiAl-LDH/CdS-1(Fig.2b)and NiAl-LDH/CdS-2(Fig.2c)present the similar appearance with pristine NiAl-LDH due to the low content of CdS.It is worth noting that the volume of the cavity between the NiAl-LDH layers decreases in NiAl-LDH/CdS-2.This suggests that CdS nanosheets are decorated on the scaffold of NiAl-LDH plates.When 30 mL CdS suspension was used,the number of stuffed cavities increases for NiAl-LDH/CdS-3,and many aggregates present on the surface of the sample(Fig.2d).Based on the above observations,the formation of uniform interface between CdS and NiAl-LDH can be proposed in NiAl-LDH/CdS-1 and NiAl-LDH/CdS-2.Whereas,NiAl-LDH/CdS-3 has a large number of separated blocks.

    TEM investigation was then performed on NiAl-LDH/CdS-2.As shown in Fig.2e,NiAl-LDH/CdS-2 is composed of a large number of nanosheets,which is consistent with the result observed in the SEM.From the lower left corner of a particle(Fig.2g),the twodimensional and sheet-like stacked structure can be further clarified.As observed in the high-resolution transmission electron microscope(HRTEM)image(Fig.2h),the lattice spacing of 0.37 nm is corresponded to the(0 0 2)crystal plane of NiAl-LDH[31],and 0.26 nm can be designated to the(1 0 2)crystal plane of CdS[32].The interface between the two materials is clearly visible.In particular,the unique 2D/2D stacking structure can be confirmed,which is beneficial for the charge transfer between the components during the photocatalysis[33].Moreover,the corresponding EDS elemental mapping images(Fig.2f)of Ni,Al,O,S and Cd clearly illustrate the homogeneous composition of NiAl-LDH and CdS.Zeta potential was also measured to illustrate the formation mechanism of NiAl-LDH/CdS.As shown in the Fig.S6(Supporting information),NiAl-LDH exhibits a positive zeta potential,while CdS is negatively charged.The metal cations in NiAl-LDH are mainly involved in the construction of NiAl-LDH.Through the self-assembly,a 3D dahlialike NiAl-LDH/CdS can be built based on electrostatic interaction.Due to the coverage of NiAl-LDH by negatively charged CdS,the zeta potential after hybridization changed significantly.

    Fig.3a shows the UV-DRS spectra of CdS,NiAl-LDH and composite materials.As it can be seen,the pristine CdS shows strong absorption in the ultraviolet and visible regions,which is consistent with its yellow color.NiAl-LDH presents three absorption bands at 200-300 nm,300-500 nm and 600-800 nm.The absorption at 200-300 nm is originated from the ligand to metal charge transfer from O 2p to Ni 3d t2g,and the other two bands are produced by the d-d transition of Ni2+ions in the octahedral field[34].For NiAl-LDH/CdS composites,their absorption profiles are similar to that of the pristine NiAl-LDH.The slight improvement of the absorption below 520 nm is resulted from CdS in NiAl-LDH/CdS-1 and NiAl-LDH/CdS-2,whereas,further increase of CdS and the agglomeration does not contribute to the enhancement of absorption.According to the UV-DRS and the empirical formulaαhυ= A(hυ-Eg)n/2,the band gap of CdS(2.31 eV)and NiAl-LDH(2.36 eV)can be obtained(Fig.S3 in Supporting information),which are basically consistent with previous reports[35,36].

    Fig.3b shows the N2adsorption-desorption isotherms of the samples.NiAl-LDH and NiAl-LDH/CdS-2 show typical type IV and H3 hysteresis curves,indicating the presence of mesoporous structure constructed by the aggregation of nanosheets.By contrast,CdS exhibits a type II and H4 hysteresis loop.The BET specific surface areas of CdS and NiAl-LDH are 11.18 m2/g and 54.08 m2/g,respectively.The hybridization results in the decrease of BET specific surface area for NiAl-LDH,and this value for NiAl-LDH/CdS-2 is 31.5 m2/g.As observed from the pore size distribution curves(Fig.3b),NiAl-LDH and NiAl-LDH/CdS-2 show two pore size distribution ranges at 2 nm and 5-70 nm,whereas CdS is nonporous.The loosely packed NiAl-LDH plates resulted in a wide aperture range,signifying a multiple and complicated pore structure.After deposition of CdS,it is worth noting that the proportion of large pores is significantly decreased,and the tightly packed structure lead to the pore size centralized around 18 nm.Meanwhile,the content of small pores around 2 nm decreases owing to the closely stacked nanosheets in NiAl-LDH/CdS-2.These unambiguously demonstrate the formation of a close 2D/2D interface,which is beneficial for the charge transfer between the two components.As shown in Fig.S4(Supporting information),the bare CdS showed a CO2uptake capacity of 3.93 cm3/g(P/P0= 0.03).Whereas,NiAl-LDH shows a powerful CO2capture capacity(20.1 cm3/g atP/P0= 0.03).The inherent basic property of NiAl-LDH is benefit to CO2accumulation.Moreover,the 3D hierarchical architecture promotes the diffusion of CO2in the system,thereby improving the surface utilization of active sites.After combination of these two materials,NiAl-LDH/CdS-2 shows a moderate CO2adsorption performance(6.27 cm3/g)due to the decreased BET specific surface areas and the covering of NiAl-LDH plates.

    Fig.3.(a)UV-vis diffuse reflectance spectra of the synthesized CdS,LDH and composites.(b)Nitrogen adsorption-desorption isotherm curves for(1)NiAl-LDH,(2)NiAl-LDH/CdS-2 and(3)CdS,and Diameter distribution curves of the samples.(c)Time evolution of CO over different samples.(d)Average gas production rates over different catalysts.(e)Stability tests for CO production over NiAl-LDH/CdS-2.(f)The isotope analysis of 13CO using 13CO2 as carbon source by GC-MS.Inset shows the mass spectrum of 13CO.

    The photocatalytic CO2conversion were then performed on NiAl-LDH,CdS and the composites,of which the main product was CO.Fig.3c shows the time evolution amount of CO over different samples,and the histogram of CO and CH4yield are presented in Fig.3d.After 6 h irradiation,the CO yield on bare NiAl-LDH and CdS are 22.74 μmol/g and 45.9 μmol/g,corresponding to the production rate of 3.79 μmol g-1h-1and 7.65 μmol g-1h-1.For NiAl-LDH/CdS composites,their performances are significantly improved.As the content of CdS increases in the hybrids,the photocatalytic activity of the catalysts gradually enhances.However,there is an optimal ratio between NiAl-LDH and CdS.NiAl-LDH/CdS-2 displays the best performance,and its yield and production rate reach 74.7 μmol/g and 12.45 μmol g-1h-1,respectively.Whereas,the photocatalytic efficiencies for NiAl-LDH/CdS-1 and NiAl-LDH/CdS-3 are lower than that of NiAl-LDH/CdS-2.As it can be seen,the selectivity towards CO is beyond 96% on NiAl-LDH/CdS-2,which is also the optimum among the composites.After four cycles of testing,the CO yield of NiAl-LDH/CdS-2 did not show any significant decrease(Fig.3e).Moreover,the XRD and SEM characterizations for the recycled catalyst were performed.As observed in Figs.S8 and S9(Supporting information),neglectable variation occurs on NiAl-LDH/CdS-2 before and after the photocatalysis,proving its good durability and stability.Then,control experiment was performed,and none of the products can be detected in the absence of radiation,CO2or catalyst(Fig.S7 in Supporting information),this strongly demonstrates that the photocatalytic CO2reduction is driven by the irradiation on the photocatalysts.In addition,an isotropic experiment was conducted using13CO2to investigate the carbon source of the products.As shown in Fig.3f,the introduced13CO2and the generated13CO are well separated,which can be observed at 1.6 min and 1.2 min in the chromatogram,respectively.After ionization of13CO,the signals ofm/z= 13,16,and 29 are detected.This undoubtedly confirms that the carbon source of the products is the introduced CO2.

    Fig.4.(a)Photoluminescence spectra,and(b)time-resolved fluorescence decay traces of the samples(the excitation wavelength is 355 nm).(c)transient photocurrent responses of the as-prepared samples.(d)Electrochemical impedance spectra(EIS)of the samples.(e)Schematic diagram of the possible photocatalytic mechanism of NiAl-LDH/CdS.(f) In-situ DRIFTS spectra of CO2 photoconversion over different samples under the dark condition and light irradiation.

    In order to clarify the photocatalytic mechanism for the different samples,fluorescence spectroscopy was used to analyze the charge transfer behavior of the materials.As shown in Fig.4a,NiAl-LDH shows two main emission bands located at 468 nm and 520 nm,which are attributed to the blue light and inter-band emissions.The absorption peak at 520 nm is approximately equal to the band gap absorption of NiAl-LDH(2.36 eV).After decoration of CdS,the fluorescence intensity of LDH/CdS-2 quenched significantly,indicating the decreased radiation recombination of photoinduced electron and hole pairs.Subsequently,nanosecond-scale fluorescence decay spectroscopy was used to characterize the dynamics of charge migration(Fig.4b).The fluorescence radiation lifetime(τ)was obtained by fitting of the curve based on doubleexponential function.The average fluorescence lifetime(τ= 2.62 ns)of the photogenerated charge carriers in NiAl-LDH/CdS-2 is prolonged than that of the pristine NiAl-LDH(τ= 1.23 ns)(Table S2 in Supporting information).The improvement of charge transfer ability on NiAl-LDH/CdS-2 can thus be proposed.Then,NiAl-LDH,CdS and NiAl-LDH/CdS composites are separately coated on FTO,and photocurrent was recorded by switching the light on and off for several cycles.As displayed in Fig.4c,no current is generated in the absence of light.After the lamp is turned on,the current increases sharply due to the excitation of NiAl-LDH and CdS,and the process can be repeated stably.Compared with pure semiconductors,the photocurrent intensity of NiAl-LDH/CdS composites is significantly enhanced,and the charge separation is effectively improved.The order of the photocurrent intensity of the composite sample is:NiAl-LDH/CdS-2>NiAl-LDH/CdS-3>NiAl-LDH/CdS-1,which is in accordance with their photocatalytic performances.The separation efficiency of photogenerated electrons and holes is firstly promoted with the increase of the doping amount of CdS,and excessive of CdS results in the agglomeration of the materials,thereby interrupting the uniform interface and efficient charge separation.Therefore,the AC impedance spectroscopy(EIS)test is then conducted for revealing the interfacial charge transfer behaviour.As shown in Fig.4d,a smaller arc corresponds to a lower interfacial charge transfer impedance[37].It can be clearly seen that NiAl-LDH/CdS-2 exhibits the smallest arc among the samples.The most effective charge separation and interfacial transport can be demonstrated in NiAl-LDH/CdS-2.

    Based on the above investigations,a mechanism was proposed concerning the improved photocatalytic performance of hierarchical NiAl-LDH/CdS heterosystem.The conduction band potential of CdS and NiAl-LDH is estimated to be-0.56 V and-0.72 V based on the Mott-Schottky tests(Fig.S5 in Supporting information)[38-40].The corresponding valence band positions of CdS and NiAl-LDH can thus be calculated to be 1.75 V and 1.64 V from the above-obtained band gap of the materials.Accordingly,the energy alignment of the composite system can be depicted in Fig.4e.When the NiAl-LDH/CdS hybrid is exposed to light irradiation,the electrons in NiAl-LDH and CdS are both excited from their VB to CB.Since the conduction band position of NiAl-LDH is more negative than CdS,electrons will transfer from NiAl-LDH to CdS,and thus reducing the CO2to CO on the surface of CdS.At the same time,the holes migrate from the VB of CdS to the VB of NiAl-LDH,and the oxidation of CdS can be largely depressed.The construction of this type-II heterojunction not only realizes the effective separation of photogenerated carriers,but also restricts the photocorrosion of chalcogenide semiconductor.Thus the photocatalytic activity and stability are simultaneously elevated.Thereafter,the reaction pathway and existing intermediates during the photocatalytic CO2reduction were examined by thein-situDRIFTS spectra(Fig.4f).Upon light irradiation,the absorptions at 1516 cm-1and 1576 cm-1are assigned to the monodentate and bidentate carbonates(m-CO32-and b-CO32-)generated by the chemical adsorption of CO2on the photocatalyst surfaces.Then*COOH is formed at 1555 cm-1through the hydrogenation of CO2(H+is provided by H2O).Finally,*CO is formed around 2133 cm-1via dehydration reaction and CO is liberated from the surface of the catalysts.The reaction process can thus be determined as CO2→*CO2→*COOH →*CO+H2O →CO+H2O,which is similar to previous reports[41,42].For NiAl-LDH/CdS-2,the absorptions belong to these intermediates are significantly higher than that of the pristine CdS and NiAl-LDH,which is in consistence with their photocatalytic performances.

    In summary,3D dahlia-like NiAl-LDH/CdS hybrid was fabricated byin-situdecoration of exfoliated CdS nanosheets on the scaffold of NiAl-LDH and the on-spot self-assembly.A unique hierarchical architecture coordinating with 2D/2D interface interaction was successfully constructed.The as-developed NiAl-LDH/CdS presents significantly improved photocatalytic performance for CO2conversion(12.45 μmol g-1h-1),which is 3.3 and 1.6 folds of pristine NiAl-LDH and CdS.In particular,the photocorrosion towards CdS is largely restricted by virtue of the type-II heterojunction,thus the stability and cycling performance of the photocatalyst are significantly improved.In combination with the increased photon scattering cross-section,this 3D hierarchical structure collaborating with 2D/2D interfacial interaction provides a new strategy to develop ideal and efficient photocatalysts.

    Declaration of competing interest

    The authors declare no competing interest that could have appeared to influence the work reported in this paper.

    Acknowledgments

    We are grateful to the National Natural Science Foundation of China for Excellent Young Scholars(No.51922050),the National Natural Science Foundation of China(No.51303083),the Natural Science Foundation of Jiangsu Province(No.BK20191293),and the Fundamental Research Funds for the Central Universities(No.30920021123)for financial support.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.08.053.

    欧美激情极品国产一区二区三区 | 亚洲少妇的诱惑av| 免费人成在线观看视频色| 免费少妇av软件| 亚洲丝袜综合中文字幕| 久久久久国产网址| 黑丝袜美女国产一区| www.av在线官网国产| 精品国产露脸久久av麻豆| 亚洲国产精品一区二区三区在线| 久久精品久久久久久噜噜老黄| 91aial.com中文字幕在线观看| 婷婷色综合大香蕉| 国产麻豆69| 久久久国产一区二区| 青青草视频在线视频观看| 久久午夜福利片| 亚洲欧美中文字幕日韩二区| 国产亚洲一区二区精品| 国产免费又黄又爽又色| 国产白丝娇喘喷水9色精品| 99国产综合亚洲精品| 天天操日日干夜夜撸| 狠狠婷婷综合久久久久久88av| 国产精品 国内视频| 观看av在线不卡| 免费不卡的大黄色大毛片视频在线观看| 精品久久国产蜜桃| 欧美性感艳星| 看免费av毛片| 久久国内精品自在自线图片| 欧美成人午夜精品| 老熟女久久久| 久久精品熟女亚洲av麻豆精品| 亚洲精品一区蜜桃| 日韩视频在线欧美| 免费在线观看完整版高清| 国产成人精品福利久久| 中文字幕人妻丝袜制服| 亚洲av电影在线进入| 天天操日日干夜夜撸| 观看av在线不卡| av又黄又爽大尺度在线免费看| 在线观看国产h片| 丰满迷人的少妇在线观看| 国产精品久久久久久av不卡| 久久久久网色| 麻豆精品久久久久久蜜桃| 午夜精品国产一区二区电影| 国产精品久久久久久精品古装| 国产亚洲av片在线观看秒播厂| 在线观看免费视频网站a站| 国产xxxxx性猛交| 91精品三级在线观看| 久久久久精品人妻al黑| 你懂的网址亚洲精品在线观看| 国产黄频视频在线观看| 插逼视频在线观看| 成人手机av| 亚洲欧美一区二区三区黑人 | 亚洲成人一二三区av| 亚洲 欧美一区二区三区| 日本欧美国产在线视频| 99热这里只有是精品在线观看| 女人被躁到高潮嗷嗷叫费观| 乱码一卡2卡4卡精品| 久久精品aⅴ一区二区三区四区 | 高清不卡的av网站| 五月天丁香电影| 18禁动态无遮挡网站| av国产久精品久网站免费入址| 久久久久精品性色| 亚洲av综合色区一区| 王馨瑶露胸无遮挡在线观看| 在线 av 中文字幕| 婷婷成人精品国产| 桃花免费在线播放| 久久久久人妻精品一区果冻| 王馨瑶露胸无遮挡在线观看| a级毛色黄片| 在线亚洲精品国产二区图片欧美| 80岁老熟妇乱子伦牲交| 日韩,欧美,国产一区二区三区| 欧美xxⅹ黑人| 婷婷色综合大香蕉| 免费久久久久久久精品成人欧美视频 | 日韩人妻精品一区2区三区| 极品人妻少妇av视频| 9191精品国产免费久久| 男女午夜视频在线观看 | 亚洲精品日本国产第一区| 精品国产一区二区三区四区第35| 男女免费视频国产| 777米奇影视久久| 中文乱码字字幕精品一区二区三区| 中文字幕精品免费在线观看视频 | 国产极品天堂在线| 又大又黄又爽视频免费| 国国产精品蜜臀av免费| 少妇猛男粗大的猛烈进出视频| 免费黄色在线免费观看| 男女午夜视频在线观看 | 日本与韩国留学比较| 亚洲成国产人片在线观看| 日本爱情动作片www.在线观看| 亚洲精品日本国产第一区| 久久久久久人妻| 国产又色又爽无遮挡免| 肉色欧美久久久久久久蜜桃| 在线精品无人区一区二区三| 亚洲av日韩在线播放| 菩萨蛮人人尽说江南好唐韦庄| 黑人猛操日本美女一级片| 国精品久久久久久国模美| 国产精品一区www在线观看| 中文字幕制服av| 久久毛片免费看一区二区三区| 一级毛片黄色毛片免费观看视频| 国产欧美日韩综合在线一区二区| 国产视频首页在线观看| av电影中文网址| 超碰97精品在线观看| 亚洲丝袜综合中文字幕| 99国产综合亚洲精品| 69精品国产乱码久久久| 一级a做视频免费观看| 日日爽夜夜爽网站| 99热全是精品| 欧美精品高潮呻吟av久久| 亚洲久久久国产精品| 熟女电影av网| 精品国产乱码久久久久久小说| 欧美另类一区| 精品久久久精品久久久| 中文字幕亚洲精品专区| av视频免费观看在线观看| 免费高清在线观看日韩| 精品国产乱码久久久久久小说| 国产视频首页在线观看| www日本在线高清视频| 亚洲国产成人一精品久久久| 国产午夜精品一二区理论片| 天堂中文最新版在线下载| 国产一区二区在线观看日韩| 久久综合国产亚洲精品| 人妻少妇偷人精品九色| 日日啪夜夜爽| 99国产精品免费福利视频| 日本与韩国留学比较| 久久婷婷青草| 免费看光身美女| 日本vs欧美在线观看视频| 男人爽女人下面视频在线观看| 午夜视频国产福利| 少妇的丰满在线观看| 美女大奶头黄色视频| 成人影院久久| 女的被弄到高潮叫床怎么办| 久久久久精品人妻al黑| 亚洲精品视频女| 国产男人的电影天堂91| 2021少妇久久久久久久久久久| 丝瓜视频免费看黄片| 肉色欧美久久久久久久蜜桃| 伦理电影免费视频| 999精品在线视频| 亚洲成色77777| 高清av免费在线| 欧美成人午夜精品| 性高湖久久久久久久久免费观看| 亚洲国产欧美在线一区| 99热6这里只有精品| 五月开心婷婷网| 青春草视频在线免费观看| 伊人亚洲综合成人网| 青青草视频在线视频观看| 黑人巨大精品欧美一区二区蜜桃 | 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 丰满乱子伦码专区| 国产精品久久久久成人av| 久久人人97超碰香蕉20202| 深夜精品福利| av网站免费在线观看视频| 亚洲伊人久久精品综合| 一区二区三区四区激情视频| 久久精品久久久久久久性| 人妻 亚洲 视频| 制服丝袜香蕉在线| 国产极品粉嫩免费观看在线| 精品第一国产精品| 黄色视频在线播放观看不卡| 男女无遮挡免费网站观看| 在线天堂最新版资源| 69精品国产乱码久久久| 视频中文字幕在线观看| 建设人人有责人人尽责人人享有的| 亚洲精品久久成人aⅴ小说| 国产精品无大码| 又黄又粗又硬又大视频| 18+在线观看网站| 日韩精品有码人妻一区| 国产精品一区www在线观看| 91精品三级在线观看| 中文字幕人妻熟女乱码| 亚洲,一卡二卡三卡| 内地一区二区视频在线| 伦理电影大哥的女人| 五月伊人婷婷丁香| 成人国语在线视频| 激情五月婷婷亚洲| 国产成人a∨麻豆精品| 亚洲成人手机| 国产一区二区在线观看日韩| 日韩制服骚丝袜av| 日韩大片免费观看网站| 欧美少妇被猛烈插入视频| 91在线精品国自产拍蜜月| 人人澡人人妻人| 啦啦啦中文免费视频观看日本| 下体分泌物呈黄色| 久久亚洲国产成人精品v| 91国产中文字幕| 制服人妻中文乱码| 建设人人有责人人尽责人人享有的| 欧美老熟妇乱子伦牲交| 亚洲激情五月婷婷啪啪| 黑人猛操日本美女一级片| 欧美xxxx性猛交bbbb| 亚洲人成网站在线观看播放| 免费高清在线观看视频在线观看| 中国国产av一级| 久久99热6这里只有精品| 80岁老熟妇乱子伦牲交| 欧美日韩成人在线一区二区| 人人妻人人添人人爽欧美一区卜| 国产在线一区二区三区精| 成人毛片a级毛片在线播放| 美女福利国产在线| 97超碰精品成人国产| 成人国语在线视频| 美女视频免费永久观看网站| 在线看a的网站| 国产免费视频播放在线视频| 18+在线观看网站| 中国三级夫妇交换| 啦啦啦啦在线视频资源| 在线看a的网站| 午夜福利视频精品| kizo精华| 亚洲国产欧美在线一区| 熟妇人妻不卡中文字幕| 亚洲激情五月婷婷啪啪| 夜夜骑夜夜射夜夜干| 亚洲久久久国产精品| 2018国产大陆天天弄谢| 内地一区二区视频在线| 国产精品国产三级专区第一集| 人妻人人澡人人爽人人| 亚洲精品美女久久av网站| 精品久久国产蜜桃| av黄色大香蕉| 亚洲美女黄色视频免费看| 日韩免费高清中文字幕av| 日本黄色日本黄色录像| av一本久久久久| 97在线人人人人妻| 国产精品偷伦视频观看了| 久久久久网色| 久久国产精品大桥未久av| 青青草视频在线视频观看| 日韩精品免费视频一区二区三区 | 精品卡一卡二卡四卡免费| 亚洲性久久影院| 中文精品一卡2卡3卡4更新| 中文字幕亚洲精品专区| 国产精品国产三级专区第一集| 99久久精品国产国产毛片| 国产成人精品福利久久| 丰满迷人的少妇在线观看| 男女无遮挡免费网站观看| www.色视频.com| 黄色 视频免费看| 男的添女的下面高潮视频| 亚洲综合精品二区| 女性生殖器流出的白浆| 久久久久人妻精品一区果冻| 久久狼人影院| 精品久久久久久电影网| 国产成人欧美| 日韩av不卡免费在线播放| 欧美人与性动交α欧美软件 | 久久久久精品性色| 九九在线视频观看精品| 日日摸夜夜添夜夜爱| 18禁国产床啪视频网站| 久久人人爽人人爽人人片va| 国产日韩欧美亚洲二区| 男人操女人黄网站| 一边摸一边做爽爽视频免费| 国产免费福利视频在线观看| 亚洲国产最新在线播放| 不卡视频在线观看欧美| 国产精品三级大全| 午夜福利视频在线观看免费| 免费在线观看黄色视频的| 啦啦啦啦在线视频资源| 亚洲av中文av极速乱| av国产久精品久网站免费入址| 亚洲成av片中文字幕在线观看 | 免费观看无遮挡的男女| 欧美老熟妇乱子伦牲交| 精品久久国产蜜桃| 国产色婷婷99| 亚洲av男天堂| 午夜精品国产一区二区电影| 国产 一区精品| 人妻系列 视频| 午夜91福利影院| 精品少妇黑人巨大在线播放| 国产精品一区二区在线不卡| 午夜免费观看性视频| 成人国语在线视频| 伊人久久国产一区二区| 最新中文字幕久久久久| 国产无遮挡羞羞视频在线观看| 人成视频在线观看免费观看| 春色校园在线视频观看| 国产成人精品在线电影| xxxhd国产人妻xxx| 久久久久久久久久成人| 中文字幕最新亚洲高清| 赤兔流量卡办理| 色哟哟·www| 青春草视频在线免费观看| 黑人高潮一二区| 乱码一卡2卡4卡精品| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品国产av蜜桃| 日本色播在线视频| 黄网站色视频无遮挡免费观看| 男的添女的下面高潮视频| 五月天丁香电影| 亚洲第一区二区三区不卡| av电影中文网址| 90打野战视频偷拍视频| 国产精品久久久久久av不卡| 久久久久国产网址| 久久精品久久精品一区二区三区| 欧美激情国产日韩精品一区| 欧美另类一区| 在线观看免费视频网站a站| 久久人人爽人人爽人人片va| 国产色婷婷99| 我的女老师完整版在线观看| 乱人伦中国视频| 69精品国产乱码久久久| 超碰97精品在线观看| 欧美精品人与动牲交sv欧美| 色婷婷久久久亚洲欧美| 亚洲第一区二区三区不卡| 高清欧美精品videossex| 一级毛片黄色毛片免费观看视频| 美国免费a级毛片| 99国产综合亚洲精品| 性色avwww在线观看| 精品国产一区二区三区久久久樱花| 精品国产国语对白av| 日韩熟女老妇一区二区性免费视频| 日日摸夜夜添夜夜爱| 大香蕉久久网| 国产精品久久久久久av不卡| 波野结衣二区三区在线| 91精品伊人久久大香线蕉| 国产白丝娇喘喷水9色精品| 亚洲精品av麻豆狂野| www.av在线官网国产| 日日摸夜夜添夜夜爱| 成人免费观看视频高清| 9191精品国产免费久久| 九九在线视频观看精品| 大香蕉97超碰在线| 永久网站在线| 下体分泌物呈黄色| 亚洲激情五月婷婷啪啪| 国产日韩欧美视频二区| 成人手机av| 亚洲精品456在线播放app| 国产精品成人在线| 国产一级毛片在线| 26uuu在线亚洲综合色| 九九爱精品视频在线观看| 亚洲国产av新网站| 91成人精品电影| 国产欧美另类精品又又久久亚洲欧美| 精品一区二区三卡| 国产国拍精品亚洲av在线观看| 亚洲精品久久成人aⅴ小说| 欧美另类一区| 欧美激情 高清一区二区三区| 黄片播放在线免费| 欧美人与善性xxx| 亚洲 欧美一区二区三区| 性高湖久久久久久久久免费观看| av国产久精品久网站免费入址| 熟女电影av网| 亚洲精品日本国产第一区| 母亲3免费完整高清在线观看 | 欧美 日韩 精品 国产| 日韩精品有码人妻一区| av在线app专区| 十分钟在线观看高清视频www| 国产一区有黄有色的免费视频| 国产国拍精品亚洲av在线观看| 国产av一区二区精品久久| 国产亚洲最大av| 亚洲,欧美,日韩| xxxhd国产人妻xxx| 色94色欧美一区二区| 18禁在线无遮挡免费观看视频| 香蕉丝袜av| 国产精品久久久久久精品电影小说| 亚洲精品自拍成人| 国产精品一二三区在线看| 午夜av观看不卡| 欧美 日韩 精品 国产| 国产精品秋霞免费鲁丝片| 久久久a久久爽久久v久久| 国产国拍精品亚洲av在线观看| 热99久久久久精品小说推荐| 久久热在线av| 精品酒店卫生间| 丝袜美足系列| 日本黄大片高清| 欧美xxxx性猛交bbbb| 91aial.com中文字幕在线观看| 午夜精品国产一区二区电影| 桃花免费在线播放| 成年女人在线观看亚洲视频| 中国国产av一级| 在线天堂中文资源库| 久久午夜福利片| 大话2 男鬼变身卡| 国产日韩欧美视频二区| 精品国产乱码久久久久久小说| 新久久久久国产一级毛片| 午夜激情久久久久久久| 日韩成人伦理影院| 精品一品国产午夜福利视频| 国产男人的电影天堂91| 亚洲,欧美精品.| 制服人妻中文乱码| 捣出白浆h1v1| 高清欧美精品videossex| 精品人妻偷拍中文字幕| 国产精品99久久99久久久不卡 | 亚洲成色77777| 99久国产av精品国产电影| 1024视频免费在线观看| 狠狠精品人妻久久久久久综合| 亚洲欧美成人综合另类久久久| 国产亚洲av片在线观看秒播厂| 国产激情久久老熟女| 亚洲欧美成人精品一区二区| 久久精品久久精品一区二区三区| 欧美日韩一区二区视频在线观看视频在线| 少妇人妻精品综合一区二区| 男人操女人黄网站| 久久久a久久爽久久v久久| √禁漫天堂资源中文www| 亚洲国产精品999| 啦啦啦视频在线资源免费观看| 免费女性裸体啪啪无遮挡网站| 水蜜桃什么品种好| 亚洲天堂av无毛| 乱码一卡2卡4卡精品| 欧美国产精品一级二级三级| 国产在线免费精品| 五月天丁香电影| 日本与韩国留学比较| 久久精品国产a三级三级三级| 久久人人爽人人爽人人片va| 91精品三级在线观看| 丰满少妇做爰视频| 22中文网久久字幕| 亚洲精品国产av蜜桃| 精品久久蜜臀av无| 欧美老熟妇乱子伦牲交| 精品国产国语对白av| 久久久久久久久久久久大奶| 国产精品久久久久久精品古装| 七月丁香在线播放| 少妇的逼水好多| 久久国产亚洲av麻豆专区| 满18在线观看网站| 丝袜在线中文字幕| 大码成人一级视频| 久久av网站| 丝袜美足系列| 久久久亚洲精品成人影院| 欧美亚洲日本最大视频资源| 少妇的丰满在线观看| 日韩成人伦理影院| 亚洲综合精品二区| 国产黄频视频在线观看| 免费黄频网站在线观看国产| 狂野欧美激情性xxxx在线观看| 成人亚洲精品一区在线观看| a级毛片黄视频| 亚洲美女黄色视频免费看| 丁香六月天网| 美女xxoo啪啪120秒动态图| 色网站视频免费| 水蜜桃什么品种好| 日韩精品有码人妻一区| 午夜福利乱码中文字幕| 91精品国产国语对白视频| 大话2 男鬼变身卡| 亚洲国产欧美日韩在线播放| 少妇的丰满在线观看| 亚洲精品自拍成人| 乱人伦中国视频| www.熟女人妻精品国产 | 午夜激情av网站| 看非洲黑人一级黄片| 久久狼人影院| 久久 成人 亚洲| 国产成人精品无人区| 晚上一个人看的免费电影| 一本色道久久久久久精品综合| 免费在线观看完整版高清| 人妻人人澡人人爽人人| 久久99蜜桃精品久久| 一个人免费看片子| 欧美日韩视频高清一区二区三区二| 精品国产一区二区三区久久久樱花| 99热全是精品| 日韩大片免费观看网站| 欧美激情国产日韩精品一区| 老司机亚洲免费影院| 国产一区二区三区av在线| 在线观看人妻少妇| 两个人看的免费小视频| 在线天堂最新版资源| 热re99久久精品国产66热6| 一级毛片 在线播放| 久久久欧美国产精品| 丝袜美足系列| 欧美亚洲 丝袜 人妻 在线| 日本91视频免费播放| 青春草亚洲视频在线观看| 亚洲成人av在线免费| 青春草国产在线视频| 十分钟在线观看高清视频www| 人人妻人人爽人人添夜夜欢视频| 亚洲四区av| 中文字幕人妻熟女乱码| 精品人妻在线不人妻| 久久韩国三级中文字幕| 18在线观看网站| 高清在线视频一区二区三区| 久久热在线av| 男女免费视频国产| 狠狠精品人妻久久久久久综合| 亚洲精品乱久久久久久| 亚洲精品美女久久av网站| 9热在线视频观看99| 日本wwww免费看| 国产精品国产av在线观看| 国语对白做爰xxxⅹ性视频网站| 欧美精品一区二区免费开放| 精品一区二区三卡| av卡一久久| av在线观看视频网站免费| 国产精品久久久av美女十八| 日日爽夜夜爽网站| 午夜日本视频在线| av在线老鸭窝| 高清不卡的av网站| 视频在线观看一区二区三区| 丝袜喷水一区| 免费观看无遮挡的男女| 午夜日本视频在线| 欧美精品高潮呻吟av久久| 免费观看无遮挡的男女| 婷婷色麻豆天堂久久| 欧美精品高潮呻吟av久久| 亚洲,一卡二卡三卡| 1024视频免费在线观看| 少妇精品久久久久久久| 最近中文字幕高清免费大全6| 国产精品 国内视频| 91成人精品电影| 久久97久久精品| 亚洲精品日韩在线中文字幕| 欧美精品高潮呻吟av久久| 黄色毛片三级朝国网站| 日产精品乱码卡一卡2卡三| 日本欧美视频一区| 免费观看无遮挡的男女| 国产极品天堂在线| 国产xxxxx性猛交| 精品少妇内射三级| 黄片无遮挡物在线观看| 在线观看免费视频网站a站| 一级毛片我不卡| 欧美日韩视频精品一区| 两个人免费观看高清视频| 一级毛片我不卡| 中文字幕人妻熟女乱码| 亚洲精品一二三| 美女国产高潮福利片在线看| 久久久久久伊人网av| 看免费成人av毛片| 少妇人妻精品综合一区二区| 大码成人一级视频|