• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A lab-on-a-disc platform based on nickel nanowire net and smartphone imaging for rapid and automatic detection of foodborne bacteria

    2022-06-20 06:21:50XiotingHuoLeiWngWuzhenQiRongYingjiLiuSiyunWngHongDunJinhnLin
    Chinese Chemical Letters 2022年4期

    Xioting Huo,Lei Wng,Wuzhen Qi,N Rong,Yingji Liu,Siyun Wng,Hong Dun,Jinhn Lin,,*

    a Key Laboratory of Agricultural Information Acquisition Technology,Ministry of Agriculture and Rural Affairs,China Agricultural University,Beijing 100083,China

    b Key Laboratory of Modern Precision Agriculture System Integration Research,Ministry of Education,China Agricultural University,Beijing 100083,China

    1 These authors contributed equally to this work.

    ABSTRACT Foodborne pathogenic bacteria have been considered as a major risk factor for food safety.It is of great significance to carry out in-field screening of pathogenic bacteria to prevent the outbreaks of foodborne diseases.In this study,a portable lab-on-a-disc platform with a microfluidic disc was developed for rapid and automatic detection of Salmonella typhimurium using a nickel nanowire(NiNW)net for effective separation of target bacteria,horseradish peroxidase nanoflowers(HRP NFs)for efficient amplification of biological signals,and a self-developed smartphone APP for accurate analysis of colorimetric images.First,the microfluidic disc was preloaded with reagents and samples and centrifuged to form one bacterial sample column,one immune NiNW column,one HRP NF column,two washing buffer columns and one tetramethylbenzidine(TMB)column,which were separated by air gaps.Then,a rotatable magnetic field was specifically developed to assemble the NiNWs into a net,which was automatically controlled by a stepped motor to successively pass through the sample column for specific capture of target bacteria,the HRP NF column for specific label of target bacteria,the washing columns for effective removal of sample background and non-specific binding NFs,and the TMB column for colorimetric determination of target bacteria.The color change of TMB from colorless to blue was finally analyzed using the smartphone APP to quantitatively determine the target bacteria.This lab-on-a-disc platform could detect Salmonella typhimurium from 5.6 × 101 CFU/20 μL to 5.6 × 105 CFU/20 μL in 1 h with a lower detection limit of 56 CFU/20 μL.The recovery of target bacteria in spiked chicken samples ranged from 97.5% to 101.8%.This portable platform integrating separation,labeling,washing,catalysis and detection onto a single disc is featured with automatic operation,fast reaction,and small size and has shown its potential for in-field detection of foodborne pathogens.

    Keywords:Lab-on-a-disk platform Nickel nanowire net Horseradish peroxidase nanoflowers Smartphone Bacteria detection

    Food safety is closely related to the public health.According to the report of the World Bank,foodborne diseases have resulted in an annual productivity loss of ~$95.2 billion and an annual medical expense of ~$15 billion in low and middle-income countries[1].Around 600 million people fall ill with 420,000 deaths every year in the world after eating unsafe foods containing harmful bacteria,viruses,parasites or chemical substances[2].Salmonella,as the leading risk factor for microbiological food poisoning,has been found in any link of food supply chains.However,there is still a lack of simple,rapid,sensitive and automatic methods for early screening ofSalmonellato ensure food safety.

    Fig.1.(a)The lab-on-a-disc platform.(b)The rotatable magnetic field.(c)The microfluidic disc.(d)The procedure for bacterial detection.

    In the past decade,many efforts have been made to develop simple,rapid and sensitive methods for bacterial detection.Among them,the centrifugal microfluidic discs have shown great potential for separation and detection of cells,viruses and bacteria[3–8]due to low cost,less reagent,fast reaction and miniature size.In these microfluidic discs,the solutions were often transferred based on the centrifugal force owing to the rotation of the disc to perform the whole detection procedures,including transfer,mixing,capture,reaction,washing and detection,etc.[9–12].An interesting study on centrifugal microfluidic disc was reported by Nguyenet al.for molecular biological detection of multiple foodborne bacteria.The procedures,including sample loading,DNA extraction,LAMP reaction,and optical detection,were automatically conducted on the microfluidic disc in 1 h and it could detectE.coliO157:H7,Salmonella typhimuriumandVibrio parahaemolyticuswith a low detection limit of 102cells/mL[13].With fast development and popularization of smartphone,it has been frequently employed to replace bulky and expensive devices for image acquisition,data analysis,result display and information transmission in the detection of foodborne pathogens[3,14–19].Therefore,the combination of the centrifugal microfluidic disc with smartphone might be promising to provide simple,rapid and automatic methods for in-field detection of foodborne pathogens.

    Signal amplification is also important for bacterial detection.Enzymes are very often used to amplify biological signals.However,their stability is limited due to their poor tolerance to harsh environment.As an alternative,some protein-inorganic hybrid nanoflowers,such as hemin-concanavalin A hybrid nanoflowers[20]and enzyme-antibody-inorganic nanoflowers[21],have been demonstrated with mimic enzyme activity and were able to greatly amplify the biological signals due to their large surface-to-volume ratio[22–26].An interesting study was reported by Linet al.using the concanavalin A-glucose oxidase-Cu3(PO4)2nanoflowers as HRP mimic to amplify the colorimetric signals.This method was able to detectE.coliO157:H7 as low as 10 CFU/mL in 3 h[27].Therefore,the introduction of protein-inorganic hybrid nanoflowers might further improve the sensitivity of the bacterial detection methods.

    In this study,a portable lab-on-a-disc platform was developed for rapid and automatic detection ofSalmonella typhimuriumusing the nickel nanowire(NiNW)net to separate target bacteria from sample background,horseradish peroxidase nanoflowers(HRP NFs)to amplify biological signal,and a self-developed smartphone APP to collect and analyze colorimetric images.As shown in Fig.1,the immune NiNWs,bacterial sample,HRP NFs,washing solution and tetramethylbenzidine(TMB)were first preloaded onto their respective chambers in the microfluidic disc and centrifuged to form multiple columns in the peripheral,which were separated by air gaps.Then,a specific magnetic field was used to assemble the NiNWs into a net,and rotated by a stepper motor to make the NiNW net successively pass through the sample column to form the NiNW-bacteria complexes(magnetic bacteria),the HRP NF column to form the NiNW-bacteria-NF complexes(nanoflower bacteria),two washing solution columns to remove the unbound HRP NFs,the TMB column to catalyze the colorless substrate(TMB)into the blue catalysate(TMBox),and the NiNW column to terminate the mimic catalysis.Finally,the image of catalysate was collected and analyzed using the selfdeveloped smartphone APP to quantitatively determine the target bacteria.

    The lab-on-a-disc platform was developed to automatically perform the whole bacterial detection procedures.As shown in Fig.1a and Fig.S1(Supporting information),the lab-on-a-disc platform mainly consists of a microfluidic disc,a rotatable magnetic field,a stepper motor(42BYGH34,Jiawen Electronic,Shenzhen,China),a microcontroller(STC12C5A60S2,STC,Shenzhen,China),a selfdeveloped smartphone APP and a three-layer holder.As shown in Fig.1b,the microfluidic disc is placed in the air gap of the magnetic field(The construction of the rotatable magnetic field can be found in Supporting information 2 and the assembly of the rotating magnetic field can be found in Video S1)at the top layer of the holder,which is automatically controlled by the stepper motor at the middle layer using the microcontroller at the bottom layer to rotate at the designated columns.The smartphone APP was developed based on Android and used to collect the image of the catalysate in the TMB column after the nanoflower bacteria were transferred to the original NiNW column and analyze the gray value of the image for quantitative determination of target bacteria.

    The microfluidic disc was another key part of this lab-on-a-disc platform.As shown in Fig.1c,the microfluidic disc consists of a top PDMS layer and a bottom glass layer.The top PDMS layer(inner diameter:18 mm,outer diameter:64 mm,thickness:1.5 mm)mainly includes six inlets(diameter:0.8 mm)for loading different solutions,six storage chambers(volume:20 μL)for storing these solutions,six arc reaction chambers(inner diameter:52 mm,outer diameter:55.5 mm,height:0.5 mm,arc angle:~60°)for performing separation,labeling,washing and catalysis,and twelve air holes(diameter:0.6 mm)for positioning these columns.The design and fabrication process of the microfluidic disc can be found in Supporting information 3.

    To detect unknown concentrations of target bacteria,the calibration model between the gray value of the catalysate and the concentration of the target bacteria was established.Prior to testing,the microfluidic disc was successively rinsed with 75% alcohol and deionized water,followed by blocking with 1% BSA for 30 min and washing with sterile phosphate buffered saline(PBS).First,20 μL of the immune NiNWs(The preparation of the immune nickel nanowires can be found in Supporting information 4),20 μL of the bacterial samples with different concentrations from 2.8 × 103CFU/mL to 2.8 × 107CFU/mL,20 μL of the immune HRP NFs(The synthesis of the immune horseradish peroxidase nanoflowers can be found in Supporting information 5),20 μL of the washing solution(PBS with 0.05% Tween 20),another 20 μL of the washing solution,and 20 μL of the TMB solution were pipetted into their respective storage chambers,respectively.Then,as shown in Video S2(Supporting information),these solutions were centrifuged from the storage chambers to the arc reaction chambers at 700 rad/min for 3 s,resulting in the formation of one NiNW column,one sample column,one HRP NF column,two PBST columns and one TMB column,and 3 mm of air gap was formed to separate each two adjacent columns.After the microfluidic disc was placed on the platform,the magnetic field was moved by the stepper motor to the NiNW column and rotated twice from one end of the column to the other,resulting in the forming of the immune NiNW net.Then,the immune NiNW net was transferred to the sample column and rotated fifty times to separate the target bacteria,resulting in the formation of NiNW-bacteria complexes(magnetic bacteria).Successively,the magnetic bacteria were transferred to the HRP NF column and rotated fifty times,resulting in the formation of NiNW-Salmonella-HRP NF complexes(nanoflower bacteria).After the nanoflower bacteria were transferred to the PBST columns and rotated twenty times to remove the excessive HRP NFs,they were transferred to the TMB column and rotated thirty times,allowing efficient catalysis of colorless substrate(TMB)into blue catalysate(TMBox).Finally,the nanoflower bacteria were transferred back to the original NiNW column to terminate the catalytic reaction,and the image of catalysate was collected and analyzed by the smartphone APP to determine the target bacteria.

    To verify the feasibility of this lab-on-a-disc platform for detection of target bacteria in real food samples,25 g of the chicken meats purchased from the local supermarket were first homogenized with 225 mL of sterile PBS for 2 min using a stomacher(BagMixer CC,InterScience,Paris,F(xiàn)rance),followed by standing for 5 min to obtain the supernatant.Then,different concentrations of target bacteria were added into the supernatant to obtain the spiked chicken samples with the bacterial concentrations from 2.8 × 103CFU/mL to 2.8 × 107CFU/mL.Finally,the spiked chicken samples were detected using this lab-on-a-disc platform.

    The formation of the NiNW net in the microfluidic channel is the key to effective separation of target bacteria from sample background,which depends on the distribution of the magnetic field since the NiNWs have the tendency to distribute along the magnetic field lines.Thus,the rotatable magnetic field was simulated using the Finite Element Method Magnetics(FEMM)software.The distribution of the rotatable magnetic field was shown in Fig.2a,and the distribution at the air gap(from point A to point B)was shown in Fig.2b.The magnetic field at the air gap has a mean intensity of ~1.0 T and a mean gradient of ~300 T/m,which was verified with the ability to form the NiNW net but without the ability to drag the NiNW net to pass through the air gaps.Thus,two repelling rectangle magnets were used to enhance the magnetic field.As shown in Figs.2c and d,the enhanced magnetic field has a mean intensity of ~1.4 T and a mean gradient of ~500 T/m.When this magnetic field was applied to act on the NiNWs,the NiNWs were magnetized and observed using an electron microscope(Andonstar,Guangzhou,China)to vertically distribute in the microfluidic channel and form into the NiNW net(Fig.2e).To better understand the forming mechanism of the NiNW net,the magnetic force on the NiNWs was investigated and shown in Fig.S2(Supporting information).When the NiNW was in the air gap(i.e.,magnetic field),two magnetic forces(Fm1andFm2)towards the direction of the higher gradient magnetic field acted on each NiNW,which had the tendency to pull the NiNW to be parallel with the magnetic field lines and thus resulted in the formation of the NiNW net across the microfluidic channel.

    The nickel nanowires are the key material for the formation of the NiNW net,which is closely related with the efficiency of bacterial separation.Thus,both transmission electron microscopy(TEM)and scanning electron microscopy(SEM)were used to characterize the NiNWs.As shown in Figs.3a and b,the NiNWs have a mean diameter of ~180 nm and a mean length of ~5 μm.The size of NiNWs is larger than the traditional magnetic particles,leading to easier formation of the NiNW net in the microfluidic channel.

    The horseradish peroxidase nanoflowers are the key material for signal amplification,which is directly related with the sensitivity of bacterial detection.Therefore,TEM and SEM were conducted to verify successful synthesis of the HRP NFs.As shown in Figs.3c and d,the synthesized HRP NFs have a mean diameter of ~500 nm.The dynamic light scattering(DLS)technique was also used to further characterize the diameter of the HRP NFs,and the result in Fig.3e verified that the diameter of the HRP NFs was~500 nm.

    To further verify the feasibility of HRP NFs for the development of this platform,different concentrations of the HRP NFs were used to catalyze the H2O2-TMB substrate,followed by using the selfdeveloped smartphone APP to collect and analyze the catalysate’s image.As shown in Fig.3f,the gray value of the catalysate decreases with the concentration of the HRP NFs,and the gray value(G)has a good linear relationship with the concentration(CNF)of the HRP NFs ranging from 4 μmol/L to 500 μmol/L,which could be expressed asG=-27.51*ln(CNF)+216.89(R2= 0.99),indicating that the HRP NFs could be used as detection signal.

    The amount of the NiNWs,the rotating speed of the NiNW net,the times for the NiNW net to move back and forth,the amount of immune HRP NFs,and the time of enzymatic catalysis have great impact on this platform and were optimized(the optimization of the lab-on-a-disc platform can be found in Supporting information 6).As shown in Fig S3(Supporting information),the optimal amount of 60 μg,the optimal rotating speed of 6°/s,the optimal times of 50 for the NiNW net to move in the sample,the optimal amount of 7.5 μg for the immune HRP NFs,and the optimal time of 10 min for enzymatic catalysis were obtained and used in this study.

    Fig.2.(a)The simulation on the distribution of the rotatable magnetic field.(b)The vertical distribution of the magnetic field at the air gap.(c)The simulation on the distribution of the enhanced rotatable magnetic field.(d)The vertical distribution of the enhanced magnetic field at the air gap.(e)The microscopic image of the NiNW net.

    Fig.3.(a)The TEM image of the NiNWs.(b)The SEM image of the NiNWs.(c)The TEM image of the HRP NFs.(d)The SEM image of the HRP NFs.(e)The DLS result of the HRP NFs.(f)The gray value for different concentrations of HRP NFs to catalyze the H2O2-TMB substrate.

    Fig.4.(a)The calibration curve of this lab-on-a-disc platform for detection of Salmonella at the concentrations of 2.8 × 103–2.8 × 107 CFU/mL(N = 3).(b)The TEM image of the NiNW-Salmonella-NF complexes.(c)The specificity of this platform(N = 3).(d)Detection of Salmonella in spiked chicken meats using this platform(N = 3).

    Different concentrations of target bacteria from 2.8 × 103CFU/mL to 2.8 × 107CFU/mL were detected to establish the calibration model of this platform under optimal conditions.As shown in Fig.4a,the gray value decreases from 149.1 to 97.7 when the bacterial concentration changes from 2.8 × 103CFU/mL to 2.8 × 107CFU/mL.A good linear relationship between gray value(G)and bacterial concentration(CB)was obtained and could be described asG=-6.49*ln(CB)+200.00(R2= 0.99).The lower detection limit for the platform was calculated to be 56 CFU/20 μL.More importantly,this platform had automatically performed the separation,labeling,washing,catalysis and detection onto the disc within 1 h.As shown in Table S1(Supporting information),compared to some recent reported methods for bacterial detection,this platform has shown a comparable sensitivity,a simpler operation and a shorter detection time.Besides,the TEM imaging was conducted to demonstrate the formation of NiNW-Salmonella-NF complexes(Fig.4b).

    The specificity of this platform was evaluated by detecting three other foodborne pathogens.The experimental results on the negative control(sterile PBS buffer solution),target bacteria(Salmonella typhimurium)and non-target bacteria(Staphylococcus aureus,Vibrio parahaemolyticus,Bacillus cereusandE.coliK12),with the concentration of 106CFU/mL were shown in Fig.4c.The negative control and non-target bacteria show obviously higher gray values(152.7 for negative control,154.0 forStaphylococcus,148.6 forVibrio,and 152.2 forE.coli)than the target bacteria(105.4),indicating that the platform has a good specificity.

    To further evaluate the applicability of this platform for detection ofSalmonella typhimuriumin food samples,three parallel tests on different concentrations of the targetSalmonellacells in spiked chicken meats were conducted using this platform.As shown in Fig.4d,the recoveries for different concentrations(2.8 × 103-2.8 × 107CFU/mL)of the target bacteria range from 97.5% to 101.8%,indicating that this platform has a good applicability for detection ofSalmonella typhimuriumin chicken meats.

    In this study,a portable lab-on-a-disc platform was successfully developed for rapid and automatic detection ofSalmonella typhimurium,and was able to quantitatively detectSalmonella typhimuriumranging from 5.6 × 101CFU/20 μL to 5.6 × 105CFU/20 μL in 1 h with the detection limit of 56 CFU/20 μL.The microfluidic disc was demonstrated to automatically and accurately distribute different reagents with air gaps through centrifugation.The NiNW net was successfully formed under the high gradient magnetic field and verified to penetrate the air gaps and pass through different columns to perform the separation,labeling,washing,catalysis and detection under the rotatable magnetic field.It is promising to be extended for on-site detection of other foodborne pathogens to ensure food safety.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgments

    This research was supported by National Natural Science Foundation of China(No.32071899)and Walmart Foundation(No.61626817).The authors would like to thank Walmart Food Safety Collaboration Center for its great support.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.08.027.

    国产 一区 欧美 日韩| 国内精品美女久久久久久| 久久99精品国语久久久| 国产一区二区亚洲精品在线观看| 国产亚洲av嫩草精品影院| 成年av动漫网址| 国产午夜精品一二区理论片| 日本黄大片高清| 久久精品久久久久久噜噜老黄| 舔av片在线| 免费观看的影片在线观看| 亚洲图色成人| 国产欧美亚洲国产| 3wmmmm亚洲av在线观看| 久久精品久久精品一区二区三区| 国产一级毛片在线| 在线精品无人区一区二区三 | 亚洲av国产av综合av卡| 久久精品综合一区二区三区| 精品人妻熟女av久视频| 国产色婷婷99| 男的添女的下面高潮视频| 国产伦精品一区二区三区视频9| 欧美一区二区亚洲| 免费在线观看成人毛片| 亚洲人成网站在线观看播放| 日韩欧美 国产精品| 日韩大片免费观看网站| 免费观看的影片在线观看| 亚洲精品一区蜜桃| .国产精品久久| 五月伊人婷婷丁香| 国产av国产精品国产| 三级国产精品片| 男人添女人高潮全过程视频| 免费人成在线观看视频色| 国语对白做爰xxxⅹ性视频网站| 美女内射精品一级片tv| 久久久色成人| 亚洲欧美一区二区三区国产| 熟妇人妻不卡中文字幕| 老师上课跳d突然被开到最大视频| 80岁老熟妇乱子伦牲交| 久久久午夜欧美精品| 亚洲国产欧美人成| 久久国内精品自在自线图片| 中文字幕久久专区| 久久热精品热| 麻豆国产97在线/欧美| 免费观看的影片在线观看| 乱码一卡2卡4卡精品| 久久这里有精品视频免费| 国内精品宾馆在线| 国产精品女同一区二区软件| 国产黄a三级三级三级人| 久久99热这里只频精品6学生| 日本一二三区视频观看| 亚洲国产精品成人久久小说| 亚洲精品成人av观看孕妇| 欧美高清性xxxxhd video| 亚洲最大成人中文| 欧美日韩在线观看h| 99九九线精品视频在线观看视频| 亚洲第一区二区三区不卡| 哪个播放器可以免费观看大片| 综合色av麻豆| 亚洲成人一二三区av| 国产毛片在线视频| 欧美日韩在线观看h| 欧美一区二区亚洲| 欧美成人精品欧美一级黄| 亚洲,欧美,日韩| 日韩av不卡免费在线播放| 国产淫语在线视频| 日产精品乱码卡一卡2卡三| 国产黄a三级三级三级人| 五月天丁香电影| tube8黄色片| 夫妻性生交免费视频一级片| 亚洲av.av天堂| 欧美日韩国产mv在线观看视频 | 国产在线一区二区三区精| 80岁老熟妇乱子伦牲交| 成人亚洲欧美一区二区av| 亚洲国产高清在线一区二区三| 国产免费一级a男人的天堂| 日韩不卡一区二区三区视频在线| av在线天堂中文字幕| 禁无遮挡网站| 熟妇人妻不卡中文字幕| 精品少妇黑人巨大在线播放| 岛国毛片在线播放| 久久久久精品久久久久真实原创| 男女边吃奶边做爰视频| 毛片一级片免费看久久久久| 午夜爱爱视频在线播放| 亚洲av不卡在线观看| 波多野结衣巨乳人妻| 最近中文字幕2019免费版| 在线看a的网站| 亚洲精品久久久久久婷婷小说| 亚洲精品国产成人久久av| 久久精品国产亚洲网站| 国产成人freesex在线| 五月伊人婷婷丁香| 天天躁日日操中文字幕| av在线老鸭窝| 亚洲av中文av极速乱| 国产精品精品国产色婷婷| 美女高潮的动态| 99re6热这里在线精品视频| 婷婷色综合大香蕉| 91久久精品国产一区二区成人| av线在线观看网站| 国产老妇女一区| 亚州av有码| 亚洲欧美中文字幕日韩二区| 18+在线观看网站| 亚洲精品日韩在线中文字幕| 天美传媒精品一区二区| 高清毛片免费看| 国产高清不卡午夜福利| 日韩三级伦理在线观看| 建设人人有责人人尽责人人享有的 | 校园人妻丝袜中文字幕| 国产 一区 欧美 日韩| av网站免费在线观看视频| 欧美少妇被猛烈插入视频| 久久精品国产亚洲av涩爱| 午夜免费观看性视频| 亚洲精品自拍成人| 日本av手机在线免费观看| 18禁动态无遮挡网站| 99久久九九国产精品国产免费| 亚洲伊人久久精品综合| 毛片女人毛片| 久热这里只有精品99| 婷婷色麻豆天堂久久| 久久久精品欧美日韩精品| 成人二区视频| 亚洲成色77777| 黑人高潮一二区| 日韩亚洲欧美综合| 日日摸夜夜添夜夜添av毛片| 97人妻精品一区二区三区麻豆| 亚洲欧美日韩卡通动漫| 国产爽快片一区二区三区| 在线天堂最新版资源| 高清av免费在线| 麻豆乱淫一区二区| 伊人久久精品亚洲午夜| 精品午夜福利在线看| 51国产日韩欧美| 80岁老熟妇乱子伦牲交| 免费高清在线观看视频在线观看| 亚洲欧洲日产国产| 观看美女的网站| 大又大粗又爽又黄少妇毛片口| 国产一区二区三区综合在线观看 | 午夜老司机福利剧场| 最近2019中文字幕mv第一页| 欧美 日韩 精品 国产| 大又大粗又爽又黄少妇毛片口| 看免费成人av毛片| 亚洲精品日韩在线中文字幕| 免费av毛片视频| 最近中文字幕高清免费大全6| 在线免费十八禁| 日日啪夜夜爽| 国产毛片在线视频| 午夜福利高清视频| 黄片wwwwww| 欧美少妇被猛烈插入视频| 久久午夜福利片| 成人鲁丝片一二三区免费| 国产成人a区在线观看| 伦理电影大哥的女人| 日产精品乱码卡一卡2卡三| 欧美国产精品一级二级三级 | 中国三级夫妇交换| 亚洲精品第二区| 欧美老熟妇乱子伦牲交| 国内揄拍国产精品人妻在线| 国产亚洲av嫩草精品影院| 久久精品熟女亚洲av麻豆精品| 亚洲精品久久久久久婷婷小说| 亚洲精品久久午夜乱码| 亚洲精品乱码久久久v下载方式| 寂寞人妻少妇视频99o| 一本色道久久久久久精品综合| 亚洲欧美中文字幕日韩二区| av在线亚洲专区| 国产精品av视频在线免费观看| 国产精品熟女久久久久浪| 成人一区二区视频在线观看| 美女主播在线视频| 亚洲,一卡二卡三卡| 少妇 在线观看| 赤兔流量卡办理| 99视频精品全部免费 在线| 国产精品人妻久久久影院| 18禁裸乳无遮挡免费网站照片| 亚洲天堂国产精品一区在线| 免费看a级黄色片| 69av精品久久久久久| 国产色爽女视频免费观看| 亚洲精品aⅴ在线观看| 我要看日韩黄色一级片| 成人美女网站在线观看视频| 久久国产乱子免费精品| 亚洲国产最新在线播放| 国产一区二区三区综合在线观看 | 国产人妻一区二区三区在| 亚洲在久久综合| 中国三级夫妇交换| 蜜桃久久精品国产亚洲av| 国产女主播在线喷水免费视频网站| 99九九线精品视频在线观看视频| 日日啪夜夜爽| eeuss影院久久| 春色校园在线视频观看| 一个人看视频在线观看www免费| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 黄色一级大片看看| 亚洲精品色激情综合| 性色av一级| 最近中文字幕2019免费版| 97在线视频观看| 中文字幕免费在线视频6| 精品人妻偷拍中文字幕| 精品久久久久久久末码| 18+在线观看网站| 99热国产这里只有精品6| 男人和女人高潮做爰伦理| 搞女人的毛片| 亚洲精品国产成人久久av| 成年av动漫网址| 久久精品人妻少妇| 中文乱码字字幕精品一区二区三区| 看免费成人av毛片| 久久ye,这里只有精品| 久久精品国产亚洲av天美| 国产午夜福利久久久久久| 校园人妻丝袜中文字幕| 免费看不卡的av| 亚洲国产精品专区欧美| 亚洲精品成人av观看孕妇| 人体艺术视频欧美日本| 青春草亚洲视频在线观看| av线在线观看网站| 日本午夜av视频| 亚洲av免费高清在线观看| 亚洲,欧美,日韩| 免费不卡的大黄色大毛片视频在线观看| 中文乱码字字幕精品一区二区三区| 狠狠精品人妻久久久久久综合| 人人妻人人爽人人添夜夜欢视频 | 看免费成人av毛片| 搡老乐熟女国产| 丝袜喷水一区| 免费播放大片免费观看视频在线观看| 啦啦啦啦在线视频资源| 国内少妇人妻偷人精品xxx网站| 一区二区三区四区激情视频| 久久久久久久久久久丰满| 麻豆久久精品国产亚洲av| 久久精品综合一区二区三区| 干丝袜人妻中文字幕| 成年女人看的毛片在线观看| 欧美成人一区二区免费高清观看| 看免费成人av毛片| 免费大片18禁| 人人妻人人看人人澡| 最近最新中文字幕免费大全7| 亚洲精品中文字幕在线视频 | 免费av观看视频| 国产精品一及| 直男gayav资源| 亚洲自拍偷在线| 国产老妇伦熟女老妇高清| 成人免费观看视频高清| 久久影院123| 亚洲在线观看片| 少妇丰满av| 亚洲欧美日韩另类电影网站 | 蜜臀久久99精品久久宅男| 日韩欧美精品免费久久| 亚洲av二区三区四区| 久久影院123| 日韩视频在线欧美| 日本wwww免费看| 免费看av在线观看网站| 男女边摸边吃奶| 久久精品久久精品一区二区三区| 内地一区二区视频在线| 欧美老熟妇乱子伦牲交| 亚洲精品自拍成人| 在线观看三级黄色| 秋霞在线观看毛片| 九九在线视频观看精品| 国产亚洲午夜精品一区二区久久 | 欧美日韩综合久久久久久| 日韩伦理黄色片| av卡一久久| 亚洲av成人精品一区久久| 成人毛片a级毛片在线播放| 激情 狠狠 欧美| 香蕉精品网在线| 五月开心婷婷网| 国产成人免费观看mmmm| 日本欧美国产在线视频| 波多野结衣巨乳人妻| 日本午夜av视频| 丰满少妇做爰视频| 黄色欧美视频在线观看| 亚洲av国产av综合av卡| 免费观看无遮挡的男女| av在线老鸭窝| av在线观看视频网站免费| 免费观看无遮挡的男女| 日韩成人伦理影院| 搡老乐熟女国产| 国产探花在线观看一区二区| xxx大片免费视频| 97在线人人人人妻| 亚洲av成人精品一二三区| 婷婷色av中文字幕| 欧美日韩在线观看h| 少妇人妻精品综合一区二区| 成人毛片a级毛片在线播放| 毛片女人毛片| 国产午夜福利久久久久久| 一区二区三区免费毛片| 黄色日韩在线| 欧美xxxx黑人xx丫x性爽| 十八禁网站网址无遮挡 | 爱豆传媒免费全集在线观看| 在线观看人妻少妇| 精品一区二区免费观看| 亚洲精品乱码久久久v下载方式| 3wmmmm亚洲av在线观看| 中文字幕制服av| 黄片无遮挡物在线观看| 干丝袜人妻中文字幕| av在线观看视频网站免费| 国产黄色视频一区二区在线观看| 边亲边吃奶的免费视频| 老司机影院成人| 欧美三级亚洲精品| 久久久久九九精品影院| 国产熟女欧美一区二区| 一级毛片我不卡| 免费av不卡在线播放| 亚洲色图综合在线观看| 黄色一级大片看看| 久久韩国三级中文字幕| 成人亚洲欧美一区二区av| 国精品久久久久久国模美| 尾随美女入室| 综合色丁香网| 国产毛片a区久久久久| 午夜免费鲁丝| 精品少妇黑人巨大在线播放| 69av精品久久久久久| 天天一区二区日本电影三级| 免费观看性生交大片5| 亚洲性久久影院| 美女xxoo啪啪120秒动态图| 波多野结衣巨乳人妻| 精品久久久久久久久av| 国产淫语在线视频| 国国产精品蜜臀av免费| 日韩在线高清观看一区二区三区| 欧美性感艳星| 一个人看视频在线观看www免费| 视频中文字幕在线观看| 欧美老熟妇乱子伦牲交| 超碰av人人做人人爽久久| 国产精品不卡视频一区二区| 我要看日韩黄色一级片| 伊人久久精品亚洲午夜| 91久久精品国产一区二区成人| 九草在线视频观看| 六月丁香七月| av.在线天堂| 午夜福利视频1000在线观看| 日本-黄色视频高清免费观看| 一区二区三区乱码不卡18| 夜夜看夜夜爽夜夜摸| 最近手机中文字幕大全| 亚洲第一区二区三区不卡| 春色校园在线视频观看| 成年女人看的毛片在线观看| 水蜜桃什么品种好| 午夜福利在线在线| 久久人人爽人人片av| 插逼视频在线观看| 成人漫画全彩无遮挡| 精品亚洲乱码少妇综合久久| 国产爱豆传媒在线观看| 亚洲高清免费不卡视频| 国产精品不卡视频一区二区| 哪个播放器可以免费观看大片| 国产精品99久久99久久久不卡 | av免费观看日本| 国产亚洲一区二区精品| 五月伊人婷婷丁香| 别揉我奶头 嗯啊视频| 高清日韩中文字幕在线| 日韩视频在线欧美| 亚洲国产欧美人成| 国产伦理片在线播放av一区| 国产高清有码在线观看视频| 亚洲成色77777| 丰满少妇做爰视频| 欧美xxⅹ黑人| 国产中年淑女户外野战色| 欧美亚洲 丝袜 人妻 在线| 韩国高清视频一区二区三区| 哪个播放器可以免费观看大片| 99热这里只有精品一区| 亚洲av.av天堂| 男女那种视频在线观看| 久久久国产一区二区| 成人午夜精彩视频在线观看| 国产亚洲最大av| kizo精华| 精品少妇久久久久久888优播| 成人高潮视频无遮挡免费网站| 一二三四中文在线观看免费高清| 免费av不卡在线播放| 亚洲综合精品二区| 成人毛片60女人毛片免费| 麻豆成人午夜福利视频| 日日啪夜夜撸| 久久久久久久大尺度免费视频| 久久精品国产自在天天线| av线在线观看网站| 777米奇影视久久| 午夜免费观看性视频| 国产精品精品国产色婷婷| 精品少妇黑人巨大在线播放| 国产成人a∨麻豆精品| 人体艺术视频欧美日本| av女优亚洲男人天堂| 亚洲激情五月婷婷啪啪| 男人狂女人下面高潮的视频| 美女国产视频在线观看| 一级毛片aaaaaa免费看小| 国产精品精品国产色婷婷| 九草在线视频观看| 久久久久九九精品影院| 久久久久久九九精品二区国产| 熟女人妻精品中文字幕| 亚洲熟女精品中文字幕| 国产乱人偷精品视频| 亚州av有码| 人妻 亚洲 视频| 欧美性感艳星| 一个人看的www免费观看视频| 一级毛片我不卡| 午夜福利在线观看免费完整高清在| 久久久久精品性色| 黄片无遮挡物在线观看| 国产精品国产三级国产专区5o| 97人妻精品一区二区三区麻豆| 日日啪夜夜爽| 国产黄a三级三级三级人| 欧美老熟妇乱子伦牲交| 国产免费视频播放在线视频| 黄色日韩在线| 国产老妇伦熟女老妇高清| 亚洲一区二区三区欧美精品 | 免费av毛片视频| 欧美一级a爱片免费观看看| 一级a做视频免费观看| 尾随美女入室| 欧美成人a在线观看| 天堂中文最新版在线下载 | 国产熟女欧美一区二区| 国产黄色视频一区二区在线观看| 亚洲天堂av无毛| av线在线观看网站| 亚洲内射少妇av| 人妻一区二区av| 欧美成人一区二区免费高清观看| 中文天堂在线官网| 婷婷色av中文字幕| 18禁裸乳无遮挡动漫免费视频 | 69人妻影院| 亚洲成人av在线免费| av女优亚洲男人天堂| 精品人妻视频免费看| 欧美高清性xxxxhd video| 国产精品人妻久久久影院| 人人妻人人看人人澡| 国产av国产精品国产| 永久网站在线| 国产亚洲一区二区精品| 久久99热这里只有精品18| 午夜精品一区二区三区免费看| av在线天堂中文字幕| 网址你懂的国产日韩在线| 国内精品宾馆在线| 免费看a级黄色片| 亚洲av在线观看美女高潮| 国产av不卡久久| 欧美人与善性xxx| 亚洲精品影视一区二区三区av| 边亲边吃奶的免费视频| 美女视频免费永久观看网站| 日韩大片免费观看网站| 免费av观看视频| 久久午夜福利片| 国产爱豆传媒在线观看| 中文字幕制服av| 亚洲自偷自拍三级| 特级一级黄色大片| 99久国产av精品国产电影| 2021天堂中文幕一二区在线观| 日本三级黄在线观看| 日韩av免费高清视频| 内射极品少妇av片p| 亚洲va在线va天堂va国产| 免费高清在线观看视频在线观看| 新久久久久国产一级毛片| 久久久精品94久久精品| 99久久九九国产精品国产免费| 日韩亚洲欧美综合| 国产 一区精品| 亚洲在线观看片| 免费大片18禁| 欧美日韩一区二区视频在线观看视频在线 | 蜜桃亚洲精品一区二区三区| 久久99热这里只有精品18| 日韩欧美一区视频在线观看 | 久久精品久久久久久噜噜老黄| 免费人成在线观看视频色| 亚洲欧美日韩卡通动漫| 国产永久视频网站| 嘟嘟电影网在线观看| 久久精品国产自在天天线| 别揉我奶头 嗯啊视频| 国产成年人精品一区二区| 日韩一区二区视频免费看| 啦啦啦中文免费视频观看日本| 大话2 男鬼变身卡| 亚洲av不卡在线观看| 一级a做视频免费观看| 国产白丝娇喘喷水9色精品| 亚洲人与动物交配视频| 亚洲国产精品专区欧美| 尾随美女入室| 99久国产av精品国产电影| 哪个播放器可以免费观看大片| 夜夜爽夜夜爽视频| 亚洲色图综合在线观看| 22中文网久久字幕| 欧美成人午夜免费资源| 国产高清国产精品国产三级 | 精品午夜福利在线看| 久久久久久久久久成人| 国产片特级美女逼逼视频| 免费播放大片免费观看视频在线观看| 小蜜桃在线观看免费完整版高清| 亚洲精品影视一区二区三区av| 国产黄色免费在线视频| 国产色爽女视频免费观看| 精品少妇久久久久久888优播| 午夜福利网站1000一区二区三区| 国产爽快片一区二区三区| 91久久精品国产一区二区三区| 精品国产露脸久久av麻豆| 成人二区视频| 日韩大片免费观看网站| 天天一区二区日本电影三级| 熟女人妻精品中文字幕| 99热网站在线观看| 欧美+日韩+精品| 精品一区二区三区视频在线| 亚洲美女视频黄频| av在线亚洲专区| 在线 av 中文字幕| 草草在线视频免费看| 国产成人午夜福利电影在线观看| 男插女下体视频免费在线播放| 亚洲欧美日韩无卡精品| 国产成人精品一,二区| 亚洲aⅴ乱码一区二区在线播放| 国产永久视频网站| 乱码一卡2卡4卡精品| 91在线精品国自产拍蜜月| 国产永久视频网站| 国产亚洲av片在线观看秒播厂| 在线观看美女被高潮喷水网站| 国产女主播在线喷水免费视频网站| 日本三级黄在线观看| 欧美一区二区亚洲| 两个人的视频大全免费| 亚洲不卡免费看| 一级毛片久久久久久久久女| 两个人的视频大全免费| 伊人久久国产一区二区| 久久久久久久精品精品| 欧美精品人与动牲交sv欧美| 高清在线视频一区二区三区| 精品少妇久久久久久888优播| 日韩av不卡免费在线播放| 丝袜喷水一区| 国产免费视频播放在线视频| 久久99精品国语久久久| 国产淫语在线视频| 最后的刺客免费高清国语| 精华霜和精华液先用哪个| 波多野结衣巨乳人妻|