• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A lab-on-a-disc platform based on nickel nanowire net and smartphone imaging for rapid and automatic detection of foodborne bacteria

    2022-06-20 06:21:50XiotingHuoLeiWngWuzhenQiRongYingjiLiuSiyunWngHongDunJinhnLin
    Chinese Chemical Letters 2022年4期

    Xioting Huo,Lei Wng,Wuzhen Qi,N Rong,Yingji Liu,Siyun Wng,Hong Dun,Jinhn Lin,,*

    a Key Laboratory of Agricultural Information Acquisition Technology,Ministry of Agriculture and Rural Affairs,China Agricultural University,Beijing 100083,China

    b Key Laboratory of Modern Precision Agriculture System Integration Research,Ministry of Education,China Agricultural University,Beijing 100083,China

    1 These authors contributed equally to this work.

    ABSTRACT Foodborne pathogenic bacteria have been considered as a major risk factor for food safety.It is of great significance to carry out in-field screening of pathogenic bacteria to prevent the outbreaks of foodborne diseases.In this study,a portable lab-on-a-disc platform with a microfluidic disc was developed for rapid and automatic detection of Salmonella typhimurium using a nickel nanowire(NiNW)net for effective separation of target bacteria,horseradish peroxidase nanoflowers(HRP NFs)for efficient amplification of biological signals,and a self-developed smartphone APP for accurate analysis of colorimetric images.First,the microfluidic disc was preloaded with reagents and samples and centrifuged to form one bacterial sample column,one immune NiNW column,one HRP NF column,two washing buffer columns and one tetramethylbenzidine(TMB)column,which were separated by air gaps.Then,a rotatable magnetic field was specifically developed to assemble the NiNWs into a net,which was automatically controlled by a stepped motor to successively pass through the sample column for specific capture of target bacteria,the HRP NF column for specific label of target bacteria,the washing columns for effective removal of sample background and non-specific binding NFs,and the TMB column for colorimetric determination of target bacteria.The color change of TMB from colorless to blue was finally analyzed using the smartphone APP to quantitatively determine the target bacteria.This lab-on-a-disc platform could detect Salmonella typhimurium from 5.6 × 101 CFU/20 μL to 5.6 × 105 CFU/20 μL in 1 h with a lower detection limit of 56 CFU/20 μL.The recovery of target bacteria in spiked chicken samples ranged from 97.5% to 101.8%.This portable platform integrating separation,labeling,washing,catalysis and detection onto a single disc is featured with automatic operation,fast reaction,and small size and has shown its potential for in-field detection of foodborne pathogens.

    Keywords:Lab-on-a-disk platform Nickel nanowire net Horseradish peroxidase nanoflowers Smartphone Bacteria detection

    Food safety is closely related to the public health.According to the report of the World Bank,foodborne diseases have resulted in an annual productivity loss of ~$95.2 billion and an annual medical expense of ~$15 billion in low and middle-income countries[1].Around 600 million people fall ill with 420,000 deaths every year in the world after eating unsafe foods containing harmful bacteria,viruses,parasites or chemical substances[2].Salmonella,as the leading risk factor for microbiological food poisoning,has been found in any link of food supply chains.However,there is still a lack of simple,rapid,sensitive and automatic methods for early screening ofSalmonellato ensure food safety.

    Fig.1.(a)The lab-on-a-disc platform.(b)The rotatable magnetic field.(c)The microfluidic disc.(d)The procedure for bacterial detection.

    In the past decade,many efforts have been made to develop simple,rapid and sensitive methods for bacterial detection.Among them,the centrifugal microfluidic discs have shown great potential for separation and detection of cells,viruses and bacteria[3–8]due to low cost,less reagent,fast reaction and miniature size.In these microfluidic discs,the solutions were often transferred based on the centrifugal force owing to the rotation of the disc to perform the whole detection procedures,including transfer,mixing,capture,reaction,washing and detection,etc.[9–12].An interesting study on centrifugal microfluidic disc was reported by Nguyenet al.for molecular biological detection of multiple foodborne bacteria.The procedures,including sample loading,DNA extraction,LAMP reaction,and optical detection,were automatically conducted on the microfluidic disc in 1 h and it could detectE.coliO157:H7,Salmonella typhimuriumandVibrio parahaemolyticuswith a low detection limit of 102cells/mL[13].With fast development and popularization of smartphone,it has been frequently employed to replace bulky and expensive devices for image acquisition,data analysis,result display and information transmission in the detection of foodborne pathogens[3,14–19].Therefore,the combination of the centrifugal microfluidic disc with smartphone might be promising to provide simple,rapid and automatic methods for in-field detection of foodborne pathogens.

    Signal amplification is also important for bacterial detection.Enzymes are very often used to amplify biological signals.However,their stability is limited due to their poor tolerance to harsh environment.As an alternative,some protein-inorganic hybrid nanoflowers,such as hemin-concanavalin A hybrid nanoflowers[20]and enzyme-antibody-inorganic nanoflowers[21],have been demonstrated with mimic enzyme activity and were able to greatly amplify the biological signals due to their large surface-to-volume ratio[22–26].An interesting study was reported by Linet al.using the concanavalin A-glucose oxidase-Cu3(PO4)2nanoflowers as HRP mimic to amplify the colorimetric signals.This method was able to detectE.coliO157:H7 as low as 10 CFU/mL in 3 h[27].Therefore,the introduction of protein-inorganic hybrid nanoflowers might further improve the sensitivity of the bacterial detection methods.

    In this study,a portable lab-on-a-disc platform was developed for rapid and automatic detection ofSalmonella typhimuriumusing the nickel nanowire(NiNW)net to separate target bacteria from sample background,horseradish peroxidase nanoflowers(HRP NFs)to amplify biological signal,and a self-developed smartphone APP to collect and analyze colorimetric images.As shown in Fig.1,the immune NiNWs,bacterial sample,HRP NFs,washing solution and tetramethylbenzidine(TMB)were first preloaded onto their respective chambers in the microfluidic disc and centrifuged to form multiple columns in the peripheral,which were separated by air gaps.Then,a specific magnetic field was used to assemble the NiNWs into a net,and rotated by a stepper motor to make the NiNW net successively pass through the sample column to form the NiNW-bacteria complexes(magnetic bacteria),the HRP NF column to form the NiNW-bacteria-NF complexes(nanoflower bacteria),two washing solution columns to remove the unbound HRP NFs,the TMB column to catalyze the colorless substrate(TMB)into the blue catalysate(TMBox),and the NiNW column to terminate the mimic catalysis.Finally,the image of catalysate was collected and analyzed using the selfdeveloped smartphone APP to quantitatively determine the target bacteria.

    The lab-on-a-disc platform was developed to automatically perform the whole bacterial detection procedures.As shown in Fig.1a and Fig.S1(Supporting information),the lab-on-a-disc platform mainly consists of a microfluidic disc,a rotatable magnetic field,a stepper motor(42BYGH34,Jiawen Electronic,Shenzhen,China),a microcontroller(STC12C5A60S2,STC,Shenzhen,China),a selfdeveloped smartphone APP and a three-layer holder.As shown in Fig.1b,the microfluidic disc is placed in the air gap of the magnetic field(The construction of the rotatable magnetic field can be found in Supporting information 2 and the assembly of the rotating magnetic field can be found in Video S1)at the top layer of the holder,which is automatically controlled by the stepper motor at the middle layer using the microcontroller at the bottom layer to rotate at the designated columns.The smartphone APP was developed based on Android and used to collect the image of the catalysate in the TMB column after the nanoflower bacteria were transferred to the original NiNW column and analyze the gray value of the image for quantitative determination of target bacteria.

    The microfluidic disc was another key part of this lab-on-a-disc platform.As shown in Fig.1c,the microfluidic disc consists of a top PDMS layer and a bottom glass layer.The top PDMS layer(inner diameter:18 mm,outer diameter:64 mm,thickness:1.5 mm)mainly includes six inlets(diameter:0.8 mm)for loading different solutions,six storage chambers(volume:20 μL)for storing these solutions,six arc reaction chambers(inner diameter:52 mm,outer diameter:55.5 mm,height:0.5 mm,arc angle:~60°)for performing separation,labeling,washing and catalysis,and twelve air holes(diameter:0.6 mm)for positioning these columns.The design and fabrication process of the microfluidic disc can be found in Supporting information 3.

    To detect unknown concentrations of target bacteria,the calibration model between the gray value of the catalysate and the concentration of the target bacteria was established.Prior to testing,the microfluidic disc was successively rinsed with 75% alcohol and deionized water,followed by blocking with 1% BSA for 30 min and washing with sterile phosphate buffered saline(PBS).First,20 μL of the immune NiNWs(The preparation of the immune nickel nanowires can be found in Supporting information 4),20 μL of the bacterial samples with different concentrations from 2.8 × 103CFU/mL to 2.8 × 107CFU/mL,20 μL of the immune HRP NFs(The synthesis of the immune horseradish peroxidase nanoflowers can be found in Supporting information 5),20 μL of the washing solution(PBS with 0.05% Tween 20),another 20 μL of the washing solution,and 20 μL of the TMB solution were pipetted into their respective storage chambers,respectively.Then,as shown in Video S2(Supporting information),these solutions were centrifuged from the storage chambers to the arc reaction chambers at 700 rad/min for 3 s,resulting in the formation of one NiNW column,one sample column,one HRP NF column,two PBST columns and one TMB column,and 3 mm of air gap was formed to separate each two adjacent columns.After the microfluidic disc was placed on the platform,the magnetic field was moved by the stepper motor to the NiNW column and rotated twice from one end of the column to the other,resulting in the forming of the immune NiNW net.Then,the immune NiNW net was transferred to the sample column and rotated fifty times to separate the target bacteria,resulting in the formation of NiNW-bacteria complexes(magnetic bacteria).Successively,the magnetic bacteria were transferred to the HRP NF column and rotated fifty times,resulting in the formation of NiNW-Salmonella-HRP NF complexes(nanoflower bacteria).After the nanoflower bacteria were transferred to the PBST columns and rotated twenty times to remove the excessive HRP NFs,they were transferred to the TMB column and rotated thirty times,allowing efficient catalysis of colorless substrate(TMB)into blue catalysate(TMBox).Finally,the nanoflower bacteria were transferred back to the original NiNW column to terminate the catalytic reaction,and the image of catalysate was collected and analyzed by the smartphone APP to determine the target bacteria.

    To verify the feasibility of this lab-on-a-disc platform for detection of target bacteria in real food samples,25 g of the chicken meats purchased from the local supermarket were first homogenized with 225 mL of sterile PBS for 2 min using a stomacher(BagMixer CC,InterScience,Paris,F(xiàn)rance),followed by standing for 5 min to obtain the supernatant.Then,different concentrations of target bacteria were added into the supernatant to obtain the spiked chicken samples with the bacterial concentrations from 2.8 × 103CFU/mL to 2.8 × 107CFU/mL.Finally,the spiked chicken samples were detected using this lab-on-a-disc platform.

    The formation of the NiNW net in the microfluidic channel is the key to effective separation of target bacteria from sample background,which depends on the distribution of the magnetic field since the NiNWs have the tendency to distribute along the magnetic field lines.Thus,the rotatable magnetic field was simulated using the Finite Element Method Magnetics(FEMM)software.The distribution of the rotatable magnetic field was shown in Fig.2a,and the distribution at the air gap(from point A to point B)was shown in Fig.2b.The magnetic field at the air gap has a mean intensity of ~1.0 T and a mean gradient of ~300 T/m,which was verified with the ability to form the NiNW net but without the ability to drag the NiNW net to pass through the air gaps.Thus,two repelling rectangle magnets were used to enhance the magnetic field.As shown in Figs.2c and d,the enhanced magnetic field has a mean intensity of ~1.4 T and a mean gradient of ~500 T/m.When this magnetic field was applied to act on the NiNWs,the NiNWs were magnetized and observed using an electron microscope(Andonstar,Guangzhou,China)to vertically distribute in the microfluidic channel and form into the NiNW net(Fig.2e).To better understand the forming mechanism of the NiNW net,the magnetic force on the NiNWs was investigated and shown in Fig.S2(Supporting information).When the NiNW was in the air gap(i.e.,magnetic field),two magnetic forces(Fm1andFm2)towards the direction of the higher gradient magnetic field acted on each NiNW,which had the tendency to pull the NiNW to be parallel with the magnetic field lines and thus resulted in the formation of the NiNW net across the microfluidic channel.

    The nickel nanowires are the key material for the formation of the NiNW net,which is closely related with the efficiency of bacterial separation.Thus,both transmission electron microscopy(TEM)and scanning electron microscopy(SEM)were used to characterize the NiNWs.As shown in Figs.3a and b,the NiNWs have a mean diameter of ~180 nm and a mean length of ~5 μm.The size of NiNWs is larger than the traditional magnetic particles,leading to easier formation of the NiNW net in the microfluidic channel.

    The horseradish peroxidase nanoflowers are the key material for signal amplification,which is directly related with the sensitivity of bacterial detection.Therefore,TEM and SEM were conducted to verify successful synthesis of the HRP NFs.As shown in Figs.3c and d,the synthesized HRP NFs have a mean diameter of ~500 nm.The dynamic light scattering(DLS)technique was also used to further characterize the diameter of the HRP NFs,and the result in Fig.3e verified that the diameter of the HRP NFs was~500 nm.

    To further verify the feasibility of HRP NFs for the development of this platform,different concentrations of the HRP NFs were used to catalyze the H2O2-TMB substrate,followed by using the selfdeveloped smartphone APP to collect and analyze the catalysate’s image.As shown in Fig.3f,the gray value of the catalysate decreases with the concentration of the HRP NFs,and the gray value(G)has a good linear relationship with the concentration(CNF)of the HRP NFs ranging from 4 μmol/L to 500 μmol/L,which could be expressed asG=-27.51*ln(CNF)+216.89(R2= 0.99),indicating that the HRP NFs could be used as detection signal.

    The amount of the NiNWs,the rotating speed of the NiNW net,the times for the NiNW net to move back and forth,the amount of immune HRP NFs,and the time of enzymatic catalysis have great impact on this platform and were optimized(the optimization of the lab-on-a-disc platform can be found in Supporting information 6).As shown in Fig S3(Supporting information),the optimal amount of 60 μg,the optimal rotating speed of 6°/s,the optimal times of 50 for the NiNW net to move in the sample,the optimal amount of 7.5 μg for the immune HRP NFs,and the optimal time of 10 min for enzymatic catalysis were obtained and used in this study.

    Fig.2.(a)The simulation on the distribution of the rotatable magnetic field.(b)The vertical distribution of the magnetic field at the air gap.(c)The simulation on the distribution of the enhanced rotatable magnetic field.(d)The vertical distribution of the enhanced magnetic field at the air gap.(e)The microscopic image of the NiNW net.

    Fig.3.(a)The TEM image of the NiNWs.(b)The SEM image of the NiNWs.(c)The TEM image of the HRP NFs.(d)The SEM image of the HRP NFs.(e)The DLS result of the HRP NFs.(f)The gray value for different concentrations of HRP NFs to catalyze the H2O2-TMB substrate.

    Fig.4.(a)The calibration curve of this lab-on-a-disc platform for detection of Salmonella at the concentrations of 2.8 × 103–2.8 × 107 CFU/mL(N = 3).(b)The TEM image of the NiNW-Salmonella-NF complexes.(c)The specificity of this platform(N = 3).(d)Detection of Salmonella in spiked chicken meats using this platform(N = 3).

    Different concentrations of target bacteria from 2.8 × 103CFU/mL to 2.8 × 107CFU/mL were detected to establish the calibration model of this platform under optimal conditions.As shown in Fig.4a,the gray value decreases from 149.1 to 97.7 when the bacterial concentration changes from 2.8 × 103CFU/mL to 2.8 × 107CFU/mL.A good linear relationship between gray value(G)and bacterial concentration(CB)was obtained and could be described asG=-6.49*ln(CB)+200.00(R2= 0.99).The lower detection limit for the platform was calculated to be 56 CFU/20 μL.More importantly,this platform had automatically performed the separation,labeling,washing,catalysis and detection onto the disc within 1 h.As shown in Table S1(Supporting information),compared to some recent reported methods for bacterial detection,this platform has shown a comparable sensitivity,a simpler operation and a shorter detection time.Besides,the TEM imaging was conducted to demonstrate the formation of NiNW-Salmonella-NF complexes(Fig.4b).

    The specificity of this platform was evaluated by detecting three other foodborne pathogens.The experimental results on the negative control(sterile PBS buffer solution),target bacteria(Salmonella typhimurium)and non-target bacteria(Staphylococcus aureus,Vibrio parahaemolyticus,Bacillus cereusandE.coliK12),with the concentration of 106CFU/mL were shown in Fig.4c.The negative control and non-target bacteria show obviously higher gray values(152.7 for negative control,154.0 forStaphylococcus,148.6 forVibrio,and 152.2 forE.coli)than the target bacteria(105.4),indicating that the platform has a good specificity.

    To further evaluate the applicability of this platform for detection ofSalmonella typhimuriumin food samples,three parallel tests on different concentrations of the targetSalmonellacells in spiked chicken meats were conducted using this platform.As shown in Fig.4d,the recoveries for different concentrations(2.8 × 103-2.8 × 107CFU/mL)of the target bacteria range from 97.5% to 101.8%,indicating that this platform has a good applicability for detection ofSalmonella typhimuriumin chicken meats.

    In this study,a portable lab-on-a-disc platform was successfully developed for rapid and automatic detection ofSalmonella typhimurium,and was able to quantitatively detectSalmonella typhimuriumranging from 5.6 × 101CFU/20 μL to 5.6 × 105CFU/20 μL in 1 h with the detection limit of 56 CFU/20 μL.The microfluidic disc was demonstrated to automatically and accurately distribute different reagents with air gaps through centrifugation.The NiNW net was successfully formed under the high gradient magnetic field and verified to penetrate the air gaps and pass through different columns to perform the separation,labeling,washing,catalysis and detection under the rotatable magnetic field.It is promising to be extended for on-site detection of other foodborne pathogens to ensure food safety.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgments

    This research was supported by National Natural Science Foundation of China(No.32071899)and Walmart Foundation(No.61626817).The authors would like to thank Walmart Food Safety Collaboration Center for its great support.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.08.027.

    精品午夜福利在线看| 亚洲专区国产一区二区| 国产成人freesex在线 | 免费看美女性在线毛片视频| 久久久色成人| av黄色大香蕉| 亚洲av五月六月丁香网| 亚洲精品日韩av片在线观看| 91在线精品国自产拍蜜月| 最近的中文字幕免费完整| 亚洲在线自拍视频| 三级国产精品欧美在线观看| 日韩制服骚丝袜av| 两个人视频免费观看高清| 在线看三级毛片| 99热精品在线国产| 日韩av不卡免费在线播放| 亚洲欧美日韩无卡精品| 国产一区二区在线观看日韩| 国产精品精品国产色婷婷| 国产亚洲精品久久久久久毛片| 免费在线观看影片大全网站| 亚洲熟妇中文字幕五十中出| 午夜福利视频1000在线观看| 黄色欧美视频在线观看| 国产极品精品免费视频能看的| 久久久久久久久大av| 欧美在线一区亚洲| 久久精品国产亚洲av天美| 久久鲁丝午夜福利片| 人人妻人人澡欧美一区二区| 麻豆国产97在线/欧美| 蜜臀久久99精品久久宅男| 欧美成人精品欧美一级黄| 亚洲国产色片| 亚洲aⅴ乱码一区二区在线播放| 好男人在线观看高清免费视频| 老师上课跳d突然被开到最大视频| 国产精品国产高清国产av| 国产真实伦视频高清在线观看| 综合色av麻豆| 久久精品国产亚洲网站| 免费一级毛片在线播放高清视频| 日韩一本色道免费dvd| 久久人人爽人人爽人人片va| 最近的中文字幕免费完整| 真人做人爱边吃奶动态| 12—13女人毛片做爰片一| 婷婷色综合大香蕉| 身体一侧抽搐| 国产精品不卡视频一区二区| 青春草视频在线免费观看| a级一级毛片免费在线观看| 成人一区二区视频在线观看| 在线播放无遮挡| 久久久久久久久久成人| 国产伦精品一区二区三区四那| 亚洲丝袜综合中文字幕| 日韩成人伦理影院| 国产探花极品一区二区| 成人特级黄色片久久久久久久| 嫩草影视91久久| avwww免费| 91久久精品国产一区二区三区| 国产精品久久久久久av不卡| 国产片特级美女逼逼视频| 91精品国产九色| 久久久a久久爽久久v久久| 国产精品人妻久久久久久| 黄色配什么色好看| 国产午夜福利久久久久久| 五月伊人婷婷丁香| 深爱激情五月婷婷| 精品一区二区三区视频在线| 国产色爽女视频免费观看| 国产熟女欧美一区二区| 99热只有精品国产| 国产黄色小视频在线观看| 一个人观看的视频www高清免费观看| 久久久久九九精品影院| av专区在线播放| 久久久久国产网址| 欧美日本亚洲视频在线播放| 深爱激情五月婷婷| 国产人妻一区二区三区在| 日韩大尺度精品在线看网址| 亚洲美女黄片视频| 一区二区三区四区激情视频 | 亚洲人成网站高清观看| 精品熟女少妇av免费看| 色综合站精品国产| 麻豆av噜噜一区二区三区| 内射极品少妇av片p| 色噜噜av男人的天堂激情| 日韩av在线大香蕉| 国产aⅴ精品一区二区三区波| 亚洲国产高清在线一区二区三| 亚洲18禁久久av| 麻豆成人午夜福利视频| 欧美人与善性xxx| 亚洲自拍偷在线| 亚洲国产欧洲综合997久久,| 亚洲欧美日韩卡通动漫| 国产 一区 欧美 日韩| 欧美三级亚洲精品| 我要看日韩黄色一级片| 精品午夜福利视频在线观看一区| 欧美日韩一区二区视频在线观看视频在线 | 免费人成在线观看视频色| 国内少妇人妻偷人精品xxx网站| 淫秽高清视频在线观看| 国产精品久久电影中文字幕| 麻豆久久精品国产亚洲av| 国产精品三级大全| 晚上一个人看的免费电影| 一个人看的www免费观看视频| 一进一出好大好爽视频| 国产精品嫩草影院av在线观看| 一级毛片aaaaaa免费看小| 波多野结衣高清无吗| 少妇裸体淫交视频免费看高清| 亚洲av电影不卡..在线观看| 欧美区成人在线视频| 国产精品一区二区三区四区久久| 成年免费大片在线观看| 久久鲁丝午夜福利片| 少妇被粗大猛烈的视频| 少妇被粗大猛烈的视频| 国产精品一区二区三区四区免费观看 | 婷婷亚洲欧美| 国产三级在线视频| 亚洲熟妇中文字幕五十中出| 国内精品宾馆在线| 亚洲av电影不卡..在线观看| 免费av观看视频| 美女免费视频网站| 高清毛片免费观看视频网站| 午夜日韩欧美国产| 久久精品国产清高在天天线| 在线免费十八禁| 日韩欧美在线乱码| 久久婷婷人人爽人人干人人爱| 亚洲四区av| 亚洲人成网站在线观看播放| 草草在线视频免费看| 一本久久中文字幕| 久久亚洲国产成人精品v| 国产一区二区三区av在线 | 又爽又黄无遮挡网站| 国产午夜精品论理片| 国内揄拍国产精品人妻在线| 国产精品一区www在线观看| 91狼人影院| 久久婷婷人人爽人人干人人爱| 国产精品嫩草影院av在线观看| 97超碰精品成人国产| 91av网一区二区| 国产成人影院久久av| 成人精品一区二区免费| www.色视频.com| 午夜福利视频1000在线观看| 日韩国内少妇激情av| 久久99热这里只有精品18| 1024手机看黄色片| 欧美+日韩+精品| 亚洲美女视频黄频| 国产中年淑女户外野战色| 亚洲欧美日韩东京热| 色综合亚洲欧美另类图片| 日韩亚洲欧美综合| 黄色一级大片看看| 亚洲18禁久久av| 美女高潮的动态| 日本成人三级电影网站| 免费看美女性在线毛片视频| 国产探花在线观看一区二区| 大型黄色视频在线免费观看| 日韩av不卡免费在线播放| 日本一本二区三区精品| 国产精品不卡视频一区二区| 人人妻人人澡人人爽人人夜夜 | 黄色配什么色好看| 精品人妻视频免费看| 国产一区二区三区在线臀色熟女| 人妻少妇偷人精品九色| 啦啦啦观看免费观看视频高清| 插逼视频在线观看| 久久这里只有精品中国| 91久久精品国产一区二区成人| 成年av动漫网址| 国产精品国产高清国产av| 五月伊人婷婷丁香| 性色avwww在线观看| 天堂av国产一区二区熟女人妻| 精品人妻视频免费看| 国产精华一区二区三区| 大香蕉久久网| 亚洲国产欧美人成| 老师上课跳d突然被开到最大视频| 神马国产精品三级电影在线观看| 久久九九热精品免费| 中国美白少妇内射xxxbb| 国产精品一及| 麻豆成人午夜福利视频| 国产色爽女视频免费观看| 黄色配什么色好看| 天堂√8在线中文| 免费看日本二区| 国产成人精品久久久久久| 少妇裸体淫交视频免费看高清| 真实男女啪啪啪动态图| 日本色播在线视频| 国产黄色视频一区二区在线观看 | 国产精华一区二区三区| 啦啦啦韩国在线观看视频| av.在线天堂| 国产精品女同一区二区软件| 欧美最黄视频在线播放免费| 国产精品久久久久久精品电影| 亚洲成人久久爱视频| 少妇高潮的动态图| 国产成人福利小说| 中文在线观看免费www的网站| 亚洲激情五月婷婷啪啪| 亚洲精品国产av成人精品 | 日韩av在线大香蕉| 日日摸夜夜添夜夜添av毛片| 久久久久久久久久黄片| 精品久久久久久成人av| av中文乱码字幕在线| 俺也久久电影网| av在线亚洲专区| 国产精品,欧美在线| 欧美色欧美亚洲另类二区| 亚洲专区国产一区二区| 偷拍熟女少妇极品色| 男女那种视频在线观看| 亚洲成人中文字幕在线播放| 秋霞在线观看毛片| 国产免费一级a男人的天堂| 在线观看美女被高潮喷水网站| 丝袜喷水一区| 久久久成人免费电影| 秋霞在线观看毛片| 国内少妇人妻偷人精品xxx网站| 性插视频无遮挡在线免费观看| 国产亚洲精品av在线| 精品乱码久久久久久99久播| 欧美高清性xxxxhd video| 久久精品人妻少妇| 麻豆国产av国片精品| 亚洲色图av天堂| 嫩草影院精品99| 丝袜喷水一区| 免费av毛片视频| 非洲黑人性xxxx精品又粗又长| 中文亚洲av片在线观看爽| 在线观看美女被高潮喷水网站| 亚洲三级黄色毛片| 亚洲精品色激情综合| 精品日产1卡2卡| 91久久精品电影网| 国产亚洲av嫩草精品影院| 国产成人freesex在线 | 亚洲人成网站在线播放欧美日韩| 日日干狠狠操夜夜爽| 亚洲中文日韩欧美视频| 女生性感内裤真人,穿戴方法视频| 级片在线观看| avwww免费| 99热这里只有是精品在线观看| 日本成人三级电影网站| 国产精品一区二区三区四区久久| 国产淫片久久久久久久久| 老熟妇乱子伦视频在线观看| 超碰av人人做人人爽久久| 啦啦啦观看免费观看视频高清| 亚洲美女视频黄频| 亚洲人成网站在线播| 自拍偷自拍亚洲精品老妇| 99riav亚洲国产免费| 久久鲁丝午夜福利片| or卡值多少钱| 天堂av国产一区二区熟女人妻| 精品乱码久久久久久99久播| 欧美高清性xxxxhd video| 亚洲美女黄片视频| 夜夜夜夜夜久久久久| 亚洲av免费在线观看| 三级毛片av免费| 成人特级黄色片久久久久久久| 女人十人毛片免费观看3o分钟| 国产av麻豆久久久久久久| 久久久久久伊人网av| 人妻久久中文字幕网| 又粗又爽又猛毛片免费看| 毛片女人毛片| 中文亚洲av片在线观看爽| 卡戴珊不雅视频在线播放| 亚洲国产日韩欧美精品在线观看| 91久久精品国产一区二区三区| 午夜精品一区二区三区免费看| 男女下面进入的视频免费午夜| 麻豆乱淫一区二区| 99国产极品粉嫩在线观看| 99在线视频只有这里精品首页| 国产高清不卡午夜福利| 卡戴珊不雅视频在线播放| 一个人看视频在线观看www免费| 淫秽高清视频在线观看| 久久久久久久久中文| 长腿黑丝高跟| 国产色爽女视频免费观看| 国产伦精品一区二区三区视频9| 如何舔出高潮| 国产三级在线视频| 麻豆av噜噜一区二区三区| 中文字幕av成人在线电影| 99久久精品国产国产毛片| 亚洲专区国产一区二区| 欧美成人一区二区免费高清观看| 国内精品一区二区在线观看| 久久6这里有精品| 亚洲无线观看免费| 欧美性猛交╳xxx乱大交人| 国产欧美日韩精品一区二区| 国产男人的电影天堂91| 国产探花在线观看一区二区| 有码 亚洲区| 国内精品久久久久精免费| 久久精品国产清高在天天线| 观看免费一级毛片| 亚洲18禁久久av| 干丝袜人妻中文字幕| 在线观看免费视频日本深夜| 在线免费观看的www视频| 国产欧美日韩一区二区精品| 在线国产一区二区在线| 五月玫瑰六月丁香| 精品国内亚洲2022精品成人| 变态另类丝袜制服| 成人一区二区视频在线观看| 97在线视频观看| 可以在线观看毛片的网站| 国产成年人精品一区二区| 国产大屁股一区二区在线视频| 久久99热这里只有精品18| 成年av动漫网址| 色噜噜av男人的天堂激情| 极品教师在线视频| 亚洲自拍偷在线| 色视频www国产| 精品一区二区三区视频在线观看免费| 日韩欧美免费精品| 中文字幕精品亚洲无线码一区| 免费观看的影片在线观看| 午夜视频国产福利| 一a级毛片在线观看| 久久6这里有精品| 又黄又爽又刺激的免费视频.| 亚洲av中文av极速乱| 一级毛片我不卡| 久久亚洲国产成人精品v| 日日撸夜夜添| 国产亚洲欧美98| 成年女人看的毛片在线观看| 少妇裸体淫交视频免费看高清| 日本一本二区三区精品| 成人三级黄色视频| 亚洲av免费高清在线观看| 伊人久久精品亚洲午夜| 十八禁网站免费在线| 极品教师在线视频| 91久久精品电影网| 午夜老司机福利剧场| 搞女人的毛片| 亚洲精品粉嫩美女一区| 色尼玛亚洲综合影院| 婷婷精品国产亚洲av在线| 久久精品夜色国产| 亚洲成人精品中文字幕电影| 麻豆av噜噜一区二区三区| 村上凉子中文字幕在线| 91精品国产九色| 黄片wwwwww| 中文字幕免费在线视频6| 3wmmmm亚洲av在线观看| 别揉我奶头 嗯啊视频| 精品一区二区免费观看| 99热这里只有是精品50| 久久久久久国产a免费观看| 国产激情偷乱视频一区二区| 噜噜噜噜噜久久久久久91| 18+在线观看网站| 成人特级av手机在线观看| 中文字幕av在线有码专区| 乱人视频在线观看| 内射极品少妇av片p| 国产高清有码在线观看视频| 变态另类成人亚洲欧美熟女| 国产亚洲精品久久久com| 1000部很黄的大片| 久久精品国产亚洲网站| 久久久午夜欧美精品| 午夜福利视频1000在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 波多野结衣高清作品| 国内精品久久久久精免费| 麻豆国产97在线/欧美| 国产在线男女| 免费观看人在逋| 亚洲国产精品合色在线| 亚洲精品影视一区二区三区av| 波野结衣二区三区在线| 午夜福利视频1000在线观看| 成人av一区二区三区在线看| 麻豆精品久久久久久蜜桃| 村上凉子中文字幕在线| 欧洲精品卡2卡3卡4卡5卡区| 亚洲自偷自拍三级| a级一级毛片免费在线观看| 中文字幕熟女人妻在线| 久久久久国产精品人妻aⅴ院| 亚洲五月天丁香| 全区人妻精品视频| 亚洲成人久久爱视频| 亚洲真实伦在线观看| 成人鲁丝片一二三区免费| 少妇丰满av| 日韩欧美国产在线观看| 亚洲精品粉嫩美女一区| 伦精品一区二区三区| av在线播放精品| 国产精品1区2区在线观看.| 美女cb高潮喷水在线观看| 色哟哟哟哟哟哟| 国产麻豆成人av免费视频| 午夜影院日韩av| 中文字幕免费在线视频6| 亚洲综合色惰| 日日摸夜夜添夜夜添小说| 狂野欧美激情性xxxx在线观看| 国内揄拍国产精品人妻在线| 亚洲天堂国产精品一区在线| 亚洲国产欧美人成| 日日摸夜夜添夜夜添av毛片| 国产成人a∨麻豆精品| 国产亚洲精品久久久久久毛片| 麻豆成人午夜福利视频| 村上凉子中文字幕在线| 国内久久婷婷六月综合欲色啪| 五月玫瑰六月丁香| 久久亚洲国产成人精品v| 日日摸夜夜添夜夜爱| 插逼视频在线观看| 午夜激情欧美在线| 看非洲黑人一级黄片| 国产在视频线在精品| 亚洲内射少妇av| 国产伦在线观看视频一区| 夜夜爽天天搞| 麻豆久久精品国产亚洲av| aaaaa片日本免费| 男人舔奶头视频| 精品人妻熟女av久视频| 久久精品91蜜桃| 在线观看午夜福利视频| 国产一级毛片七仙女欲春2| 美女 人体艺术 gogo| 五月伊人婷婷丁香| av在线老鸭窝| 日韩强制内射视频| 麻豆av噜噜一区二区三区| 精品人妻视频免费看| 国产精品永久免费网站| 国产一区二区激情短视频| 亚洲,欧美,日韩| 天天躁日日操中文字幕| 麻豆久久精品国产亚洲av| 成年免费大片在线观看| 国产精品久久久久久精品电影| 99精品在免费线老司机午夜| 日本爱情动作片www.在线观看 | 一区二区三区四区激情视频 | 丰满人妻一区二区三区视频av| 天堂av国产一区二区熟女人妻| 亚洲av第一区精品v没综合| 日韩国内少妇激情av| 最后的刺客免费高清国语| 在线观看av片永久免费下载| 欧美极品一区二区三区四区| 国产成年人精品一区二区| 国产亚洲精品综合一区在线观看| 天天躁日日操中文字幕| 22中文网久久字幕| 中文字幕免费在线视频6| 亚洲自偷自拍三级| 国产精品亚洲美女久久久| 欧美成人a在线观看| 身体一侧抽搐| 免费看日本二区| 亚洲一级一片aⅴ在线观看| 在线国产一区二区在线| 亚洲婷婷狠狠爱综合网| 久久热精品热| 亚洲久久久久久中文字幕| АⅤ资源中文在线天堂| 不卡视频在线观看欧美| 亚洲av免费高清在线观看| 午夜影院日韩av| 午夜久久久久精精品| 久久久久久国产a免费观看| 成人高潮视频无遮挡免费网站| 久久九九热精品免费| 欧美日本亚洲视频在线播放| 国产aⅴ精品一区二区三区波| or卡值多少钱| 欧美日韩综合久久久久久| 熟女人妻精品中文字幕| 成人国产麻豆网| 啦啦啦观看免费观看视频高清| 校园人妻丝袜中文字幕| 日本-黄色视频高清免费观看| a级毛色黄片| 久久精品国产清高在天天线| 国产亚洲精品av在线| 亚洲精品久久国产高清桃花| 日本黄大片高清| 成人av在线播放网站| 91久久精品电影网| 精品无人区乱码1区二区| 最好的美女福利视频网| 男人狂女人下面高潮的视频| 无遮挡黄片免费观看| 99久国产av精品国产电影| 女人被狂操c到高潮| 又粗又爽又猛毛片免费看| 成人av在线播放网站| 国产高清视频在线播放一区| 成人性生交大片免费视频hd| 成人毛片a级毛片在线播放| 亚洲国产精品成人久久小说 | 全区人妻精品视频| 精品欧美国产一区二区三| 22中文网久久字幕| 99热6这里只有精品| 国产午夜精品久久久久久一区二区三区 | 欧美丝袜亚洲另类| 欧美一区二区精品小视频在线| 午夜激情福利司机影院| 午夜福利在线在线| 亚洲一区高清亚洲精品| eeuss影院久久| 在线播放国产精品三级| 国产成年人精品一区二区| 国产伦精品一区二区三区四那| 亚洲最大成人av| 国产免费男女视频| 嫩草影院入口| 日本五十路高清| 十八禁国产超污无遮挡网站| 搡老妇女老女人老熟妇| 12—13女人毛片做爰片一| 国产91av在线免费观看| 久久久久久大精品| 国产老妇女一区| 成人鲁丝片一二三区免费| 亚洲18禁久久av| 黄色一级大片看看| 三级毛片av免费| 高清日韩中文字幕在线| 内射极品少妇av片p| av女优亚洲男人天堂| 久久亚洲精品不卡| 91在线观看av| 国产精华一区二区三区| 精品久久久久久久久亚洲| 成人欧美大片| 欧美成人一区二区免费高清观看| 村上凉子中文字幕在线| 精品国内亚洲2022精品成人| 国产精品久久久久久av不卡| av中文乱码字幕在线| 国产成人a区在线观看| 亚洲av第一区精品v没综合| 老熟妇仑乱视频hdxx| 国产精品永久免费网站| 免费大片18禁| 国产精品一区二区性色av| 99热这里只有精品一区| 亚洲性夜色夜夜综合| 日本黄大片高清| 九九爱精品视频在线观看| 成人漫画全彩无遮挡| 麻豆久久精品国产亚洲av| 国产久久久一区二区三区| 18禁在线播放成人免费| 国产女主播在线喷水免费视频网站 | 99久久久亚洲精品蜜臀av| 99热这里只有精品一区| 我要看日韩黄色一级片| 身体一侧抽搐| 国产久久久一区二区三区| 久久综合国产亚洲精品| 一区二区三区高清视频在线| 99久久成人亚洲精品观看| 免费观看人在逋| 天天躁夜夜躁狠狠久久av| 久久人妻av系列| 日日摸夜夜添夜夜爱| 国产男靠女视频免费网站| 成人美女网站在线观看视频| 欧美成人a在线观看| 国产一区二区三区av在线 | 日韩精品青青久久久久久|