• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    NiCu bimetallic catalysts derived from layered double hydroxides for hydroconversion of n-heptane

    2022-06-20 06:21:38YanruZhuMinghuanYangZhenZhangZheAnJianZhangXinShuJingHe
    Chinese Chemical Letters 2022年4期

    Yanru Zhu,Minghuan Yang,Zhen Zhang,Zhe An,Jian Zhang,Xin Shu,Jing He

    State Key Laboratory of Chemical Resource Engineering,Beijing Advanced Innovation Center for Soft Matter Science and Engineering,Beijing University of Chemical Technology,Beijing 100029,China

    ABSTRACT Supported NiCu bimetallic catalysts have been produced in-situ on commercial Al2O3 by using layered double hydroxides as precursors.The resulting catalysts show a uniform Ni and Cu distribution,thus providing good activity and selectivity in the reforming reaction of n-heptane.The catalytic performance has been found to depend on the Cu/Ni ratio,revealing the synergic catalysis between homogeneously dispersed Ni and Cu sites.The good catalysis of NiCu bimetallic catalysts makes it possible to partly or even completely replace Pt with NiCu bimetallic catalysts.

    Keywords:n-Heptane reforming NiCu bimetallic catalysts Synergic catalysis Uniform distribution Layered double hydroxides

    Supported Pt is a common catalyst for the catalytic reforming reaction[1–4].Considerable efforts have recently been dedicated to the development of low-cost and highly efficient nonplatinum reforming catalysts,and great progress has been made with tungsten carbide[5],Mo-based catalysts such as Mo2C[6],MoOxCy[7]and MoOx[8–10],as well as supported Ni[11–13]and Co[13]catalysts.The great challenges with non-platinum reforming catalysts originate from substantial hydrogenolysis and cracking reactions[14],which result in low isomerization selectivity.Increasing the dispersion of supported metals has been found to contribute to isomerization selectivity[15].For example,Ni-La/HY catalyst exhibits higher isomerization selectivity than Ni/HY in the hydroconversion ofn-C8because the metal dispersion has been improved by rare earth addition[15].Yet the reforming performance of non-noble metal catalyst has not been reported to reach that of Pt catalyst.The bimetallic catalyst,in which small amount of platinum is used together with non-noble metal components such as Ni[16,17]or Cu[18],is till now a good choice to obtain good activity and selectivity while reduce the cost of catalysts.For example,with proper Pt proportions,the Ni-Pt bimetallic catalysts afford higher activity and are more selective to di-branched alkanes than Pt monometallic catalyst in the hydroconversion ofn-C6reaction[17].The complete replacement of platinum with transition metals in the paraffin reforming process remains a great challenge.

    In this work,the feasibility to partly or even completely replace Pt with NiCu bimetallic catalyst has been demonstrated,with Ni and Cu in a highly homogeneous dispersion by using Ni and Cu containing layered double hydroxides as precursors.Layered double hydroxides(LDHs),a hydrotalcite-like compound,have been demonstrated to be excellent precursors for supported metal catalysts[19–23].This work reports the homogeneously dispersed Ni and Cu centers,which affords good activity and selectivity in the reforming reaction ofn-heptane.The NiCu bimetallic catalyst even provides higher activity than Pt catalyst while with comparable selectivity.

    The Ni and Cu containing ZnAl-LDHs precursors were preparedin situonγ-Al2O3support according to the reported method[24].The Cu/Ni molar ratios were controlled as 0.61,1.19,2.11 and 3.17 as determined by inductively coupled plasma optic emission spectrometer(ICP-OES)analysis(Table S1 in Supporting information).The Ni and Cu containing ZnAl-LDHs precursors were activated in the reactor by first calcining in the air at 550 °C and then reducing with H2flow at 500 °C.The resulting sample was denoted NiCux-ZnAl-LDO@Al2O3(x represents the Cu/Ni molar ratio).The reaction was initiated by introducingn-C7into the reactor,and the products were analysed on-line with a gas chromatograph.For comparison,the supported NiCu bimetallic catalyst with a Cu/Ni molar ratio of 1.14 was also prepared by incipient wetness impregnation method(denoted NiCu1.14/ZnAl-LDO@Al2O3),followed by the same calcination and reduction process as for NiCux-ZnAl-LDO@Al2O3.

    Fig.1.(A)XRD patterns of(a)γ-Al2O3,(b)NiCu1.19-ZnAl-LDHs@Al2O3 with a Cu/Ni molar ratio of 1.19;(B)SEM images of the surface;(C)the cross section of the NiCu1.19-ZnAl-LDHs@Al2O3;and(D)SEM images of NiCu1.19-ZnAl-LDO@Al2O3 obtained from NiCu1.19-ZnAl-LDHs@Al2O3.

    The powder X-ray diffraction(XRD)patterns pattern for each NiCux-ZnAl-LDHs@Al2O3sample(Fig.1A and Fig.S1 in Supporting information)clearly illustrates the[003],[006]and[012]reflections characteristic of the structure of hydrotalcites[25],indicating the formation of LDHs on theγ-Al2O3support.No other crystalline phases were detected in addition toγ-Al2O3support and LDHs.Flake-shaped NiCuZnAl-LDHs crystallites can be observed from the SEM image(Fig.1B)as growing in interlaced direction on the surface of Al2O3.As can be seen from the cross section of NiCuZnAl-LDHs@Al2O3(Fig.1C),LDHs phase grows on the Al2O3surface in a thickness of about 292 nm,with the edges of LDH slabs tightly adhered to Al2O3spheres.The growths of LDHs and the corresponding LDO results in the specific surface area increasing from 187 m2/g(forγ-Al2O3)to 218 m2/g(for NiCu1.19-ZnAl-LDHs@Al2O3)or 212 m2/g(for NiCu1.19-ZnAl-LDO@Al2O3),probably because the LDHs or LDO crystallites raise the surface roughness.The calcination and reduction cause no visible destruction of the LDH morphology or change in surface area on Al2O3surface,and the resulting NiCu1.19-ZnAl-LDO@Al2O3well retains the interlaced arrangement of flake-shaped slabs(Fig.1D).

    The transmission electron microscopy(TEM)image(Fig.2A)shows that the metal nanoparticles are homogeneously dispersed in NiCu1.19-ZnAl-LDO@Al2O3.The particles are in a narrow size distribution from 1.9 nm to 4.2 nm with the maximum of around 3.0 nm,and the lattice spacing of the exposed NiCu(111)facet is 0.206 nm in the high-resolution TEM(HRTEM)image(inset in Fig.2A).The high angle annular dark-field scanning transmission electron microscopy(HAADF-STEM)image(Fig.2B)indicates a uniform distribution of the metal nanoparticles,just as observed from the TEM image.The STEM-energy dispersive X-ray(EDX)elemental mapping(insets in Fig.2B)displays that the Ni and Cu elements are distributed homogeneously and almost in the same position.The observations from HRTEM image and EDX mapping illustrate a NiCu alloy structure,which is consistent with an earlier report[26].As a comparison,the metal particles in the NiCu1.14/ZnAl-LDO@Al2O3are diverse in morphology(Fig.2C),with a broader size distribution from 1.7 nm to 6.0 nm,as observed in TEM image.Separated Ni and Cu particles with both(111)facet exposed are observed in HRTEM image(inset in Fig.2C).The HAADF-STEM image provides a more obvious difference in the metal distribution between NiCu1.14/ZnAl-LDO@Al2O3and NiCu1.19-ZnAl-LDO@Al2O3).The metal particles are observed to be in a continuous and more chaotic distribution in the HAADF-STEM image of NiCu1.14/ZnAl-LDO@Al2O3,with visible aggregation(Fig.2D).The EDX image(insets in Fig.2D)exhibit a discrepant Ni and Cu element distribution.In the XPS spectra(Fig.3),the binding energies of Ni0and Cu0[27,28]are measured as 852.7 and 932.8 eV for NiCu1.19-ZnAl-LDO@Al2O3(Fig.3A),0.2 and 0.3 eV higher than that for NiCu1.14/ZnAl-LDO@Al2O3(Fig.3B),consistent with better NiCu dispersion in NiCu1.19-ZnAl-LDO@Al2O3.The adjacent binding energy at 855.8-856.9 eV in the Ni 2p3/2XPS spectra originates from a high-spin divalent state of Ni2+in the sample[27].When nickel is alloyed with copper,changes in the electronic properties of nickel result in displacement of BEs to lower values depending on the copper content.

    Fig.2.TEM image(A)and HAADF-STEM image(B)of catalyst NiCu1.19-ZnAl-LDO@Al2O3;TEM image(C)and HAADF-STEM image(D)of catalyst NiCu1.14/ZnAl-LDO@Al2O3.Insets in(A)and(C)are the HRTEM images and the particle size frequency distribution histograms.Insets in(B)and(D)are the elemental mapping images of Ni and Cu for the corresponding sample.Scale bar:20 nm.

    Fig.3.Ni(A)and Cu(B)2p XPS spectra for(a)NiCu1.14/ZnAl-LDO@Al2O3,(b)NiCu1.19-ZnAl-LDO@Al2O3,and(c)0.17%Pt/ NiCu1.19-ZnAl-LDO@Al2O3.

    In the hydro-conversion of heptane(n-C7)(Table 1),NiCu1.19-ZnAl-LDO@Al2O3as the catalyst(Table 1,entry 1)shows visibly highern-C7conversion,higher specific activity,higheri-C7selectivity,and lower C1-C4selectivity than NiCu1.14/ZnAl-LDO@Al2O3(Table 1,entry 2).Then-C7conversion over NiCu1.19-ZnAl-LDO@Al2O3is even higher than over Pt/ZnAl-LDO@Al2O3with a 0.32% Pt loading(Table 1,entry 3),while with almost the same selectivity.The better apparent activity and isomerization selectivity of NiCu1.19-ZnAl-LDO@Al2O3is supposed to owe to the well-alloyed structure with NiCu uniform distribution.As revealed by the XPS results,thein situexsolution of NiCu fromLDHs layers provides stronger metal-supports interactions that leads to Ni and Cu centers more electron-deficient,which well accounts for the higher activity of NiCu1.19-ZnAl-LDO@Al2O3than NiCu1.14/ZnAl-LDO@Al2O3.According to previous observation[29],more highly are metal centers dispersed,more is C-C cleavage inhibited.So the better selectivity of NiCu1.19-ZnAl-LDO@Al2O3than NiCu1.14/ZnAl-LDO@Al2O3could also be well explained.The use of Pt in 0.17% loading together with NiCu1.19bimetallic catalyst promotes both ofn-C7conversion andi-C7selectivity,while largely reduces the C1-C4selectivity(Table 1,entry 6).The specific activity on 0.17%Pt/NiCu1.19-ZnAl-LDO@Al2O3is 268% higher than that on 0.32%Pt/ZnAl-LDO@Al2O3.The significant increase in specific activity(normalized by moles of Pt)can be attributed to the contribution of NiCu.The ICP results and TEM/STEM images show that the Pt loading makes no visible impact on components of Ni or Cu and the homogeneous distribution of NiCu elements(Table S1 and Fig.S2 in Supporting information).The NiCu particles retain narrow distribution sized from 3.8 nm to 6.3 nm.In the XPS spectra(Fig.3),a visible increase in the BEs of Ni 2p3/2and Cu 2p3/2is observed with Pt loaded,illuminating the electron transfer from NiCu to Pt atoms.Therefore,the promotion of catalysis observed with 0.17%Pt/NiCu1.19-ZnAl-LDO@Al2O3could originate from the synergies of NiCu and Pt centers.Similar synergy effect of the metal active sites was previously observed for the Ir-Pt/Al2O3catalyst prepared by organometallic grafting method in the ring opening reaction of methyl-cyclopentane[30].

    Table 1 Catalytic results for the hydroconversion of n-C7.a

    To better understand why the reforming catalysis of Ni and Cu even better than supported Pt,the Cu/Ni molar ratios(Table S1)have been varied in this work.As shown in the XPS spectra(Fig.4),in comparison with Ni-ZnAl-LDO@Al2O3,Cu introduction decreases the binding energy(BE)of Ni 2p3/2(Fig.4A)slightly,and meanwhile the BE of Cu0in NiCu0.61-ZnAl-LDO@Al2O3rises in comparison to Cu-ZnAl-LDO@Al2O3(Fig.4B),consistent with the electron transfer from Cu to Ni.With increasing Cu/Ni ratio,both of Ni0and Cu0BEs successively increases.But the reason for the increase in the BEs needs more investigations.Similar trends are observed on Pt-containing samples(Figs.4C and D).

    In the hydro-conversion ofn-C7,in comparison with Ni catalyst without Cu(Table 1,entry 4),the introduction of Cu in a Cu/Ni ratio of 0.61 decreases then-C7conversion while improves the isomerization selectivity visibly(Table 1,entry 5).With the Cu/Ni ratio increasing,n-C7conversion,specific activity,and toluene selectivity all increase,while the isomerization selectivity shows a first increasing and then decreasing change(Table 1,entries 5-8).The dependence of catalytic activity and selectivity on the Cu/Ni ratio of NiCu bimetallic catalyst indicates the synergic catalysis between highly homogeneous Ni and Cu sites[31].The introduction of Cu in a Cu/Ni ratio of 0.61 increases the electronic density of Ni site,accounting for the activity reduction on Pt/NiCu0.61-ZnAl-LDO@Al2O3in comparison to Pt/Ni-ZnAl-LDO@Al2O3.The activity enhancement with increasing Cu/Ni ratio is well consistent with the successive decreases in the electronic density of both Cu and Ni sites.

    Fig.4.Ni(A,C)and Cu(B,D)2p XPS spectra for(a)Ni-ZnAl-LDO@Al2O3,(a’)Cu-ZnAl-LDO@Al2O3,(b)NiCu0.61-ZnAl-LDO@Al2O3,(c)NiCu1.19-ZnAl-LDO@Al2O3,(d)NiCu2.11-ZnAl-LDO@Al2O3 and(e)NiCu3.17-ZnAl-LDO@Al2O3 without(A,B)and with(C,D)Pt loaded.

    The introduction of Cu inhibits the hydrogenolysis and/or cracking reactions,giving a reduced C1-C4selectivity(Table 1,entries 4-8).But a visible inhibition of C1-C4selectivity needs a higher Cu loading when no Ni is present(Table 1,entries 9 and 10).The toluene selectivity increases with Cu/Ni ratio(Table 1,entries 5-8),but not with the amount of single Cu(Table 1,entries 9 and 10),indicating the role of synergic catalysis between Cu and Ni sites in the improvement of toluene selectivity.When a small amount of Cu added,the XPS show that the binding energy of Ni shifts toward a low energy of 0.3 eV,and the binding energy of Cu increases 0.3 eV(Fig.4).The changes of electronic structure of the metals result in a slight decrease in catalytic activity.Further increase the ratio of Cu/Ni,the binding energy of Ni and Cu increases successively.The activities of catalysts show an increasing trend and the selectivity of toluene increase in sequence.The dehydrogenation ability of the metals is enhanced with the binding energy of metals increasing.The selectivity of isomerization increases at first and then decreases,while the cleavage selectivity shows an opposite trend,but the magnitude of the change is relatively small.

    In the H2-TPR profiles(Fig.S3 in Supporting information),the reduction temperature for Ni(II)gradually decreases from 596 °C to 481 °C with increasing Cu/Ni ratio,while the reduction temperature of Cu(II)decreases from 341 °C to 254 °C.Additional hydrogen consumptions are observed at 325 °C for NiCu1.19-ZnAl-LDO@Al2O3and 288 °C for NiCu2.11-ZnAl-LDO@Al2O3,which suggests the possible formation of NiCu alloy phase.But the hydrogen consumption at 287 °C almost diminishes for NiCu3.17-ZnAl-LDO@Al2O3.

    Theisomerizationselectivityon0.16%Pt/Cu3.91%-ZnAl-LDO@Al2O3is 142% higher than on 0.15%Pt/Ni-ZnAl-LDO@Al2O3.The isomerization reaction rate has been reported highly dependent on the acidic property of catalysts[4].But there is no significant difference in the amount and strength of acidic sites between 0.16%Pt/Cu3.91%-ZnAl-LDO@Al2O3and 0.15%Pt/Ni-ZnAl-LDO@Al2O3,based on NH3-TPD profiles(Fig.S4 in Supporting information).So it can be deduced that the Cu sites promote isomerization selectivity by inhibiting hydrogenolysis reaction.The synergies of Ni and Cu sites on alloy phase is mainly responsible for the higher isomerization selectivity observed with NiCu1.19-ZnAl-LDO@Al2O3and NiCu2.11-ZnAl-LDO@Al2O3than with other catalysts.

    In summary,NiCu bimetallic catalyst with uniform NiCu dispersion has been demonstrated to provide higher activity than Pt catalyst while with similar selectivity in the reforming reaction ofnheptane.The synergies between homogeneously dispersed Ni and Cu sites account for the enhancement of activity and selectivity.

    Declaration of competing interest

    The authors declare no competing financial interest.

    Acknowledgments

    Financial supports from National Nature Science Foundation of China(NSFC,Nos.91634120 and 21521005),the National Key Research and Development Program of China(No.2017YFA0206804)and the Fundamental Research Funds for the Central Universities(No.XK1802-6)are gratefully acknowledged.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.08.120.

    如何舔出高潮| 免费人妻精品一区二区三区视频| 一级a做视频免费观看| 精品久久久久久久末码| 九九爱精品视频在线观看| 亚洲无线观看免费| 日韩av不卡免费在线播放| 一本—道久久a久久精品蜜桃钙片| 久久国产亚洲av麻豆专区| 欧美xxxx性猛交bbbb| 亚洲av成人精品一区久久| 岛国毛片在线播放| 国内揄拍国产精品人妻在线| 女人十人毛片免费观看3o分钟| 亚洲精品第二区| 国产免费又黄又爽又色| 免费观看av网站的网址| 亚洲av.av天堂| 久久人人爽av亚洲精品天堂 | 亚洲欧美一区二区三区黑人 | 国产av国产精品国产| 国产精品国产三级国产专区5o| 精品视频人人做人人爽| 身体一侧抽搐| 色哟哟·www| 国产精品嫩草影院av在线观看| 国产乱来视频区| 秋霞伦理黄片| 亚洲av国产av综合av卡| 免费久久久久久久精品成人欧美视频 | 卡戴珊不雅视频在线播放| 久久99热这里只频精品6学生| 99久久综合免费| 乱系列少妇在线播放| 超碰97精品在线观看| 中文字幕亚洲精品专区| 直男gayav资源| 一级爰片在线观看| 大又大粗又爽又黄少妇毛片口| 蜜桃在线观看..| 尾随美女入室| 99精国产麻豆久久婷婷| 国产成人精品久久久久久| 日本与韩国留学比较| a级毛片免费高清观看在线播放| 国产精品嫩草影院av在线观看| 亚洲av成人精品一区久久| 亚洲电影在线观看av| 我的女老师完整版在线观看| 婷婷色综合www| 丝袜喷水一区| 亚洲欧美一区二区三区黑人 | 国内精品宾馆在线| 小蜜桃在线观看免费完整版高清| 久久久久久九九精品二区国产| 一边亲一边摸免费视频| 国产成人aa在线观看| av专区在线播放| 纵有疾风起免费观看全集完整版| 国产亚洲91精品色在线| 国产午夜精品久久久久久一区二区三区| 一级毛片电影观看| 嘟嘟电影网在线观看| 99国产精品免费福利视频| 久久99精品国语久久久| 亚洲色图综合在线观看| 高清在线视频一区二区三区| 1000部很黄的大片| 国产精品一区二区在线不卡| 午夜精品国产一区二区电影| 国产探花极品一区二区| 免费高清在线观看视频在线观看| 久久青草综合色| 欧美日韩亚洲高清精品| 老司机影院毛片| 亚洲伊人久久精品综合| 亚洲精品国产av成人精品| 精品亚洲成国产av| 国产有黄有色有爽视频| 男女国产视频网站| 香蕉精品网在线| 日韩,欧美,国产一区二区三区| 欧美日韩精品成人综合77777| 国精品久久久久久国模美| 特大巨黑吊av在线直播| 人体艺术视频欧美日本| 亚洲精品色激情综合| 一本久久精品| 赤兔流量卡办理| 日日啪夜夜撸| 午夜福利视频精品| 成人综合一区亚洲| 亚洲欧美精品专区久久| 亚洲婷婷狠狠爱综合网| av专区在线播放| 久久久午夜欧美精品| 久久综合国产亚洲精品| 99久久人妻综合| 精品国产一区二区三区久久久樱花 | 校园人妻丝袜中文字幕| 老师上课跳d突然被开到最大视频| 熟女电影av网| 又粗又硬又长又爽又黄的视频| 人妻少妇偷人精品九色| 亚洲欧美日韩东京热| 看非洲黑人一级黄片| 好男人视频免费观看在线| av在线老鸭窝| 国产亚洲5aaaaa淫片| 中国国产av一级| 妹子高潮喷水视频| 波野结衣二区三区在线| 国产精品免费大片| 免费看日本二区| 国产精品.久久久| 99热网站在线观看| 51国产日韩欧美| 欧美日本视频| 少妇人妻 视频| 性色avwww在线观看| 中文字幕久久专区| 国产精品偷伦视频观看了| 校园人妻丝袜中文字幕| 国产日韩欧美在线精品| 国产午夜精品久久久久久一区二区三区| 亚洲,一卡二卡三卡| av线在线观看网站| 亚洲激情五月婷婷啪啪| 美女内射精品一级片tv| 国产伦精品一区二区三区四那| 亚洲av中文av极速乱| 人人妻人人添人人爽欧美一区卜 | 亚洲真实伦在线观看| 久久久久人妻精品一区果冻| 久热久热在线精品观看| 亚洲欧美精品自产自拍| 视频中文字幕在线观看| 久久久久久久亚洲中文字幕| 日韩av在线免费看完整版不卡| 视频中文字幕在线观看| 国产免费又黄又爽又色| 久久精品国产自在天天线| 18禁裸乳无遮挡免费网站照片| 男人添女人高潮全过程视频| 少妇丰满av| 夜夜骑夜夜射夜夜干| 久久婷婷青草| 久久国产乱子免费精品| 春色校园在线视频观看| 亚洲国产精品999| 国内揄拍国产精品人妻在线| 欧美xxxx性猛交bbbb| 不卡视频在线观看欧美| 国产成人精品婷婷| 久久久久久久大尺度免费视频| h日本视频在线播放| xxx大片免费视频| 亚洲精品第二区| 九草在线视频观看| 亚州av有码| 国产精品一区www在线观看| 成人美女网站在线观看视频| 亚洲性久久影院| 亚洲电影在线观看av| 亚洲美女黄色视频免费看| 日韩一本色道免费dvd| 爱豆传媒免费全集在线观看| 色吧在线观看| 亚洲精品久久午夜乱码| 最近2019中文字幕mv第一页| 免费黄频网站在线观看国产| 人人妻人人澡人人爽人人夜夜| 亚洲精品日韩av片在线观看| 国产视频首页在线观看| 国产亚洲精品久久久com| 亚洲美女搞黄在线观看| 尾随美女入室| 街头女战士在线观看网站| 国产亚洲91精品色在线| 女性被躁到高潮视频| 国产免费又黄又爽又色| 天堂中文最新版在线下载| 搡老乐熟女国产| 久久久久久久国产电影| 日韩av在线免费看完整版不卡| 欧美zozozo另类| tube8黄色片| 婷婷色麻豆天堂久久| 久久韩国三级中文字幕| 国产午夜精品一二区理论片| 国产成人91sexporn| 久久久久国产精品人妻一区二区| 成人免费观看视频高清| 国产精品爽爽va在线观看网站| 特大巨黑吊av在线直播| freevideosex欧美| 日本欧美国产在线视频| 岛国毛片在线播放| 久久人人爽人人爽人人片va| 亚洲不卡免费看| 中文天堂在线官网| 男人狂女人下面高潮的视频| 永久免费av网站大全| 天美传媒精品一区二区| 人妻 亚洲 视频| 又大又黄又爽视频免费| 亚洲欧美一区二区三区国产| 亚洲av二区三区四区| 欧美少妇被猛烈插入视频| 一级av片app| 在线天堂最新版资源| 我要看日韩黄色一级片| 成人美女网站在线观看视频| 亚洲怡红院男人天堂| 熟女人妻精品中文字幕| 国产有黄有色有爽视频| 啦啦啦视频在线资源免费观看| 国产日韩欧美在线精品| 99久久精品热视频| 亚洲av综合色区一区| 天堂中文最新版在线下载| 丰满迷人的少妇在线观看| 老师上课跳d突然被开到最大视频| 国产亚洲5aaaaa淫片| 一本久久精品| 久久久久久久久久久免费av| 偷拍熟女少妇极品色| 国产深夜福利视频在线观看| 2022亚洲国产成人精品| 久久久久网色| 欧美日韩综合久久久久久| 国产精品爽爽va在线观看网站| 极品少妇高潮喷水抽搐| 深夜a级毛片| 国产精品熟女久久久久浪| 不卡视频在线观看欧美| 色哟哟·www| 亚洲图色成人| 哪个播放器可以免费观看大片| 老司机影院成人| 亚洲欧美日韩东京热| 有码 亚洲区| 高清毛片免费看| 亚洲av中文av极速乱| 18禁裸乳无遮挡免费网站照片| 国产伦在线观看视频一区| 免费不卡的大黄色大毛片视频在线观看| 超碰97精品在线观看| 人妻夜夜爽99麻豆av| 91精品国产国语对白视频| 久久这里有精品视频免费| www.色视频.com| 欧美丝袜亚洲另类| 日本黄大片高清| 国产成人免费无遮挡视频| 成人综合一区亚洲| 一级毛片 在线播放| 干丝袜人妻中文字幕| 我的老师免费观看完整版| 一二三四中文在线观看免费高清| 91狼人影院| 国产亚洲91精品色在线| 国产色爽女视频免费观看| 日本色播在线视频| 国产精品国产三级国产专区5o| 国产免费福利视频在线观看| 国语对白做爰xxxⅹ性视频网站| 亚洲性久久影院| 少妇的逼好多水| 亚洲图色成人| 久久久久精品久久久久真实原创| 国产精品久久久久久久久免| 国产午夜精品久久久久久一区二区三区| 中文乱码字字幕精品一区二区三区| 人人妻人人澡人人爽人人夜夜| 欧美性感艳星| 人人妻人人看人人澡| 一本—道久久a久久精品蜜桃钙片| 纯流量卡能插随身wifi吗| freevideosex欧美| 少妇 在线观看| 国产熟女欧美一区二区| 欧美成人一区二区免费高清观看| 亚洲色图av天堂| 久久人人爽av亚洲精品天堂 | 精品少妇久久久久久888优播| 精品一品国产午夜福利视频| 国产男人的电影天堂91| 老师上课跳d突然被开到最大视频| 黄片wwwwww| 日韩一区二区三区影片| 日韩av不卡免费在线播放| 久久热精品热| 亚洲国产最新在线播放| 亚洲国产日韩一区二区| 国产黄片视频在线免费观看| 国产日韩欧美在线精品| 免费高清在线观看视频在线观看| 能在线免费看毛片的网站| 成人午夜精彩视频在线观看| 视频区图区小说| 夜夜骑夜夜射夜夜干| 成人高潮视频无遮挡免费网站| 成人特级av手机在线观看| 国产成人精品一,二区| 搡女人真爽免费视频火全软件| 国产精品一二三区在线看| 午夜福利网站1000一区二区三区| 大片免费播放器 马上看| 伦精品一区二区三区| 国产亚洲午夜精品一区二区久久| 成年女人在线观看亚洲视频| 日韩av免费高清视频| 精品亚洲成a人片在线观看 | 一级毛片aaaaaa免费看小| 七月丁香在线播放| 乱码一卡2卡4卡精品| 国产一区二区在线观看日韩| a级毛色黄片| 色综合色国产| 日韩伦理黄色片| 一本久久精品| 午夜免费观看性视频| 亚洲精品久久久久久婷婷小说| 视频中文字幕在线观看| 亚洲图色成人| 九九在线视频观看精品| www.色视频.com| 国产老妇伦熟女老妇高清| av视频免费观看在线观看| 免费高清在线观看视频在线观看| 日韩强制内射视频| 国产精品久久久久久久久免| 欧美最新免费一区二区三区| 在线观看三级黄色| 国产69精品久久久久777片| .国产精品久久| 日本wwww免费看| 热re99久久精品国产66热6| 午夜福利高清视频| 精品人妻熟女av久视频| 男女啪啪激烈高潮av片| 在线免费观看不下载黄p国产| 成人毛片60女人毛片免费| 久久国内精品自在自线图片| 免费观看av网站的网址| 日本一二三区视频观看| 亚洲国产高清在线一区二区三| 王馨瑶露胸无遮挡在线观看| 九九在线视频观看精品| 免费观看的影片在线观看| 99视频精品全部免费 在线| 毛片一级片免费看久久久久| 三级经典国产精品| 97热精品久久久久久| 成人亚洲精品一区在线观看 | 国产成人午夜福利电影在线观看| 在线观看国产h片| 国产又色又爽无遮挡免| 国产精品一区二区在线不卡| 国产伦在线观看视频一区| 国产精品精品国产色婷婷| 免费看不卡的av| 免费av中文字幕在线| 久久久精品免费免费高清| 一边亲一边摸免费视频| 少妇的逼水好多| 夫妻午夜视频| 少妇丰满av| 久久99热6这里只有精品| 免费高清在线观看视频在线观看| 妹子高潮喷水视频| 国产一区二区在线观看日韩| 老熟女久久久| 一本色道久久久久久精品综合| 丝袜喷水一区| 国产国拍精品亚洲av在线观看| 亚洲av在线观看美女高潮| 久久99热这里只有精品18| 久久精品国产鲁丝片午夜精品| 99久久精品热视频| 丝袜喷水一区| 2018国产大陆天天弄谢| 人人妻人人看人人澡| 久久ye,这里只有精品| 日韩在线高清观看一区二区三区| 少妇裸体淫交视频免费看高清| 99国产精品免费福利视频| 国产精品精品国产色婷婷| 人人妻人人爽人人添夜夜欢视频 | 精品久久久久久久末码| 国产有黄有色有爽视频| 久久久久网色| 久久久午夜欧美精品| 99热这里只有是精品在线观看| 汤姆久久久久久久影院中文字幕| 国产一级毛片在线| 男女下面进入的视频免费午夜| 亚洲美女搞黄在线观看| 成人国产av品久久久| 麻豆成人午夜福利视频| 亚洲精品自拍成人| 干丝袜人妻中文字幕| av免费观看日本| 99热这里只有精品一区| 亚洲综合色惰| 美女中出高潮动态图| 免费av中文字幕在线| 91精品一卡2卡3卡4卡| 偷拍熟女少妇极品色| 国产在线视频一区二区| 天天躁日日操中文字幕| 国产有黄有色有爽视频| 丝袜脚勾引网站| 亚洲精品日韩在线中文字幕| 国产无遮挡羞羞视频在线观看| av国产免费在线观看| 欧美成人午夜免费资源| 亚洲自偷自拍三级| 人妻 亚洲 视频| 青春草亚洲视频在线观看| 国产伦在线观看视频一区| 亚洲精品久久午夜乱码| 成人亚洲精品一区在线观看 | 内射极品少妇av片p| 久久青草综合色| 少妇高潮的动态图| 丰满少妇做爰视频| 两个人的视频大全免费| 欧美精品亚洲一区二区| 亚洲美女黄色视频免费看| 91精品国产九色| 婷婷色综合大香蕉| 高清在线视频一区二区三区| 大码成人一级视频| 亚洲人成网站在线观看播放| 青青草视频在线视频观看| 国产在线免费精品| 能在线免费看毛片的网站| 三级国产精品欧美在线观看| 日韩一区二区三区影片| 日韩精品有码人妻一区| 最近最新中文字幕大全电影3| 日韩av免费高清视频| 日韩在线高清观看一区二区三区| 免费观看无遮挡的男女| 插逼视频在线观看| 国产黄色视频一区二区在线观看| 精品人妻视频免费看| 国产欧美日韩一区二区三区在线 | 深夜a级毛片| 欧美亚洲 丝袜 人妻 在线| 久久精品国产亚洲网站| 最新中文字幕久久久久| 国产色爽女视频免费观看| 精品久久国产蜜桃| 国产探花极品一区二区| 18禁裸乳无遮挡免费网站照片| 亚洲精品aⅴ在线观看| 少妇 在线观看| 欧美亚洲 丝袜 人妻 在线| 一级av片app| 菩萨蛮人人尽说江南好唐韦庄| 老女人水多毛片| 777米奇影视久久| 午夜视频国产福利| 久久97久久精品| 亚洲色图av天堂| av不卡在线播放| 天天躁夜夜躁狠狠久久av| 天堂俺去俺来也www色官网| 免费播放大片免费观看视频在线观看| 精品久久久噜噜| 舔av片在线| 五月开心婷婷网| 99久久精品国产国产毛片| 日韩av在线免费看完整版不卡| 美女cb高潮喷水在线观看| 国产免费一级a男人的天堂| 少妇 在线观看| 久久国产乱子免费精品| 高清在线视频一区二区三区| 免费av中文字幕在线| 亚洲国产日韩一区二区| 一本久久精品| 久久精品人妻少妇| 国产爽快片一区二区三区| 免费不卡的大黄色大毛片视频在线观看| av视频免费观看在线观看| av国产精品久久久久影院| 亚洲国产高清在线一区二区三| 99热6这里只有精品| 最新中文字幕久久久久| 免费人成在线观看视频色| 久久综合国产亚洲精品| 99视频精品全部免费 在线| 狂野欧美激情性bbbbbb| 亚洲精品自拍成人| 久久精品夜色国产| 中文字幕av成人在线电影| 欧美xxxx性猛交bbbb| 三级国产精品欧美在线观看| 插阴视频在线观看视频| 亚洲色图av天堂| 一二三四中文在线观看免费高清| 一个人看视频在线观看www免费| 日韩强制内射视频| 少妇的逼水好多| 久久人人爽人人爽人人片va| 国产日韩欧美在线精品| 丰满人妻一区二区三区视频av| 99久久人妻综合| 看非洲黑人一级黄片| 国产无遮挡羞羞视频在线观看| 久久99精品国语久久久| 国产中年淑女户外野战色| 成人毛片60女人毛片免费| 久久国内精品自在自线图片| av.在线天堂| 一本一本综合久久| 久久久久久久久久久免费av| 日日摸夜夜添夜夜爱| 看免费成人av毛片| 久久97久久精品| www.av在线官网国产| 最近中文字幕高清免费大全6| 久久鲁丝午夜福利片| 久久 成人 亚洲| 成人毛片60女人毛片免费| 国产v大片淫在线免费观看| 大码成人一级视频| 久久久久久久久久成人| 日本欧美国产在线视频| 免费观看a级毛片全部| 国产大屁股一区二区在线视频| 在线观看国产h片| 人体艺术视频欧美日本| 色视频www国产| 中国三级夫妇交换| 国产伦在线观看视频一区| 99久久精品国产国产毛片| 91aial.com中文字幕在线观看| 丝袜喷水一区| 午夜免费鲁丝| 身体一侧抽搐| 欧美极品一区二区三区四区| 国产精品三级大全| 黄色配什么色好看| 亚洲国产色片| 久久久久精品久久久久真实原创| 成人午夜精彩视频在线观看| 一区二区三区免费毛片| 国产亚洲5aaaaa淫片| 最近最新中文字幕大全电影3| 一级毛片久久久久久久久女| 永久网站在线| 如何舔出高潮| 亚洲内射少妇av| 国产在线免费精品| 亚洲欧美中文字幕日韩二区| 国内揄拍国产精品人妻在线| 亚洲av中文字字幕乱码综合| 男男h啪啪无遮挡| 男的添女的下面高潮视频| 高清毛片免费看| 男的添女的下面高潮视频| 亚洲精品国产av蜜桃| 欧美精品国产亚洲| 色综合色国产| 秋霞在线观看毛片| 爱豆传媒免费全集在线观看| 国产成人freesex在线| 国产淫片久久久久久久久| 在线观看一区二区三区| 国产又色又爽无遮挡免| 亚洲精品国产av成人精品| 国产 一区精品| 新久久久久国产一级毛片| 少妇裸体淫交视频免费看高清| 在线看a的网站| 国产无遮挡羞羞视频在线观看| 国产成人精品婷婷| 成人亚洲精品一区在线观看 | 永久网站在线| 狠狠精品人妻久久久久久综合| a级毛片免费高清观看在线播放| 国产av精品麻豆| 成人二区视频| 一级a做视频免费观看| 黄色日韩在线| 久久精品夜色国产| 丰满人妻一区二区三区视频av| 免费看光身美女| 亚洲人与动物交配视频| 色吧在线观看| 久久鲁丝午夜福利片| 狂野欧美白嫩少妇大欣赏| 99久久中文字幕三级久久日本| 99国产精品免费福利视频| a 毛片基地| 国产精品一及| 久久鲁丝午夜福利片| 97精品久久久久久久久久精品| 一本—道久久a久久精品蜜桃钙片| 人妻制服诱惑在线中文字幕| 欧美精品亚洲一区二区| 成人国产av品久久久| 精品人妻一区二区三区麻豆| 午夜免费鲁丝| 91午夜精品亚洲一区二区三区| 亚洲国产精品国产精品| 校园人妻丝袜中文字幕| 亚洲精品乱码久久久久久按摩| 少妇精品久久久久久久| 一区二区三区四区激情视频|