• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Boosting the photoelectrochemical water oxidation performance of bismuth vanadate by ZnCo2O4 nanoparticles

    2022-06-20 06:21:32JingweiHungYniWngKiyiChenTingtingLiuQizhoWng
    Chinese Chemical Letters 2022年4期

    Jingwei Hung,Yni Wng,Kiyi Chen,Tingting Liu,Qizho Wng,c,*

    a School of Environment Science and Engineering,Chang’an University,Xi’an 710064,China

    b College of Chemistry and Chemical Engineering,Northwest Normal University,Lanzhou 730070,China

    c Tianjin Key Laboratory of Building Green Functional Materials,Tianjin Chengjian University,Tianjin 300384,China

    ABSTRACT Due to the involvement of four-electron transfer process at photoanode,water oxidation is the ratelimiting step in water splitting reaction.To settle this dilemma,ZnCo2O4 nanoparticles are combined with BiVO4 to form a p-n ZnCo2O4/BiVO4 heterojunction photoanode,which is proved by an input voltage-output current test.The built-in electric field formed within the heterojunction structure promotes the effective separation of electrons and holes.ZnCo2O4 is also an effective water oxidation cocatalyst,since it could cause the holes entering the electrode/electrolyte interface rapidly for the subsequent water oxidation reaction.The photocurrent density of ZnCo2O4/BiVO4 composite photoanode reaches 3.0 mA/cm2 at 1.23 V vs. RHE in 0.5 mol/L sodium sulfate under AM 1.5G simulated sunlight,about 2.1 times greater than that of BiVO4(1.4 mA/cm2).These results suggest the potential of ZnCo2O4 nanoparticles for improving photoelectrochemical water splitting anode materials.

    Keywords:Photoelectrochemical water oxidation BiVO4 ZnCo2O4 p-n junction

    The conversion of solar energy into hydrogen by photoelectrochemical(PEC)water splitting is a promising way to produce hydrogen,which can simultaneously solve the current energy shortage and environmental problems caused by fossil fuel combustion[1–3].In the process of PEC water splitting,water oxidation(producing oxygen)and water reduction(producing hydrogen)reaction are involved.The water oxidation reaction involves a kinetic unfavorable four-electron transfer process,which determines the entire water splitting reaction rate[4,5].Researches are mainly focused on photoanodes where water oxidation reaction takes place.Metal oxides such as TiO2[6,7],F(xiàn)e2O3[8,9],WO3[10],ZnO[11]and BiVO4[12-14]are often used as photoanode materials for PEC water oxidation.Among them,BiVO4is a very excellent photoanode material with beneficial energy band structure and a band gap of 2.4 eV,enabling it to absorb part of visible light[15-17].However,the slow migration rate of photogenerated electrons and holes in BiVO4and sluggish kinetics for water oxidation render BiVO4far below its theoretical photocurrent density[18,19].Strategies such as controlling morphology[20],constructing heterostructures[10]have been used to improve the performance of BiVO4.Besides,loading cocatalyst is an effective way to improve the surface reaction kinetics of BiVO4for PEC water splitting[21,22].

    Cobalt-based cocatalysts,such as cobalt oxides[23–25],cobalt hydroxides[26,27],cobalt phosphide[28,29],Co-Pi[30,31],Cobased double hydroxide(LDH)[32],have been intensively studied as water oxidation catalysts due to their outstanding catalytic performance.Specially,ternary spinel MCo2O4(M = Ni,Mn,Zn,etc.)have improved bearing conductivity and possessing more active sites than Co3O4,resulting in a better water oxidation capability[33–35].Among them,ZnCo2O4has a definite structure in which Zn2+only replaces Co2+in the tetrahedral sites in Co3O4,rarely affecting the Co3+active site in the octahedral sites in Co3O4[36].Therefore,as compared to Co3O4,the use of ZnCo2O4could reduce the use of rare and relative expensive Co element without the compromise of catalytic activity.

    In addition to loading cocatalyst,enhancing built-in electric field of a photoanode by constructing a heterojunction structure is also usually adopted.WO3@BiVO4heterojunction photoanode[37],F(xiàn)e2O3/BiVO4heterojunction photoanode[38],g-C3N4@BiVO4heterojunction photoanode[39]etc.are recently reported to be favorable for the separation of photo-generated carriers due to the formation of built-in electric field between these different semiconductors in heterojunction.However,the water oxidation reaction on surface of these photoanodes is still sluggish.To address this problem,cocatalysts are still needed.For example,NiFe-LDH was used to load on Fe2O3/BiVO4heterojunction photoanode[40].WO3/BiVO4was modified by FeOOH to construct ternary WO3/BiVO4/FeOOH hierarchical photoanode[41].Considering the complicated fabrication process of above mentioned photoanodes,loading a semiconductor cocatalyst that could enhance the built-in electric field as well as act as cocatalyst is a new guiding ideology to construct a high performance photoanode for water oxidation.

    Fig.1.SEM images of(a)BiVO4,(b)ZnCo2O4/BiVO4-35.TEM images of(c)BiVO4,(d)ZnCo2O4/BiVO4-35.(e,f)HR-TEM images of ZnCo2O4/BiVO4-35.

    In this work,ZnCo2O4nanoparticles,acting as a p-type semiconductor and a cocatalyst simultaneously,were loaded on BiVO4to form ZnCo2O4/BiVO4composite photoanode by electrophoretic deposition.The formation of p-n junctions between ZnCo2O4and BiVO4is systematically confirmed,which introduces built-in electric field that is beneficial to the separation of photogenerated carriers.This composite photoanode shows high photocurrent for PEC water oxidation due to the improvement in charge separation effi-ciency and surface reaction efficiency.

    As can be seen from Fig.1a,BiVO4presents a coral-like structure composed of porous nanoparticles.The nanoparticles are interconnected on the surface of the FTO to form pores and channels.These abundant channels facilitate the contact between the semiconductor and electrolyte.From Fig.1b,it can be clearly seen that ZnCo2O4nanoparticles are uniformly loaded onto the surface of BiVO4film by the electrophoretic deposition method.TEM image(Fig.1c)shows that BiVO4has a pore structure and smooth surface.However,a thin layer of nanoparticles appears on the surface of BiVO4after loading ZnCo2O4as shown in Fig.1d.Figs.1e and f show the HR-TEM images of ZnCo2O4/BiVO4photoanode.The spacing of 0.20 nm and 0.48 nm correspond to the(400)plane of ZnCo2O4(PDF card No.23-1390)and the(110)plane of BiVO4(PDF No.14-0688),respectively,demonstrating the successful combination of ZnCo2O4nanoparticles and BiVO4film to form ZnCo2O4/BiVO4photoanode.

    Fig.2.(a)XRD patterns of FTO substrate,BiVO4,ZnCo2O4 and ZnCo2O4/BiVO4 composites and XPS spectra of(b)Co 2p,(c)Zn 2p,(d)O 1s in ZnCo2O4/BiVO4.

    In order to clearly grasp the crystal structure of the sample,we performed XRD testing on the photoanode material.As shown in Fig.2a,F(xiàn)TO substrate has the diffraction peaks located at 26.6°,37.8°,51.8°,61.7° and 65.7° corresponding to the(110),(200),(211),(310)and(301)lattice diffractions of SnO2(JCPDS No.46–1088),respectively.BiVO4shows diffraction peaks located at 18.7°,28.8°,30.5°,34.5°,35.2°,40.0°,42.5°,46.0°,47.3°,50.3°,53.3°,58.3° and 59.3°,indicating the formation of monoclinic phase BiVO4(JCPDS:14-0688).The synthesized ZnCo2O4powders have diffraction peaks mainly located at 19.0o,31.2o,36.8o,44.7o,59.3oand 65.1o.These diffraction peak positions correspond to the(111),(220),(311),(400),(511)and(440)crystal planes of the ZnCo2O4(JCPDS:23-1390),proving that the ZnCo2O4nanoparticles were successfully synthesized.The XRD pattern of ZnCo2O4/BiVO4composite electrode does not show obvious characteristic diffraction peaks of ZnCo2O4due to small loading amount of ZnCo2O4nanoparticles on BiVO4.X-ray photoelectron spectroscopy(XPS)test was used to determine the elements status of ZnCo2O4/BiVO4electrode.It can be seen from Fig.2b that two peaks of Co 2p in ZnCo2O4are located 795.0 and 780.0 eV,respectively belonging to the Co 2p1/2and Co 2p3/2peaks of Co3+in the octahedral site,and proving that the cobalt in the compound is+3 valence[36].The binding energies of the Zn 2p3/2and Zn 2p1/2peaks in the compounds are located at 1021.1 eV and 1044.2 eV,indicating that Zn in the ZnCo2O4is+2 valence in the compound(Fig.2c)[42].The O 1s spectrum in the ZnCo2O4/BiVO4photoanode can be fitted into two diffraction peaks(Fig.2d).The peak at 531.4 eV in the spectrum is derived from adsorbed OH-on the electrode,while the peak at 529.7 eV is assigned to oxide lattice[43].

    The light absorption range of ZnCo2O4/BiVO4photoanode is broadened slightly by supporting ZnCo2O4cocatalyst(Fig.S1a in Supporting information).The light absorption intensity of the composite is also higher than that of BiVO4,indicating that ZnCo2O4improves the light absorption capacity of BiVO4.The band gap of BiVO4is about 2.46 eV,whilst ZnCo2O4/BiVO4electrode shows an apparent band gap of 2.43 eV,demonstrating ZnCo2O4can improve the light utilization efficiency of BiVO4photoanode(Fig.S1b in Supporting information).In order to investigate whether the catalytic active area of BiVO4film would be changed after loading ZnCo2O4,cyclic voltammetry(CV)tests of BiVO4and ZnCo2O4/BiVO4electrodes were carried out at different scan rates as shown in Figs.S1c and e(Supporting information).The catalytic active area of BiVO4and ZnCo2O4/BiVO4electrodes can be estimated from double layer capacitances that are linearly related to the slopes of difference values between anode current(Ja)and cathode current(Jc)in CVs against the scan rate as shown in Figs.S1d and f(Supporting information).Taking the current difference as y-axis and scanning rate as x-axis,the linear slope is twice over the double layer capacitances[44].It can be seen from Figs.S1d and f that the slope of ZnCo2O4/BiVO4is larger than that of BiVO4,demonstrating the catalytic active area of BiVO4photoanode increases after loading ZnCo2O4.

    Fig.3.LSV curves of BiVO4,ZnCo2O4/BiVO4 photoelectrodes(a)with and(b)without light irradiation;(c)Chopped I-t curves of BiVO4,ZnCo2O4/BiVO4 photoelectrodes at 1.23 V vs. RHE in 0.5 mol/L Na2SO4.(d)LSV curves of photoanodes for sulfite oxidation(with 1 mol/L Na2SO3).

    The LSV curves of BiVO4and ZnCo2O4/BiVO4photoanodes were tested under AM 1.5G simulated sunlight(100 mW/cm2)from back side of the sample.As shown in Fig.3a,the photocurrent density of BiVO4is 1.4 mA/cm2at 1.23 Vvs.RHE,while the photocurrent density of 3.0 mA/cm2is obtained for the ZnCo2O4/BiVO4photoanode.Besides,the onset potential of BiVO4photoanode shiftsca.0.1 V after loading ZnCo2O4.Co3O4/BiVO4photoanode was also fabricated for comparison using the same electrophoretic deposition method as shown in Fig.3a,giving a photocurrent of 2.2 mA/cm2at 1.23 Vvs.RHE at same reaction condition.Obviously,ZnCo2O4shows more higher catalytic activity than that of Co3O4.The photocurrent density of ZnCo2O4/BiVO4is 2.1 times that of BiVO4.This indicates that the performance of BiVO4for PEC water splitting can be enhanced by ZnCo2O4.The comparison of ZnCo2O4/BiVO4photoanode with other BiVO4and Co based photoanodes is shown in Table S1(Supporting information).In order to investigate the effect of deposition time on the catalytic performance of ZnCo2O4/BiVO4,the electrophoretic deposition time of ZnCo2O4was set be to 15,20,25,30,35 and 40 s for comparison.These composite photoanodes are named as ZnCo2O4/BiVO4-15,ZnCo2O4/BiVO4-20,ZnCo2O4/BiVO4-25,ZnCo2O4/BiVO4-30,ZnCo2O4/BiVO4-35 and ZnCo2O4/BiVO4-40 accordingly.As demonstrated in Fig.S2(Supporting information),the photocurrent density of ZnCo2O4/BiVO4-35 has the highest photocurrent at 1.23 Vvs.RHE,indicating that ZnCo2O4/BiVO4-35 has the best PEC water splitting performance.When the deposition time is less than 35 s,small photocurrents were obtained probably due the lower content of ZnCo2O4.However,when the amount of the supported ZnCo2O4is excessive,the transport of holes to the electrode surface is hindered,leading to low photocurrents.ZnCo2O4/BiVO4-35 was used in all the experiments without further description.Fig.3b is LSV curves of the electrodes in the absence of light.The initial potential of BiVO4is about 2.4 V,while the initial potential of the ZnCo2O4/BiVO4composite photoanode is about 2.1 V.The initial potential of ZnCo2O4/BiVO4negatively shifts 300 mV compared to that of BiVO4.This indicates that ZnCo2O4can reduce the overpotential of PEC water splitting.The choppedI-tcurves of the photoanodes were tested at 1.23 Vvs.RHE.It can be clearly seen from theI-tcurves in Fig.3c that the photocurrent density of the composite ZnCo2O4/BiVO4photoanode is stable and higher than that of BiVO4at constant voltage.Fig.3d shows the LSV curves of BiVO4and ZnCo2O4/BiVO4photoanodes tested in 0.5 mol/L Na2SO4solution with 1 mol/L Na2SO3.As a hole trapping agent,Na2SO3is easily oxidized by holes.When Na2SO3is present,the photogenerated holes reaching the surface of BiVO4and ZnCo2O4/BiVO4are all involved in the oxidation of Na2SO3.Therefore,the photocurrent density for Na2SO3oxidation represents the amount of photogenerated holes reaching on the surface of BiVO4and ZnCo2O4/BiVO4.In the presence of Na2SO3,the photocurrent density of ZnCo2O4/BiVO4is higher than that of BiVO4,indicating that the amount of photogenerated holes reaching the surface of ZnCo2O4/BiVO4is higher than that of BiVO4.This means that the ZnCo2O4/BiVO4heterojunction structure promotes the separation of photogenerated charges.Fig.S3(Supporting information)shows the chopped LSV curves of BiVO4and ZnCo2O4/BiVO4with chopped light illumination.When the simulated sunlight was used to illuminate the photoanode,the photocurrent density of the BiVO4and ZnCo2O4/BiVO4electrodes immediately increased.When the light is blocked,the photocurrent density of the both photoanodes immediately reduced to almost 0 mA/cm2,suggesting that the photoanodes is very sensitive to light.The photocurrent densities of the electrodes are disparate at different voltages.At the same potential,the photocurrent density of the ZnCo2O4/BiVO4photoanode is distinctly higher than that of the BiVO4electrode,implying ZnCo2O4nanoparticles can significantly improve the PEC water oxidation performance of BiVO4photoanode.

    The efficiency of PEC water splitting is determined by light capture efficiency,charge separation efficiency in the bulk(ηbulk)and surface reaction efficiency(ηsurface)of photoelectrode.To analyze these efficiencies,the maximum theoretical photocurrentsJabsunder AM 1.5G simulated sunlight was calculated from UV diffuse reflection data of BiVO4and ZnCo2O4/BiVO4photoanodes(Fig.S4 in Supporting information).ηbulkwas calculated through dividing the photocurrent for Na2SO3oxidation(JNa2SO3,Data in Fig.3d)byJabs[44].ηsurfacerepresents the ratio of surface holes participated in the reaction,which is obtained through dividing photocurrent for water oxidation(data in Fig.3a)byJNa2SO3.Fig.4a shows thatηbulkof ZnCo2O4/BiVO4reaches 70% at 1.23 Vvs.RHE,while theηbulkof pure BiVO4is 50%,indicating the loading of ZnCo2O4can enhance charge separation efficiency of BiVO4.Fig.4b represents theηsurfaceof the ZnCo2O4/BiVO4photoanode reaches 50% at 1.23 Vvs.RHE,while theηsurfaceof the BiVO4photoanode is merely 25%.As a water oxidation cocatalyst,ZnCo2O4improves the kinetics of water splitting reaction.Based on LSV curve shown in Fig.3a,applied bias photon-to-current efficiency(ABPE)values can be obtained[45].In Fig.4c,the maximum efficiency of the BiVO4film is 0.1% at 1.1 Vvs.RHE,while the ZnCo2O4/BiVO4photoanode attains a maximum ABPE value of 0.6% at 0.9 Vvs.RHE.The maximum efficiency of ZnCo2O4/BiVO4composite photoanode is 6 times that of BiVO4.This indicates that ZnCo2O4improves the photoelectrochemical performance of BiVO4.The IPCE values of BiVO4and ZnCo2O4/BiVO4photoanodes were tested at 1.23 Vvs.RHE.As can be seen from Fig.4d,the IPCE value of ZnCo2O4/BiVO4electrode is higher than that of BiVO4in the wavelength range of 320~510 nm.The IPCE value of ZnCo2O4/BiVO4electrode can reach 40% at 380 nm.Absorbed photon-to-current conversion effi-ciency(APCE)of BiVO4and ZnCo2O4/BiVO4electrodes were calculated through dividing IPCE values by light absorption values and the resulting APCE values are given in Fig.S5(Supporting information).Almost half absorbed photons can be converted to current by ZnCo2O4/BiVO4electrode,about 20% higher than that of BiVO4,indicating that the light utilization rate of the electrode is improved after loading ZnCo2O4.To confirm the reliability of our tests,the integrations of IPCE of BiVO4and ZnCo2O4/BiVO4photoanodes with the AM 1.5G solar current were carried out.As shown in Figs.4e and f,the photocurrents of BiVO4and ZnCo2O4/BiVO4photoanodes obtained by integrating AM 1.5G solar currents are 1.8 and 3.2 mA/cm2,which are approximate equivalent to the photocurrents in LSV measurement,indicating the tests are reliable.

    Fig.4.(a)Charge separation efficiency in the bulk(ηbulk)and(b)surface reaction efficiency(ηsurface)of BiVO4 and ZnCo2O4/BiVO4 photoanodes.(c)ABPE curves of pure BiVO4 and ZnCo2O4/BiVO4 photoelectrodes.(d)IPCE values of BiVO4 and ZnCo2O4/BiVO4 photoanodes;Solar photocurrents of(e)BiVO4 and(f)ZnCo2O4/BiVO4 anodes(left ordinate)and integrated photocurrent at 1.23 V vs. RHE(right ordinate).

    The relative magnitude of the charge transfer rate of BiVO4and ZnCo2O4/BiVO4photoanodes was investigated by electrochemical impedance spectroscopy(EIS).The Nyquist plots of EIS spectra of BiVO4and ZnCo2O4/BiVO4photoanodes are a semi-circular arc whatever in dark conditions or under AM 1.5G simulated sunlight(Figs.S6a and b in Supporting information).The impedance of the circuit can be explained by the simplified Randles circuit model,in which RΩrepresents the solution resistance.Rctrepresents charge-transfer resistance at the interface of semiconductor and electrolyte andCctrepresents the capacitance of the bulk BiVO4[46].The smaller the diameter of the arc,the stronger the charge transfer capability is.ZnCo2O4/BiVO4exhibits a smaller arc diameter than BiVO4,indicating that the charge transfer rate in the photoanode increases after the ZnCo2O4cocatalyst is supported.It is worth noting that the arc diameter is smaller under light irradiation,indicating charge transfer become easy with light irradiation.The PEC water splitting reaction of ZnCo2O4/BiVO4photoanode was carried out in a closed reactor.Prior to the water splitting reaction,the reactor was purged with N2for 1 hour to remove air from the reactor.The PEC water splitting reaction was carried out for 3 h at 1.23 Vvs.RHE.1 mL of gas was withdrawn from the reactor every half hour,and the gas was quickly pumped into the gas chromatograph to detect the amount of hydrogen and oxygen produced.After 3 h of reaction,153.7 μmol of H2and 79.8 μmol of O2were produced with the mole ratio of H2to O2of 1.9:1(Fig.S6c in Supporting information).The average Faradaic efficiency of PEC cell for H2and O2production(Fig.S6d in Supporting information)is about 90% and 86%,respectively,which indicates that the photoanode ZnCo2O4/BiVO4has good water splitting efficiency.

    Fig.5.Mott-Schottky plots of(a)ZnCo2O4 and(b)BiVO4,ZnCo2O4/BiVO4;(c)Input voltage-output current characteristic curves of BiVO4 and ZnCo2O4/BiVO4 anodes.The dotted line is used as a linear reference;(d)Heterojunction illustration and water splitting mechanism of ZnCo2O4/BiVO4 photoanode.

    Mott-Schottky tests were performed to study the semiconductor type of ZnCo2O4,BiVO4and ZnCo2O4/BiVO4photoanodes.As demonstrated in Fig.5a,ZnCo2O4shows a negative slope,indicating that ZnCo2O4is p-type semiconductor.While BiVO4photoanode shows positive slope,meaning the n-type property of BiVO4(Fig.5b).The intersection of Mott-Schottky curves and x-axis are close to 0.38 Vvs.RHE with/without loading ZnCo2O4,demonstrating the flat band potentials(Vfb)of BiVO4photoanodes are 0.38V.

    TheVfbvalue of BiVO4is 0.38V.Considering that theVfbof ntype semiconductor is slightly positive(~0.1-0.3 V)than the CB potential,the conduction band(CB)potential of BiVO4is about 0.18 V[47].The band gap of BiVO4is 2.46 eV(Fig.S1b).According to the relationship between CB and valence band(VB),the VB of BiVO4can be calculated to be 2.64 V.The p-type semiconductor ZnCo2O4has aVfbvalue of 1.98 V(Fig.5a).Because VB position of a p-type semiconductor is approximately 0.2 V higher than itsVfbvalue,the VB position of ZnCo2O4is 2.18 V.ZnCo2O4has a band gap width of 2.10 eV,so the CB position of ZnCo2O4is calculated to be 0.08 V.The staggered energy levels of BiVO4and ZnCo2O4allows them to form p-n junction.

    The formation of p-n junctions between BiVO4and ZnCo2O4was proved by input voltage-output current test as shown in Fig.5c.BiVO4photoanode shows a linear relationship between input voltage and output current due to the ohmic contact between BiVO4and FTO substrate[48].On the contrary,ZnCo2O4/BiVO4anode represents a nonlinear relation between output current and input voltage,indicating the interface contact type between ZnCo2O4and BiVO4is p-n junction[49].Built-in electric field in the p-n junction favors the transfer of holes from BiVO4to ZnCo2O4for water oxidation.

    The PEC water splitting mechanism of ZnCo2O4/BiVO4is proposed as shown in Fig.5d.BiVO4and ZnCo2O4are excited to generate electrons and holes by illuminating from the back of the photoanode.The electrons in conduction band of ZnCo2O4migrate to the conduction band of BiVO4,and then transfer to the counter electrode under external circuit for H2evolution reaction.The holes in valence band of BiVO4transfer to the valence band position of ZnCo2O4with the assistance of built-in electric field for water oxidation reaction(O2evolution reaction).After a long-time reaction,the photocurrent of ZnCo2O4/BiVO4anode presents only a small decrease(Fig.S7 in Supporting information).

    In summary,we have constructed a p-n heterojunction ZnCo2O4/BiVO4photoanode by a simple electrophoretic deposition method.The formation of p-n junction between BiVO4and ZnCo2O4is proved by input voltage-output current test.Compared with BiVO4,this composite photoanode ZnCo2O4/BiVO4has better photoelectrochemical water splitting performance.The photocurrent density of ZnCo2O4/BiVO4reaches 3.0 mA/cm2at 1.23 Vvs.RHE,about 2.1 times greater than that of BiVO4.The formation of a p-n heterojunction between the BiVO4and ZnCo2O4improves the separation efficiency of carriers while the cocatalyst ZnCo2O4accelerates the surface reaction kinetics,leading to enhanced charge separation efficiency and surface reaction efficiency.After 3 h reaction,the produced H2and O2achieve 153.7 and 79.8 μmol,respectively.All results demonstrate that ZnCo2O4can boost the photoelectrochemical water oxidation performance of BiVO4.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China(Nos.21808189 and 21663027),Natural Science Basic Research Fund of Shaanxi Province(No.2020JZ20),and Fundamental Research Funds for the Central Universities of Chang’an University(No.300102299304).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.08.082.

    国产精品综合久久久久久久免费| 久久久久久久久大av| 国产精品一区二区三区四区久久| 日韩 亚洲 欧美在线| 九九久久精品国产亚洲av麻豆| 精品人妻偷拍中文字幕| 国产一区有黄有色的免费视频 | 超碰97精品在线观看| 床上黄色一级片| 男人舔女人下体高潮全视频| 久久鲁丝午夜福利片| 高清视频免费观看一区二区 | 国产亚洲精品久久久com| 国产精品一及| 国产精品一区二区性色av| 国产又色又爽无遮挡免| 特大巨黑吊av在线直播| 一区二区三区乱码不卡18| 久久人人爽人人爽人人片va| 亚洲精品乱码久久久久久按摩| 日韩成人伦理影院| 特大巨黑吊av在线直播| 日韩亚洲欧美综合| 国产精品日韩av在线免费观看| 国产av不卡久久| av播播在线观看一区| 国产精品久久久久久久电影| 亚洲成av人片在线播放无| 干丝袜人妻中文字幕| av卡一久久| 国产黄a三级三级三级人| 麻豆久久精品国产亚洲av| 波多野结衣巨乳人妻| 免费看日本二区| 在现免费观看毛片| 一级二级三级毛片免费看| 午夜a级毛片| 久久久亚洲精品成人影院| 一级黄色大片毛片| 免费av观看视频| 国产亚洲午夜精品一区二区久久 | 91狼人影院| 亚洲国产成人一精品久久久| 一个人观看的视频www高清免费观看| 日韩三级伦理在线观看| 亚洲欧美日韩无卡精品| 亚洲精品aⅴ在线观看| 亚洲成色77777| 人人妻人人看人人澡| 男人狂女人下面高潮的视频| 熟女人妻精品中文字幕| 久久精品久久精品一区二区三区| 成人午夜高清在线视频| 亚州av有码| 亚洲精品,欧美精品| 我的老师免费观看完整版| 欧美+日韩+精品| 亚洲人成网站在线播| 欧美色视频一区免费| 久久精品久久精品一区二区三区| 国产一区二区在线av高清观看| 亚洲国产精品sss在线观看| 久久久久国产网址| av专区在线播放| 国产av一区在线观看免费| 国产精品嫩草影院av在线观看| 久久久久久大精品| 亚洲精品日韩在线中文字幕| 日韩在线高清观看一区二区三区| 观看免费一级毛片| 建设人人有责人人尽责人人享有的 | 精品午夜福利在线看| 三级国产精品欧美在线观看| 波野结衣二区三区在线| 国产一区有黄有色的免费视频 | 高清毛片免费看| 日韩高清综合在线| 国产乱人视频| 精品国内亚洲2022精品成人| 国产麻豆成人av免费视频| 天美传媒精品一区二区| 国产私拍福利视频在线观看| 日日啪夜夜撸| 色综合色国产| 精品久久久久久久人妻蜜臀av| 久久精品国产亚洲av天美| 99久久精品国产国产毛片| 男女国产视频网站| 国产精品国产三级国产av玫瑰| 久久久午夜欧美精品| 全区人妻精品视频| 高清视频免费观看一区二区 | 男人和女人高潮做爰伦理| 两个人视频免费观看高清| 国产精品精品国产色婷婷| 成年女人永久免费观看视频| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲熟妇中文字幕五十中出| 成人三级黄色视频| 精品人妻偷拍中文字幕| 欧美日韩综合久久久久久| 岛国毛片在线播放| 91狼人影院| 日韩欧美在线乱码| 天堂av国产一区二区熟女人妻| 国产高清三级在线| 精品久久久久久久久久久久久| 国产成人aa在线观看| 亚洲四区av| 免费观看性生交大片5| 成人漫画全彩无遮挡| 国产精品三级大全| 国产成年人精品一区二区| 国产精品久久久久久精品电影| 哪个播放器可以免费观看大片| 午夜日本视频在线| 边亲边吃奶的免费视频| 波野结衣二区三区在线| 纵有疾风起免费观看全集完整版 | 一本一本综合久久| 国产精品久久视频播放| 我的老师免费观看完整版| 久久久久久久久中文| 中文字幕久久专区| 蜜桃久久精品国产亚洲av| 国产乱来视频区| 亚洲国产色片| 国产精品熟女久久久久浪| 一区二区三区四区激情视频| av在线天堂中文字幕| 亚洲欧洲日产国产| 免费电影在线观看免费观看| 搡老妇女老女人老熟妇| 2021少妇久久久久久久久久久| 秋霞在线观看毛片| 99热这里只有是精品50| 国产在线男女| 99久久成人亚洲精品观看| 国产大屁股一区二区在线视频| 久久精品国产亚洲av天美| 国产精品永久免费网站| videos熟女内射| 亚洲人成网站在线播| 中文字幕免费在线视频6| 亚洲一区高清亚洲精品| 超碰97精品在线观看| 成年免费大片在线观看| 午夜激情福利司机影院| 熟女人妻精品中文字幕| 久热久热在线精品观看| 简卡轻食公司| 日韩亚洲欧美综合| 99久久精品国产国产毛片| 2021少妇久久久久久久久久久| 亚洲综合精品二区| 男插女下体视频免费在线播放| 亚洲av免费高清在线观看| 国产片特级美女逼逼视频| 亚洲欧美清纯卡通| 2021少妇久久久久久久久久久| 毛片一级片免费看久久久久| 免费观看性生交大片5| 亚洲欧美日韩卡通动漫| 少妇裸体淫交视频免费看高清| 免费观看性生交大片5| 久久精品影院6| 亚洲精品乱久久久久久| 日本五十路高清| 国产女主播在线喷水免费视频网站 | 亚洲精品影视一区二区三区av| 亚洲欧美日韩卡通动漫| 精品久久久久久久末码| 国产在视频线精品| 午夜福利视频1000在线观看| 午夜福利视频1000在线观看| 亚洲人与动物交配视频| 国产乱人偷精品视频| 国产欧美日韩精品一区二区| 夜夜爽夜夜爽视频| 亚洲欧美成人精品一区二区| 亚洲性久久影院| www.av在线官网国产| 精品酒店卫生间| 国产精品久久久久久久电影| 大话2 男鬼变身卡| 纵有疾风起免费观看全集完整版 | 欧美高清性xxxxhd video| 高清在线视频一区二区三区 | 女人久久www免费人成看片 | 女人十人毛片免费观看3o分钟| 男人的好看免费观看在线视频| 国产老妇伦熟女老妇高清| 成人av在线播放网站| 国产美女午夜福利| 免费看日本二区| 亚洲图色成人| 久久久精品大字幕| 亚洲av中文字字幕乱码综合| kizo精华| 日韩在线高清观看一区二区三区| 搞女人的毛片| 看十八女毛片水多多多| 人妻夜夜爽99麻豆av| 成人三级黄色视频| 国产精品一及| 色综合亚洲欧美另类图片| 午夜久久久久精精品| 青春草国产在线视频| 欧美xxxx性猛交bbbb| 午夜激情欧美在线| 国产探花在线观看一区二区| 国产单亲对白刺激| 蜜桃久久精品国产亚洲av| 亚洲人成网站在线播| 少妇熟女aⅴ在线视频| 黄片无遮挡物在线观看| 精品一区二区免费观看| 亚洲精品乱久久久久久| 国产高清国产精品国产三级 | 五月伊人婷婷丁香| 少妇人妻一区二区三区视频| 亚洲av中文av极速乱| 成人三级黄色视频| 3wmmmm亚洲av在线观看| 亚洲av.av天堂| 丰满人妻一区二区三区视频av| 少妇的逼好多水| 免费大片18禁| 亚洲精品国产av成人精品| 日韩亚洲欧美综合| 午夜福利成人在线免费观看| 欧美不卡视频在线免费观看| 亚洲美女视频黄频| 91在线精品国自产拍蜜月| 国产在视频线精品| 麻豆av噜噜一区二区三区| 亚洲av电影不卡..在线观看| 国产综合懂色| 少妇的逼水好多| 日韩,欧美,国产一区二区三区 | 亚洲国产欧美在线一区| 精品久久国产蜜桃| 亚洲内射少妇av| 久久久精品欧美日韩精品| 精品久久久久久久末码| 国产精品一区www在线观看| 秋霞在线观看毛片| 亚洲精品456在线播放app| 国产大屁股一区二区在线视频| 日本一本二区三区精品| 中文字幕av在线有码专区| 国产黄片美女视频| 久久热精品热| 五月伊人婷婷丁香| 七月丁香在线播放| 色吧在线观看| АⅤ资源中文在线天堂| 18禁在线播放成人免费| 欧美成人a在线观看| 久久人人爽人人片av| 午夜久久久久精精品| 久久久久免费精品人妻一区二区| 夫妻性生交免费视频一级片| 日韩av在线免费看完整版不卡| 国产精品av视频在线免费观看| 久久久久久国产a免费观看| 免费观看人在逋| 18禁裸乳无遮挡免费网站照片| 免费在线观看成人毛片| 日韩欧美国产在线观看| 特级一级黄色大片| 久久精品91蜜桃| 中文字幕av成人在线电影| 热99在线观看视频| 国产精品日韩av在线免费观看| 男插女下体视频免费在线播放| 久久久国产成人精品二区| 国产成人精品一,二区| 亚洲欧美成人精品一区二区| 精品酒店卫生间| 亚洲电影在线观看av| 久久国产乱子免费精品| 99在线人妻在线中文字幕| 欧美成人a在线观看| 久久精品夜色国产| 亚洲av成人精品一区久久| 欧美变态另类bdsm刘玥| 一个人看的www免费观看视频| ponron亚洲| 国产国拍精品亚洲av在线观看| 丝袜美腿在线中文| 水蜜桃什么品种好| 日韩欧美国产在线观看| av在线亚洲专区| 91久久精品电影网| 免费av毛片视频| 免费观看性生交大片5| 最近2019中文字幕mv第一页| 免费观看精品视频网站| 亚洲精品乱码久久久久久按摩| 欧美性感艳星| 午夜精品国产一区二区电影 | 性色avwww在线观看| 午夜福利视频1000在线观看| 国产91av在线免费观看| 午夜免费男女啪啪视频观看| 精品国产一区二区三区久久久樱花 | 亚洲国产欧洲综合997久久,| 久久综合国产亚洲精品| 国产精品美女特级片免费视频播放器| 高清毛片免费看| 日本熟妇午夜| 亚洲精品,欧美精品| 九色成人免费人妻av| 午夜福利在线观看吧| 国产一级毛片在线| 欧美潮喷喷水| 亚洲精品久久久久久婷婷小说 | 日日撸夜夜添| 国产国拍精品亚洲av在线观看| 美女内射精品一级片tv| 免费在线观看成人毛片| 男女那种视频在线观看| 欧美激情久久久久久爽电影| 国内精品美女久久久久久| 国产精品无大码| 亚洲av福利一区| 欧美zozozo另类| 啦啦啦啦在线视频资源| av专区在线播放| 熟女电影av网| 日韩精品有码人妻一区| 国产亚洲最大av| 午夜爱爱视频在线播放| 观看免费一级毛片| 精品国产一区二区三区久久久樱花 | 久久6这里有精品| 国产精品一二三区在线看| 成人一区二区视频在线观看| 夫妻性生交免费视频一级片| 亚洲精品日韩av片在线观看| 色综合站精品国产| 99久久精品国产国产毛片| 又爽又黄a免费视频| av福利片在线观看| 久久久久精品久久久久真实原创| 久久综合国产亚洲精品| 人妻系列 视频| 国产伦精品一区二区三区四那| 伦理电影大哥的女人| 国产精品福利在线免费观看| 国产亚洲最大av| 三级毛片av免费| 日日摸夜夜添夜夜添av毛片| 边亲边吃奶的免费视频| 欧美bdsm另类| 岛国在线免费视频观看| 女的被弄到高潮叫床怎么办| 国产精品不卡视频一区二区| 男女啪啪激烈高潮av片| 精品久久国产蜜桃| 日本一二三区视频观看| 精品久久久久久久久久久久久| 99久久九九国产精品国产免费| 中文欧美无线码| 观看美女的网站| 嘟嘟电影网在线观看| 精品少妇黑人巨大在线播放 | 亚洲国产精品成人综合色| 国产精品久久久久久精品电影小说 | 色噜噜av男人的天堂激情| 91在线精品国自产拍蜜月| 国产精品蜜桃在线观看| 国产精品.久久久| 国产真实伦视频高清在线观看| 青春草亚洲视频在线观看| 久久精品久久久久久久性| 在线播放无遮挡| 国产三级在线视频| 激情 狠狠 欧美| 成年免费大片在线观看| av在线亚洲专区| 国产一区二区三区av在线| 嫩草影院精品99| 麻豆av噜噜一区二区三区| 不卡视频在线观看欧美| 男人舔女人下体高潮全视频| 日日干狠狠操夜夜爽| 国产精品蜜桃在线观看| 国产精品一区二区三区四区免费观看| 亚洲精品,欧美精品| 18禁在线播放成人免费| 蜜桃亚洲精品一区二区三区| 欧美高清成人免费视频www| 美女大奶头视频| 91久久精品国产一区二区成人| 亚洲av不卡在线观看| 国语自产精品视频在线第100页| 亚洲美女视频黄频| 一区二区三区免费毛片| 亚洲国产精品国产精品| 麻豆久久精品国产亚洲av| 亚洲内射少妇av| 麻豆乱淫一区二区| 久久久久国产网址| 在线观看一区二区三区| 91精品伊人久久大香线蕉| 欧美极品一区二区三区四区| 欧美区成人在线视频| 亚洲18禁久久av| 三级毛片av免费| 色5月婷婷丁香| 精品一区二区免费观看| 国语对白做爰xxxⅹ性视频网站| 十八禁国产超污无遮挡网站| 亚洲中文字幕一区二区三区有码在线看| 天堂√8在线中文| 人妻系列 视频| 99在线视频只有这里精品首页| 欧美97在线视频| 亚洲精品亚洲一区二区| 岛国在线免费视频观看| 国产色爽女视频免费观看| 中文字幕av成人在线电影| 校园人妻丝袜中文字幕| 特大巨黑吊av在线直播| 成年女人看的毛片在线观看| 嫩草影院精品99| 日本三级黄在线观看| 纵有疾风起免费观看全集完整版 | 亚洲中文字幕日韩| 亚洲国产欧美人成| 国产单亲对白刺激| 色网站视频免费| 国产精品三级大全| 久久精品国产99精品国产亚洲性色| 最近中文字幕2019免费版| 一级毛片电影观看 | 高清视频免费观看一区二区 | 亚洲一级一片aⅴ在线观看| 午夜激情欧美在线| 三级男女做爰猛烈吃奶摸视频| 日本av手机在线免费观看| 久久精品熟女亚洲av麻豆精品 | 啦啦啦啦在线视频资源| 两性午夜刺激爽爽歪歪视频在线观看| 高清av免费在线| 亚洲中文字幕一区二区三区有码在线看| 亚洲国产欧美人成| 麻豆av噜噜一区二区三区| 亚洲经典国产精华液单| 亚洲av成人av| 亚洲欧美日韩高清专用| 成人美女网站在线观看视频| 中文亚洲av片在线观看爽| 日本五十路高清| 婷婷色麻豆天堂久久 | 欧美一区二区精品小视频在线| 婷婷色av中文字幕| 日韩一区二区三区影片| 老女人水多毛片| 三级男女做爰猛烈吃奶摸视频| 97超视频在线观看视频| 老司机影院成人| 99久久成人亚洲精品观看| 免费av不卡在线播放| 爱豆传媒免费全集在线观看| 国产视频首页在线观看| 久热久热在线精品观看| 日本-黄色视频高清免费观看| 午夜日本视频在线| 亚洲欧美日韩卡通动漫| 精品人妻一区二区三区麻豆| 久久精品91蜜桃| 国产高清国产精品国产三级 | 久久99热6这里只有精品| 人妻制服诱惑在线中文字幕| 菩萨蛮人人尽说江南好唐韦庄 | 欧美成人精品欧美一级黄| 一级黄色大片毛片| 激情 狠狠 欧美| 老师上课跳d突然被开到最大视频| 自拍偷自拍亚洲精品老妇| 亚洲四区av| 国产成人freesex在线| 少妇的逼好多水| 精品99又大又爽又粗少妇毛片| 亚洲激情五月婷婷啪啪| 亚洲aⅴ乱码一区二区在线播放| 国产免费又黄又爽又色| 久久久亚洲精品成人影院| 日本av手机在线免费观看| 国产一区有黄有色的免费视频 | 国产白丝娇喘喷水9色精品| 一级二级三级毛片免费看| 中文字幕久久专区| 免费观看a级毛片全部| 久久久久网色| h日本视频在线播放| 26uuu在线亚洲综合色| 99在线视频只有这里精品首页| 91精品一卡2卡3卡4卡| 亚洲综合色惰| 国产人妻一区二区三区在| 中文亚洲av片在线观看爽| 美女xxoo啪啪120秒动态图| 99热这里只有是精品在线观看| 夜夜看夜夜爽夜夜摸| 最近中文字幕高清免费大全6| 国产成人a区在线观看| av在线观看视频网站免费| 精品久久久久久久末码| 麻豆成人av视频| 国产精品一区二区三区四区久久| 亚洲一区高清亚洲精品| 国产高潮美女av| 天天躁日日操中文字幕| 欧美日韩国产亚洲二区| 国产精品国产三级国产av玫瑰| 国产精品伦人一区二区| 国内少妇人妻偷人精品xxx网站| 狠狠狠狠99中文字幕| 亚洲三级黄色毛片| 成人国产麻豆网| 国产精品久久久久久精品电影小说 | 亚洲av电影在线观看一区二区三区 | 欧美激情久久久久久爽电影| 校园人妻丝袜中文字幕| 天天一区二区日本电影三级| 内射极品少妇av片p| 亚洲av成人av| 国产淫语在线视频| 国国产精品蜜臀av免费| 久久亚洲国产成人精品v| 中文字幕熟女人妻在线| 欧美日韩国产亚洲二区| 免费大片18禁| 欧美激情国产日韩精品一区| 欧美性猛交╳xxx乱大交人| 可以在线观看毛片的网站| 男女边吃奶边做爰视频| 中文在线观看免费www的网站| 日韩一本色道免费dvd| 毛片一级片免费看久久久久| 亚洲人成网站在线观看播放| 高清日韩中文字幕在线| 国产91av在线免费观看| 亚洲乱码一区二区免费版| 中文字幕精品亚洲无线码一区| 在线天堂最新版资源| 六月丁香七月| 国产成人freesex在线| 深爱激情五月婷婷| 美女被艹到高潮喷水动态| 色吧在线观看| 中文在线观看免费www的网站| 热99在线观看视频| 成人二区视频| 国产亚洲5aaaaa淫片| 久久精品夜色国产| 午夜日本视频在线| 一级黄片播放器| 日本午夜av视频| 久久精品国产亚洲av天美| 国产不卡一卡二| 女人被狂操c到高潮| 午夜福利高清视频| 97热精品久久久久久| 九草在线视频观看| 卡戴珊不雅视频在线播放| www.av在线官网国产| 偷拍熟女少妇极品色| 午夜免费男女啪啪视频观看| 久久久久久久午夜电影| 国产精品麻豆人妻色哟哟久久 | 久久精品国产99精品国产亚洲性色| 国产精品综合久久久久久久免费| 精品久久久久久久末码| 三级经典国产精品| 99国产精品一区二区蜜桃av| 中文字幕久久专区| 长腿黑丝高跟| 内地一区二区视频在线| 哪个播放器可以免费观看大片| 亚洲aⅴ乱码一区二区在线播放| 亚洲自拍偷在线| 最近手机中文字幕大全| 亚洲成色77777| 久久午夜福利片| 日韩国内少妇激情av| 午夜亚洲福利在线播放| 人人妻人人看人人澡| 免费不卡的大黄色大毛片视频在线观看 | 夫妻性生交免费视频一级片| 校园人妻丝袜中文字幕| 一个人看视频在线观看www免费| 我要搜黄色片| 看免费成人av毛片| 嫩草影院新地址| 色综合色国产| 一二三四中文在线观看免费高清| 亚洲欧美日韩东京热| 综合色丁香网| 熟妇人妻久久中文字幕3abv| 青青草视频在线视频观看| 国产探花极品一区二区| 免费观看人在逋| 97超碰精品成人国产| 中文字幕熟女人妻在线| 国产午夜精品论理片| 少妇裸体淫交视频免费看高清| 两性午夜刺激爽爽歪歪视频在线观看| 最近中文字幕高清免费大全6| 久久鲁丝午夜福利片| 色播亚洲综合网|