• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fluorescent MOF-based nanozymes for discrimination of phenylenediamine isomers and ratiometric sensing of o-phenylenediamine

    2022-06-20 06:21:46YinghuiXiaKunmingSunYaNanZuoShuyunZhuXianEnZhao
    Chinese Chemical Letters 2022年4期

    Yinghui Xia,Kunming Sun,Ya-Nan Zuo,Shuyun Zhu,Xian-En Zhao

    School of Chemistry and Chemical Engineering,Qufu Normal University,Qufu 273165,China

    ABSTRACT Although peroxidase-like nanozymes have made great progress in bioanalysis,few current nanozymebased biosensors are constructed for discriminating isomers of organic compounds.Herein,fluorescent metal-organic framework(MOF)-based nanozyme is utilized for phenylenediamine isomers discrimination and detection.NH2-MIL-101(Fe),as a member of Fe-based MOFs,functions as not only fluorescent indicator but also peroxidase mimics.In the presence of H2O2,NH2-MIL-101(Fe)can catalyze the oxidation of o-phenylenediamine(OPD)and p-phenylenediamine(PPD)into their corresponding oxidation products(OPDox and PPDox),which in turn quench its intrinsic fluorescence at 445 nm via inner filter effect(IFE).Differently,a new fluorescence peak at 574 nm is observed for OPDox.Thus,a ratiometric fluorescence method for the detection of OPD can be designed with the fluorescence intensity ratio F574/F445 as readout.This proposed strategy displays excellent discrimination ability for three phenylenediamines and may open new applications of MOFs in environmental science.

    Keywords:Bifunctional MOF Nanozyme Photoluminescence Aromatic diamine isomers Ratiometric fluorescence

    Bifunctional NH2-MIL-101(Fe)was utilized for phenylenediamine isomers discrimination and detection for the first time.

    Discriminating structural isomers of organic compounds have always been a challenging task in environmental fields because they possess similar physical and chemical properties resulting from the subtle distinctions in the structures[1–3].o-Phenylenediamine(OPD),m-phenylenediamine(MPD),andpphenylenediamine(PPD)are three isomers of phenylenediamines that have been used as precursors in various fields including plastics production,pharmaceuticals and industrial dyes[4,5].However,their damages to the human health and environment upon prolonged exposure are different.OPD is a highly toxic and carcinogenic environmental pollutant[6,7].PPD can cause various immediate allergic reactions[8].MPD does not lead to obvious harmful effects.A number of methods have been applied for the discrimination of phenylenediamines such as chromatography[9,10],chromatography-mass spectrometry[11,12]and capillary electrophoresis[13].These approaches can realize the detection of three phenylenediamines at the same time,but they need complicated sample pretreatments and high operation cost.

    As an alternative,fluorescence strategies have drawn wide interest owing to their simplicity,easy operation and high sensitivity[14,15].For example,Lai and coworkers synthesized the fluorescent quinoxaline through a tandem reaction for the detection of OPD[16].Ngeontae’s group designed a fluorometric sensor for PPD based on alizarin-boronic acid adduct[17].Wang’s group constructed a fluorescent sensor for PPD on the basis of aminealdehyde condensation reaction by using 1-pyrenecarboxaldehyde as a probe[18].Although these methods exhibit high sensitivity,they analyze only one phenylenediamine isomer.It still remains a great challenge to design a fluorescence strategy for the identification and detection of the three phenylenediamines.Moreover,these strategies are based on single signal output,and the results are influenced easily by excitation light source and external environmental conditions.Fortunately,the ratiometric fluorescent strategy,which is based on dual-signal measurement simultaneously,can overcome such drawbacks[19,20].Fluorescent nanomaterials hold great promise to construct ratiometric assays[21–23].Generally speaking,most nanoprobe-based ratiometric systems are composed of two different kinds of nanoprobes.Undoubtedly,the synthesis procedures for two different kinds of nanomaterials are complex and time-consuming.Thus,some scientists shift their focus to the design and synthesis of bifunctional fluorophores.

    Fig.1.Discrimination of phenylenediamine isomers based on fluorescent NH2-MIL-101(Fe)-based nanozyme.

    Fluorescent nanozymes can function as not only fluorescence reporters but also peroxidase mimics,which can catalyze the oxidation of nonfluorescent substate into luminophore with the assistance of H2O2.Thus,these fluorescent nanozymes combined with substrate of peroxidase can display dual-emission with single excitation.Up to date,various fluorescent nanozymes including functional carbon dots(CDs)[24],graphitic carbon nitride(C3N4)[25,26],gold nanoclusters(AuNCs)[27]and copper nanoclusters(CuNCs)[28]have been used to construct ratiometric assays.However,the research about fluorescent nanozymes is in the embryo stage.It is necessary to design novel fluorescent nanozymes and apply them in ratiometric sensing.

    Metal-organic frameworks(MOFs)are highly porous materials assembled by metal clusters and organic ligands which endow them with multiple functions[29–31].The usage of organic ligands can make MOFs attractive optical properties while the unsaturated metallic nodes allow MOFs to exhibit excellent biomimetic catalytic activity[32,33].It has been reported that NH2-MIL-101(Fe)exhibits two functions,in which the 2-aminoterephthalic acid ligand(1,4-BDC-NH2)and Fe node make the framework a blue photoluminescence and peroxidase-mimetic catalytic activity,respectively.Bifunctional NH2-MIL-101(Fe)-based ratiometric fluorescence assays for pesticide[34]and acid phosphatase activity[35]have been developed.However,no fluorescence sensor has been developed for discriminating phenylenediamine isomers and ratiometric detection of OPD with bifunctional NH2-MIL-101(Fe).

    Here,we fabricate a fluorescence sensing platform to discriminate three aromatic amines(OPD,MPD,and PPD)and detect OPD ratiometrically with bifunctional MOF(Fig.1).The NH2-MIL-101(Fe)exhibits an intrinsic fluorescence at 445 nm ascribed to 1,4-BDC-NH2linker.Simultaneously,the Fe-O clusters endow NH2-MIL-101(Fe)with peroxidase-like activity to activate H2O2to produce·OH radicals,which oxidize colorless OPD into its oxidized products(OPDox)with strong fluorescence emission at 574 nm.The generated OPDox can in turn quench the fluorescence of NH2-MIL-101(Fe)viainner filter effect(IFE).WithF574/F445as readout,OPD can be detected ratiometrically.PPD can be oxidized by produced·OH to its oxidized form(PPDox),which just quenches the fluorescence of NH2-MIL-101(Fe)viaIFE without the generation of new emission peak.The introduction of MPD cannot induce obvious change for the fluorescence of NH2-MIL-101(Fe).Thus,OPD,MPD and PPD can be discriminated effectively with fluorescent NH2-MIL-101(Fe)-based nanozyme.

    NH2-MIL-101(Fe)was synthesized by typical solvothermal process according to the previous paper[34,35].The preparation process of NH2-MIL-101(Fe)can be found in Supporting Information.Fig.2A shows the X-ray diffraction(XRD)characteristic peaks of the obtained NH2-MIL-101(Fe)are in agreement with a simulation of MIL-101[36].Scanning electron microscopy(SEM)image shows that NH2-MIL-101(Fe)displays a typical octahedral morphology with a diameter around 400 nm(Fig.2B).Fig.S1(Supporting information)shows the FT-IR spectra of both NH2-MIL-101(Fe)and 1,4-BDC-NH2.Two peaks at 3400 cm-1are observed ascribed to symmetrical and asymmetrical stretching vibrations of amine[37].The peak at 1651 cm-1indicates the presence of carboxyl group.In comparison with ligand,a peak at 571 cm-1indicates the existence of Fe-O bond in MOFs.The full X-ray photoelectron spectra(XPS)shows that NH2-MIL-101(Fe)is composed of Fe,N,O and C(Fig.2C).The Fe 2p XPS indicates that the Fe element is composed of Fe2+and Fe3+(Fig.2D).This Fe3+/Fe2+redox endows NH2-MIL-101(Fe)with peroxidase-like activity[34].

    It is supposed that NH2-MIL-101(Fe)is photoluminescent ascribed to the ligand.As expected,NH2-MIL-101(Fe)exhibits a strong fluorescence at 445 nm which is consistent with that of 1,4-BDC-NH2(Fig.S2A in Supporting information).The results indicate that the fluorescence property of NH2-MIL-101(Fe)derives from ligand.Moreover,the fluorescence emissions of NH2-MIL-101(Fe)under different excitation wavelengths were investigated.The fluorescence intensity decreases gradually with increasing excitation wavelengths from 360 nm to 400 nm(Fig.S2B in Supporting information),which is consistent with the previous report[34].The feasibility for discriminating phenylenediamines with fluorescent NH2-MIL-101(Fe)-based nanozymes was examined.As presented in Fig.3A,only NH2-MIL-101(Fe)exhibits a blue emission at 445 nm upon exciting at 375 nm(curve a,vial a).After introducing H2O2and OPD,the emission signal at 445 nm decreases while a new emission ascribed to OPDox appears at 574 nm(curve b).The solution exhibits orange-yellow fluorescence under ultraviolet light(vial b).The emission at 445 nm is quenched obviously without the appearance of new peak with H2O2and PPD(curve c,vial c).However,the introduction of H2O2and MPD causes slight change for the emission of NH2-MIL-101(Fe)(curve d,vial d).In contrast,the emission signals of MOF keep almost unchanged with any phenylenediamines(Fig.S3 in Supporting information).

    Fig.2.(A)XRD profiles of NH2-MIL-101(Fe)and simulated MIL-101(Fe).(B)SEM image of NH2-MIL-101(Fe).(C)and(D)show the full XPS and Fe 2p XPS of NH2-MIL-101(Fe),respectively.

    Fig.3.(A)Fluorescence emission spectra of NH2-MIL-101(Fe)(a)and NH2-MIL-101(Fe)in the presence of H2O2 and OPD(b),H2O2 and PPD(c),and H2O2 and MPD(d).Inset:the corresponding photos under ultraviolet light.(B)UV-vis spectra of H2O2+OPD(a),H2O2+PPD(b),H2O2+MPD(c),H2O2+OPD+NH2-MIL-101(Fe)(d),H2O2+PPD+NH2-MIL-101(Fe)(e)and H2O2+MPD+NH2-MIL-101(Fe)(f).Inset:the corresponding photos under daylight.(C)UV-vis absorption spectra of OPDox as well as PPDox and emission spectrum of NH2-MIL-101(Fe)under the excitation wavelength of 375 nm.(D)PL decay of NH2-MIL-101(Fe)in the absence and presence of H2O2-OPD and H2O2-PPD.

    UV-vis absorption spectra were studied to further prove the discrimination of phenylenediamines with NH2-MIL-101(Fe)-based nanozymes(Fig.3B).Upon the addition of H2O2,a weak absorption peak at 435 nm for OPD and 490 nm for PPD is observed,corresponding to OPDox and PPDox,respectively.In contrast,there is no obvious absorption peak for MPD with the coexistence of H2O2.Furthermore,when NH2-MIL-101(Fe)coexists with OPD+H2O2/PPD+H2O2,absorbance at both 435 nm and 490 nm increases remarkably.However,there is no obvious absorption in the systems of NH2-MIL-101(Fe)+OPD,NH2-MIL-101(Fe)+PPD,NH2-MIL-101(Fe)+MPD and NH2-MIL-101(Fe)+H2O2(Fig.S4 in Supporting information).These results indicated NH2-MIL-101(Fe)can catalyze the oxidation of OPD and PPD easily with the assistance of H2O2[38,39].Experiments were performed to further prove the generation of hydroxyl radicals(·OH)during the catalytic oxidation.As a scavenger for·OH radicals,thiourea is added into the NH2-MIL-101(Fe)-H2O2-OPD system.As presented in Fig.S5(Supporting information),the emission signal at 574 nm decreases gradually with the increasing concentration of thiourea,showing that·OH is indeed produced in this system and involves in phenylenediamine oxidation reaction.All the results further indicate that the three phenylenediamines can be discriminated with fluorescent NH2-MIL-101(Fe)-based nanozymes.

    Then,we investigated the response mechanism of NH2-MIL-101(Fe)-H2O2system for phenylenediamines.As presented in Fig.3C,the absorption spectra of both OPDox and PPDox exhibit a large overlap with the emission spectrum of NH2-MIL-101(Fe).Furthermore,the fluorescent lifetime(τ)measurements were performed to investigate their interaction with the results exhibited in Fig.3D.The fluorescence decay profile of NH2-MIL-101(Fe)changes slightly with OPDox/PPDox.Theτof NH2-MIL-101(Fe)in the absence and presence of OPDox and PPDox is 14.1 ± 0.24 ns,13.77± 0.37 ns and 13.68 ± 0.25 ns,respectively.Thus,energy or electron transfer is excluded.All the above results meet the conditions of inner filter effect(IFE).Therefore,we conclude that NH2-MIL-101(Fe)is quenched by OPDox/PPDoxviaIFE.

    Fig.4.(A)Fluorescence emission spectra of NH2-MIL-101(Fe)-H2O2 system with varied concentrations of OPD(0,5,20,50,100,200,250,300,350,400,500,600,700,800,1000,1200 μmol/L).(B)Linear relationship between F574/F445 and OPD concentration.(C)Fluorescence emission spectra of NH2-MIL-101(Fe)-H2O2 system with varied concentrations of PPD(0,5,10,15,20,30,40,55,75,100,200,300,400,500,600,700,800,900,1000 μmol/L).(D)Linear relationship between ΔF and PPD concentration.

    To improve the sensitivity of this assay for OPD,several factors such as reaction time,pH,concentration of H2O2and amount of NH2-MIL-101(Fe)were optimized.The best reaction time,pH,concentration of H2O2and amount of NH2-MIL-101(Fe)is 60 min,5.0,20 mmol/L,and 0.5 μg/mL,respectively(Fig.S6 in Supporting information).Under optimal conditions,with the increasing concentration of OPD,the emission signals at 445 nm decrease whereas those at 574 nm increase(Fig.4A).TheF574/F445is proportional to the concentration of OPD from 5 μmol/L to 1200 μmol/L with the regression equation ofF574/F445= 0.0995+0.00324COPD(R2= 0.993)(Fig.4B).The limit of detection(LOD)is calculated to be 1.5 μmol/L(S/N = 3).Similarly,the fluorescence at 445 nm decreases gradually when PPD concentration increases(Fig.4C).With theΔF=F0-F(F0andFis the fluorescence intensity of NH2-MIL-101(Fe)-H2O2system without and with PPD,respectively)as readout,two linear calibration curves are achieved for PPD in the range of 5-100 μmol/L(R2= 0.998)and 100-1000 μmol/L(R2= 0.990),respectively(Fig.4D).The LOD for PPD is calculated to be 1.0 μmol/L(S/N = 3).Compared with colorimetric methods for discriminating phenylenediamine isomers,this fluorescent method has wider linear range and lower LOD[39,40](Table S1 in Supporting information).Moreover,most fluorescent methods can detect only one phenylenediamine[4,16,17,41]while this strategy can realize the detection of OPD and PPD(Table S1).

    The reproducibility of this assay was investigated by repetitive analysis of OPD and PPD at the identical and different batches.The relative standard deviations(RSDs)of the intra-assay were 2.34%(n = 5)for 0.5 mmol/L OPD and 3.12%(n = 5)for 0.5 mmol/L PPD at the same-batch sensors.The batch-to-batch reproducibility was also investigated by six parallel prepared NH2-MIL-101(Fe).The RSDs were 4.6% and 5.1% for 0.5 mmol/L OPD and 0.5 mmol/L PPD,respectively.These results demonstrate the satisfactory reproducibility of the designed assay.In addition,the stability of this assay was evaluated.The fluorescence responses of NH2-MIL-101(Fe)towards OPD and PPD with the same concentration(0.5 mmol/L)were recorded after the NH2-MIL-101(Fe)was kept at 4 °C for 60 days.The assay retains 97% and 95% of its initial responses for OPD and PPD,respectively,indicating that this assay exhibits good stability.

    To examine the selectivity of this strategy for sensing OPD and PPD,control experiments were carried out using potential interferences including Fe3+,Ca2+,Zn2+,NO3-,SO42-,tryptophan(Trp),tyrosine(Tyr),phenylalanine(Phe),ascorbic acid(AA),glutathione(GSH),cysteine(Cys),phenol,3-nitrophenol(3-NP),4-aminophenol(4-AP),catechol(CC),resorcinol(RC),hydroquinone(HQ),benzaldehyde(BA),aniline,melamine(MA),MPD.As presented in Fig.S7A(Supporting information),these interferences cause negligible changes forF574/F445while theF574/F445increases greatly in the presence of OPD.Interference experiments were also performed with the results shown in Fig.S7B(Supporting information).F574/F445values for OPD detection remain unchanged in the presence of potential interferences except PPD.Fig.S7C(Supporting information)shows that theΔFvalues caused by these interferences are much lower than that of PPD.Similarly,the interference experiments show thatΔFvalues for PPD detection change negligibly with potential interferences except OPD.Overall,these results demonstrate that the bifunctional NH2-MIL-101(Fe)-based fluorescent assays exhibit an acceptable selectivity towards OPD and PPD.Nevertheless,if OPD and PPD coexist in a sample,they interfere with each other for the detection.

    To evaluate the practical performance of this strategy,OPD and PPD in Weishan Lake water were analyzed by standard addition method.The detailed analysis process was provided in Supporting information.As shown in Table S2(Supporting information),the recoveries range from 94.4% to 106.9% for OPD and 93.6% to 96.2%for PPD with the RSD less than 4.0%,revealing the satisfactory reliability and accuracy.The results indicate that this method possesses the great promise in the real sample analysis.

    In summary,we have demonstrated the usage of bifunctional NH2-MIL-101(Fe)for phenylenediamine isomers discrimination and detection for the first time.The NH2-MIL-101(Fe)not only exhibits an intrinsic blue fluorescence ascribed to the fluorescent ligand but also excellent peroxidase-mimic activity due to the presence of Fe node.With the assistance of H2O2,OPD and PPD can be oxidized by NH2-MIL-101(Fe)into their corresponding products,which quench the fluorescence of NH2-MIL-101(Fe)through IFE.In addition,a new emission at 574 nm emerges for OPDox.Therefore,a ratiometric fluorescence assay for OPD is developed.The introduction of MPD cannot induce obvious change for the fluorescence of NH2-MIL-101(Fe).Thus,the three phenylenediamines can be discriminated with NH2-MIL-101(Fe)-H2O2system.This fabricated nanosensor has been successfully utilized to identify OPD and PPD in water samples.Such a new strategy can enable fluorescence MOF-based nanozyme promising applications in environmental monitoring.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work is kindly supported by the National Natural Science Foundation of China(No.22076097)and the Natural Science Foundation of Shandong Province(No.ZR2020MB066).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.08.083.

    日韩欧美国产在线观看| av国产免费在线观看| 中文字幕人妻丝袜一区二区| 久久精品91无色码中文字幕| 亚洲久久久久久中文字幕| 中文资源天堂在线| 成人国产一区最新在线观看| 亚洲狠狠婷婷综合久久图片| 国产欧美日韩一区二区精品| 午夜精品一区二区三区免费看| 日本成人三级电影网站| 一级a爱片免费观看的视频| 嫩草影院精品99| 别揉我奶头~嗯~啊~动态视频| 国产aⅴ精品一区二区三区波| 国产毛片a区久久久久| 日韩欧美精品v在线| 国产一区二区激情短视频| 久久性视频一级片| www.熟女人妻精品国产| 国产高清三级在线| 熟女少妇亚洲综合色aaa.| 亚洲18禁久久av| 日韩免费av在线播放| 日本熟妇午夜| 成人特级黄色片久久久久久久| 国产99白浆流出| 日韩人妻高清精品专区| 国产精品久久久久久久电影 | 久久人人精品亚洲av| avwww免费| 久久这里只有精品中国| 欧美在线黄色| 久久这里只有精品中国| 日韩欧美一区二区三区在线观看| 久久亚洲精品不卡| 18禁国产床啪视频网站| 国产一区二区在线av高清观看| 俄罗斯特黄特色一大片| 狂野欧美激情性xxxx| 国产亚洲精品一区二区www| 此物有八面人人有两片| 天美传媒精品一区二区| 日韩欧美在线二视频| 老熟妇乱子伦视频在线观看| 亚洲片人在线观看| 一本久久中文字幕| 成人欧美大片| 婷婷精品国产亚洲av在线| 国产精品三级大全| 最新在线观看一区二区三区| 国产精品国产高清国产av| 色噜噜av男人的天堂激情| 最近最新中文字幕大全免费视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 全区人妻精品视频| www.色视频.com| 亚洲五月天丁香| 欧美3d第一页| 久久久国产成人精品二区| 19禁男女啪啪无遮挡网站| 老汉色av国产亚洲站长工具| 国产高清视频在线观看网站| 有码 亚洲区| 久久久久久国产a免费观看| 淫秽高清视频在线观看| 综合色av麻豆| 91在线精品国自产拍蜜月 | 日日夜夜操网爽| 国产色婷婷99| 中文字幕久久专区| 18+在线观看网站| 伊人久久精品亚洲午夜| 九九在线视频观看精品| 99国产极品粉嫩在线观看| 国产亚洲欧美在线一区二区| 国产成人欧美在线观看| 一级黄色大片毛片| 少妇的逼好多水| 别揉我奶头~嗯~啊~动态视频| 亚洲av中文字字幕乱码综合| 亚洲国产精品999在线| 国产黄色小视频在线观看| 亚洲欧美精品综合久久99| 亚洲欧美日韩东京热| 少妇丰满av| 亚洲五月天丁香| 国产 一区 欧美 日韩| 一区二区三区激情视频| 综合色av麻豆| 欧美国产日韩亚洲一区| 亚洲中文字幕一区二区三区有码在线看| 亚洲成人中文字幕在线播放| 亚洲无线在线观看| 午夜福利在线观看吧| 国产亚洲欧美98| 看片在线看免费视频| 手机成人av网站| 日韩成人在线观看一区二区三区| av国产免费在线观看| 床上黄色一级片| 国内毛片毛片毛片毛片毛片| 午夜免费激情av| 特大巨黑吊av在线直播| 国产亚洲精品av在线| 一区二区三区高清视频在线| 久久亚洲精品不卡| 欧美激情在线99| 两人在一起打扑克的视频| 99热这里只有是精品50| 天天一区二区日本电影三级| 不卡一级毛片| 日本五十路高清| 日本 av在线| 色综合站精品国产| 亚洲成人久久爱视频| 亚洲精品乱码久久久v下载方式 | 国产欧美日韩一区二区三| 90打野战视频偷拍视频| 中亚洲国语对白在线视频| 在线观看免费午夜福利视频| 精品久久久久久成人av| 波多野结衣巨乳人妻| 国产成+人综合+亚洲专区| 亚洲精品在线美女| 色噜噜av男人的天堂激情| www.999成人在线观看| 欧美一区二区亚洲| 亚洲精品影视一区二区三区av| 可以在线观看的亚洲视频| 色综合欧美亚洲国产小说| 国产又黄又爽又无遮挡在线| 一区二区三区国产精品乱码| 九九在线视频观看精品| 五月伊人婷婷丁香| 长腿黑丝高跟| 嫁个100分男人电影在线观看| 色尼玛亚洲综合影院| 99精品在免费线老司机午夜| 亚洲精品一卡2卡三卡4卡5卡| 在线观看av片永久免费下载| 日本五十路高清| 婷婷六月久久综合丁香| 露出奶头的视频| 狠狠狠狠99中文字幕| 久久九九热精品免费| 日本撒尿小便嘘嘘汇集6| 最近最新中文字幕大全电影3| 亚洲在线观看片| 国产伦一二天堂av在线观看| 精品国产超薄肉色丝袜足j| 午夜免费成人在线视频| 19禁男女啪啪无遮挡网站| 日韩亚洲欧美综合| 亚洲avbb在线观看| 国产高清三级在线| 久久精品亚洲精品国产色婷小说| 国产午夜福利久久久久久| 最好的美女福利视频网| 日韩 欧美 亚洲 中文字幕| 久久精品影院6| 制服丝袜大香蕉在线| 欧美日韩福利视频一区二区| 老司机福利观看| 黑人欧美特级aaaaaa片| 久久久久国产精品人妻aⅴ院| 91麻豆精品激情在线观看国产| 日韩有码中文字幕| 变态另类成人亚洲欧美熟女| 深爱激情五月婷婷| 亚洲在线自拍视频| 在线视频色国产色| 麻豆成人午夜福利视频| 国产免费男女视频| 99在线人妻在线中文字幕| 97超级碰碰碰精品色视频在线观看| 国产精品国产高清国产av| 中文字幕人妻丝袜一区二区| 一卡2卡三卡四卡精品乱码亚洲| 午夜福利在线观看免费完整高清在 | 美女免费视频网站| 日本一二三区视频观看| 一个人看视频在线观看www免费 | 成人高潮视频无遮挡免费网站| 免费电影在线观看免费观看| 亚洲欧美精品综合久久99| 久久香蕉精品热| 久久久久久久午夜电影| 中文字幕人妻熟人妻熟丝袜美 | 精品午夜福利视频在线观看一区| 成人av一区二区三区在线看| 亚洲精品影视一区二区三区av| 欧美最黄视频在线播放免费| 国产蜜桃级精品一区二区三区| 在线观看日韩欧美| 小说图片视频综合网站| 欧美性猛交黑人性爽| 亚洲av电影不卡..在线观看| 日韩欧美国产一区二区入口| 青草久久国产| 欧美激情久久久久久爽电影| 国产精品爽爽va在线观看网站| 欧美中文综合在线视频| 国产爱豆传媒在线观看| 丝袜美腿在线中文| 成人精品一区二区免费| 岛国视频午夜一区免费看| 亚洲成a人片在线一区二区| 在线a可以看的网站| 90打野战视频偷拍视频| 夜夜躁狠狠躁天天躁| 欧美av亚洲av综合av国产av| 国产成人av教育| 老司机在亚洲福利影院| 久久久精品欧美日韩精品| 国产精品 欧美亚洲| 亚洲精品亚洲一区二区| 给我免费播放毛片高清在线观看| 99久久九九国产精品国产免费| 变态另类丝袜制服| 国产 一区 欧美 日韩| 午夜福利18| 一本久久中文字幕| 免费无遮挡裸体视频| 有码 亚洲区| 亚洲不卡免费看| 成人国产一区最新在线观看| 男人和女人高潮做爰伦理| 无限看片的www在线观看| 国产精品亚洲一级av第二区| 最近最新中文字幕大全免费视频| 在线播放无遮挡| 黄片小视频在线播放| 日本黄色片子视频| 伊人久久大香线蕉亚洲五| 亚洲精华国产精华精| netflix在线观看网站| 精品乱码久久久久久99久播| 亚洲第一欧美日韩一区二区三区| 成人国产一区最新在线观看| 麻豆国产av国片精品| 婷婷亚洲欧美| 亚洲av一区综合| 怎么达到女性高潮| 91麻豆精品激情在线观看国产| 最新在线观看一区二区三区| 97碰自拍视频| 在线观看日韩欧美| 999久久久精品免费观看国产| 日本a在线网址| 国产精品电影一区二区三区| 色吧在线观看| 亚洲第一欧美日韩一区二区三区| 99国产极品粉嫩在线观看| 免费观看的影片在线观看| 内射极品少妇av片p| 九色成人免费人妻av| svipshipincom国产片| av中文乱码字幕在线| 男人的好看免费观看在线视频| 又黄又粗又硬又大视频| 一个人免费在线观看的高清视频| 中文字幕久久专区| 岛国视频午夜一区免费看| 欧美另类亚洲清纯唯美| 色在线成人网| 亚洲成a人片在线一区二区| 亚洲一区二区三区色噜噜| 久久亚洲真实| 激情在线观看视频在线高清| 一个人免费在线观看电影| 国产激情偷乱视频一区二区| 岛国视频午夜一区免费看| 欧美日韩亚洲国产一区二区在线观看| 日韩欧美精品v在线| 操出白浆在线播放| 国产免费一级a男人的天堂| 夜夜爽天天搞| 搞女人的毛片| 最近视频中文字幕2019在线8| 怎么达到女性高潮| 丰满的人妻完整版| 日本在线视频免费播放| 久久亚洲精品不卡| 亚洲av电影不卡..在线观看| 精华霜和精华液先用哪个| 午夜激情福利司机影院| 中文字幕av成人在线电影| 免费观看的影片在线观看| 99久久九九国产精品国产免费| 听说在线观看完整版免费高清| 脱女人内裤的视频| 国产高清视频在线观看网站| xxx96com| 国产91精品成人一区二区三区| 色综合欧美亚洲国产小说| 日本五十路高清| 在线观看日韩欧美| 一区二区三区激情视频| 亚洲五月天丁香| 在线十欧美十亚洲十日本专区| 九九热线精品视视频播放| 夜夜躁狠狠躁天天躁| 精品国产美女av久久久久小说| 人妻久久中文字幕网| 日本五十路高清| 可以在线观看的亚洲视频| 国产一级毛片七仙女欲春2| 欧美成人一区二区免费高清观看| 网址你懂的国产日韩在线| 天美传媒精品一区二区| 一个人看视频在线观看www免费 | 日韩中文字幕欧美一区二区| 国模一区二区三区四区视频| 亚洲精品一卡2卡三卡4卡5卡| 国产高清有码在线观看视频| 一个人看视频在线观看www免费 | 成年女人看的毛片在线观看| 青草久久国产| 不卡一级毛片| 免费观看的影片在线观看| 久久国产精品影院| 国产精品久久视频播放| 成年版毛片免费区| 欧美成人a在线观看| 少妇熟女aⅴ在线视频| 欧美性感艳星| 国产成+人综合+亚洲专区| 国产一区二区三区在线臀色熟女| 在线播放无遮挡| 久久久久久久午夜电影| 午夜免费男女啪啪视频观看 | 国产免费男女视频| 一夜夜www| 欧美日韩国产亚洲二区| 一个人免费在线观看电影| 在线播放无遮挡| 成人特级av手机在线观看| 国产av麻豆久久久久久久| 免费高清视频大片| 免费观看精品视频网站| 亚洲熟妇熟女久久| 亚洲av中文字字幕乱码综合| 90打野战视频偷拍视频| 在线观看舔阴道视频| 久久久久久大精品| 亚洲午夜理论影院| 国产精品精品国产色婷婷| 少妇的逼水好多| 久久久久久久午夜电影| 亚洲成av人片在线播放无| 久久精品综合一区二区三区| 亚洲国产欧美网| 琪琪午夜伦伦电影理论片6080| 99热精品在线国产| 色综合站精品国产| 国产亚洲精品av在线| 欧美性猛交黑人性爽| 内地一区二区视频在线| 亚洲精品一区av在线观看| 老司机午夜十八禁免费视频| 老汉色∧v一级毛片| 少妇裸体淫交视频免费看高清| 18+在线观看网站| 淫秽高清视频在线观看| 国产伦一二天堂av在线观看| 国产高清有码在线观看视频| 国语自产精品视频在线第100页| 夜夜爽天天搞| 国产亚洲精品久久久久久毛片| 午夜老司机福利剧场| 黄色成人免费大全| 18禁裸乳无遮挡免费网站照片| 又紧又爽又黄一区二区| 毛片女人毛片| 午夜福利高清视频| 午夜激情欧美在线| 日本五十路高清| e午夜精品久久久久久久| av中文乱码字幕在线| 桃色一区二区三区在线观看| 亚洲成人中文字幕在线播放| 亚洲精品乱码久久久v下载方式 | 18+在线观看网站| 舔av片在线| 中文资源天堂在线| 亚洲七黄色美女视频| 国产精品乱码一区二三区的特点| 国产精品久久久久久人妻精品电影| 岛国在线观看网站| 欧美成人一区二区免费高清观看| 精品一区二区三区视频在线观看免费| 国产真实乱freesex| 在线观看av片永久免费下载| 桃色一区二区三区在线观看| 五月伊人婷婷丁香| 亚洲第一电影网av| 国产精品一区二区三区四区久久| 国产精品电影一区二区三区| 天天添夜夜摸| 成人高潮视频无遮挡免费网站| 欧美zozozo另类| 亚洲av五月六月丁香网| 午夜免费激情av| 日本黄大片高清| 亚洲人成电影免费在线| 最好的美女福利视频网| 欧美另类亚洲清纯唯美| 18禁国产床啪视频网站| 成人欧美大片| 欧美一区二区亚洲| 国产乱人伦免费视频| 在线观看午夜福利视频| 12—13女人毛片做爰片一| 欧美日韩福利视频一区二区| 国产野战对白在线观看| 亚洲国产中文字幕在线视频| 久久中文看片网| 怎么达到女性高潮| 天堂动漫精品| 国产伦精品一区二区三区四那| 丰满乱子伦码专区| 特级一级黄色大片| 欧美xxxx黑人xx丫x性爽| 夜夜看夜夜爽夜夜摸| 十八禁人妻一区二区| av在线蜜桃| 国产精品美女特级片免费视频播放器| 精品人妻1区二区| 国产单亲对白刺激| 色综合亚洲欧美另类图片| 久久久久久久亚洲中文字幕 | 国产成人aa在线观看| 亚洲专区中文字幕在线| www国产在线视频色| 亚洲片人在线观看| 亚洲在线观看片| 色综合站精品国产| 亚洲va日本ⅴa欧美va伊人久久| 欧美成人a在线观看| 亚洲 欧美 日韩 在线 免费| bbb黄色大片| 亚洲自拍偷在线| 首页视频小说图片口味搜索| 99久久精品热视频| 免费在线观看日本一区| 乱人视频在线观看| 国产精品99久久99久久久不卡| 黄片大片在线免费观看| 男人舔奶头视频| 国产精品久久久久久久久免 | www.熟女人妻精品国产| 国产伦精品一区二区三区四那| 国产老妇女一区| 一个人免费在线观看电影| 可以在线观看毛片的网站| 亚洲片人在线观看| 国产日本99.免费观看| 国产午夜福利久久久久久| 老鸭窝网址在线观看| 日韩国内少妇激情av| 欧美一区二区亚洲| 亚洲午夜理论影院| 国产精品日韩av在线免费观看| 国产成人av激情在线播放| 香蕉av资源在线| 国产久久久一区二区三区| 国产一区在线观看成人免费| 国产亚洲欧美98| 亚洲av成人不卡在线观看播放网| 99在线视频只有这里精品首页| 亚洲精品在线美女| 18禁裸乳无遮挡免费网站照片| 国产精品99久久99久久久不卡| 69av精品久久久久久| 久久精品亚洲精品国产色婷小说| 国产一区二区三区在线臀色熟女| 精品久久久久久久人妻蜜臀av| 床上黄色一级片| 亚洲人成网站高清观看| 亚洲18禁久久av| 国产亚洲精品av在线| 99久久无色码亚洲精品果冻| 国内精品美女久久久久久| av片东京热男人的天堂| 国产免费av片在线观看野外av| 99精品在免费线老司机午夜| 狠狠狠狠99中文字幕| 国产精品久久久久久久电影 | 色哟哟哟哟哟哟| 成年免费大片在线观看| 精品国产美女av久久久久小说| 日日摸夜夜添夜夜添小说| 超碰av人人做人人爽久久 | 天天添夜夜摸| 三级男女做爰猛烈吃奶摸视频| 欧美日韩福利视频一区二区| 99国产极品粉嫩在线观看| 国产成人av教育| 男人舔奶头视频| 一级黄片播放器| 男女午夜视频在线观看| 又爽又黄无遮挡网站| 国产真实伦视频高清在线观看 | 国产精品亚洲av一区麻豆| 国产蜜桃级精品一区二区三区| 啦啦啦观看免费观看视频高清| 90打野战视频偷拍视频| 国产精品1区2区在线观看.| 麻豆国产av国片精品| 日韩欧美精品v在线| 久久国产精品人妻蜜桃| 99国产综合亚洲精品| av福利片在线观看| 午夜激情福利司机影院| 国产蜜桃级精品一区二区三区| 国产伦精品一区二区三区四那| 亚洲av熟女| 欧美日韩黄片免| 成人鲁丝片一二三区免费| 丰满人妻一区二区三区视频av | 变态另类丝袜制服| 色老头精品视频在线观看| 久久久国产成人免费| av国产免费在线观看| 精品久久久久久久久久免费视频| 免费观看人在逋| 成人特级黄色片久久久久久久| e午夜精品久久久久久久| 国产私拍福利视频在线观看| 久久久久免费精品人妻一区二区| 日韩高清综合在线| 亚洲美女黄片视频| 亚洲在线自拍视频| а√天堂www在线а√下载| 国内精品美女久久久久久| 成年女人毛片免费观看观看9| 美女黄网站色视频| 搞女人的毛片| 1024手机看黄色片| 亚洲成人中文字幕在线播放| 怎么达到女性高潮| 日韩av在线大香蕉| 嫩草影视91久久| svipshipincom国产片| 久久久久久大精品| 欧美区成人在线视频| e午夜精品久久久久久久| 丰满人妻一区二区三区视频av | 女生性感内裤真人,穿戴方法视频| 婷婷亚洲欧美| 51国产日韩欧美| 日韩欧美一区二区三区在线观看| 91在线观看av| 久久性视频一级片| 啦啦啦免费观看视频1| 精品国内亚洲2022精品成人| 亚洲av熟女| 亚洲专区中文字幕在线| 在线播放国产精品三级| 深爱激情五月婷婷| 三级国产精品欧美在线观看| 精品99又大又爽又粗少妇毛片 | 亚洲精品色激情综合| 亚洲va日本ⅴa欧美va伊人久久| 最近在线观看免费完整版| 欧美bdsm另类| 中文字幕av在线有码专区| 在线观看午夜福利视频| 精品久久久久久,| 午夜精品一区二区三区免费看| 亚洲欧美日韩卡通动漫| 中文字幕av成人在线电影| 尤物成人国产欧美一区二区三区| 深爱激情五月婷婷| 国产免费一级a男人的天堂| 国产精品久久电影中文字幕| 一个人免费在线观看的高清视频| 亚洲成人免费电影在线观看| 99久国产av精品| 变态另类丝袜制服| 变态另类成人亚洲欧美熟女| 欧美丝袜亚洲另类 | 午夜a级毛片| 亚洲国产欧美网| 国产亚洲精品久久久com| 中文字幕人成人乱码亚洲影| 天堂av国产一区二区熟女人妻| 在线观看午夜福利视频| 少妇人妻一区二区三区视频| 国产探花在线观看一区二区| 中亚洲国语对白在线视频| 日本与韩国留学比较| 一级毛片女人18水好多| 老鸭窝网址在线观看| 欧美日本亚洲视频在线播放| 国产成人a区在线观看| 色播亚洲综合网| 国产男靠女视频免费网站| 国产色婷婷99| 色精品久久人妻99蜜桃| 无遮挡黄片免费观看| 99精品在免费线老司机午夜| 国模一区二区三区四区视频| 欧美av亚洲av综合av国产av| 天堂av国产一区二区熟女人妻| 俺也久久电影网| 欧美在线黄色| 在线播放无遮挡| 久9热在线精品视频| 丰满的人妻完整版| 99国产精品一区二区三区| 美女 人体艺术 gogo| 五月玫瑰六月丁香| 国产精品1区2区在线观看.|