• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Facile one-pot synthesis of a novel all-carbon stair containing dimerized pentalene core from alkyne

    2022-06-20 06:21:24HuiZhoRkeshKumrGuptWeiZhngJiongJiQunYuZhiyongGoGuilinZhungDhengLiXingpoWngChenHoTungDiSun
    Chinese Chemical Letters 2022年4期

    Hui Zho,Rkesh Kumr Gupt,Wei Zhng,Jiong Ji,Qun Yu,Zhiyong Go,Guilin Zhung,*,Dheng Li,Xingpo Wng,*,Chen Ho Tung,Di Sun,*

    a Key Laboratory of Colloid and Interface Chemistry,Ministry of Education,School of Chemistry and Chemical Engineering,State Key Laboratory of Crystal Materials,Shandong University,Ji’nan 250100,China

    b College of Chemical Engineering and Materials Science,Zhejiang University of Technology,Hangzhou 310032,China

    c School of Chemistry and Chemical Engineering,Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals,Key Laboratory of Green Chemical Media and Reactions,Ministry of Education,Henan Normal University,Xinxiang 453007,China

    d Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology,and School of Chemistry and Chemical Engineering,Liaocheng University,Liaocheng 252000,China

    1 These two authors contributed equally to this work.

    ABSTRACT The construction of all-carbon molecule frameworks remains challenging.Herein,we report a facile and efficient one-pot synthesis of a novel all-carbon stair containing dimerized pentalene core using inexpensive cyclopropyl alkyne catalyzed by in situ generated Cu(I)from the comproportionation reaction of Cu(II)salt and Cu powder under mild reaction conditions.The reaction proceeds via sequential acetylenic coupling,followed by cyclization and[2+2]cycloaddition to directly produce pentalene dimer,which is difficult to access by other established methods.Different mechanistic paths were studied for the pentalene formation using density functional theory,suggesting that the reaction also proceeds through acetylenic coupling followed by cyclization and[2+2]cycloaddition.Based on the activation energy barriers,Path 1 has the rate-determining step of 38.63 kcal/mol,which is the most thermodynamically preferred one among the four paths.

    Keywords:One-pot synthesis Penatlene dimerization Comproportionation reaction Crystal structure Theoretical calculations

    During the past few decades,pentalene and its derivatives have attracted much attention of chemists due to their synthetic challenges and antiaromatic characters[1–6].The chemistry of benzopentalene derivatives has been well explored[7–10].However,the pentalene dimer or its derivatives are elusive because of multistep syntheses,tedious purification processes,and low synthetic yield.For instance,Neuenschwanderet al.isolated unsubstituted pentalene dimer by two pathways,firstly oxidative coupling of dilithium pentalenediide dihydropentalene[11]and secondly the removal of hydrogen bromide from 1–bromo-1,2-dihydropentalene resulting in the dimerization of 1–bromo-1,2-dihydropentalene[12].The dilithium pentalenediide was obtained by the reaction of BuLi and dihydropentalenes,which had to be producedviagas-phase pyrolysis of cyclooctatetraene at 400–675 °C[13,14].Although the synthesis of pentalene by nonpyrolytic methods may also be achieved by the Skattebol rearrangement of a geminal dibromocyclopropane fused cycloheptatriene[15,16],a general method for the synthesis of substituted pentalene dimers has not been reported.

    One of the most exciting aspects of transition metal chemistry is the formation of new stable metal complexes with unstable organic molecules under normal conditions[17–21].For example,Pettitet al.isolated a stable tricarbonyliron complex by dehalogenation of 3,4-dichlorocyclobut-1-ene with Fe2(CO)9[22].Katzet al.have shown that the coordination to metals centres can stabilize pentalene[23–25].Several organometallic complexes with highly unstable pentalene and its derivatives exhibiting interesting electronic properties have been well investigated[26,27].

    On the other hand,alkynyl ligands have been proved to be multifunctional protective ligands for constructing atomically precise metal nanoclusters[28].Inspired by our previous works[29–31],herein,we were interested in developing copper nanocluster in the presence ofcPrC≡CH,Cu(CF3COO)2and Cu powder under solvothermal conditions.To our surprise,the reaction underwent multiplein situtransformations,resulting in the formation of a pentalene dimer instead of a copper nanocluster.The ensuing pentalene dimer has been comprehensively characterized by NMR,MALDI-TOF/MS,single-crystal X-ray diffraction,UV–vis absorption studies,and further supported by theoretical calculations.To our knowledge,this is the simplest and effective synthetic route for pentalene dimer,and it is also the first example of such compounds characterized by single-crystal X-ray analysis.

    The pentalene dimer was synthesized by the reaction of a mixture of Cu(CF3COO)2,Cu powder andcPrC≡CH in a 1:4:1(v/v/v)mixture of DMF-MeOH-MeCN(6 mL).The mixture was reacted at 50 °C by stirring for 6 h,followed by the solvothermal treatment at 70 °C for 36 h(Scheme 1).A large number of orange rod-like crystals(ca.20%)and the small number of yellow rod-like crystals(ca.5%)of C40H44were obtained within two days,which were unambiguously characterized by X-ray crystallography.These compounds have been identified as triclinic(4t)and monoclinic(4m)polymorphs of C40H44.The synthesis details and some basic characterizations are provided in the Supporting information.

    Scheme 1.One-pot synthesis of pentalene dimer derivative.

    Scheme 2.Proposed transformations and mechanisms for pentalene dimer formation.

    Notably,due to the polymorphic nature,only 4t has been taken as a representative for discussions in detail,but some differences between 4m and 4t were also included.The IR spectrum of 4t exhibits the characteristic stretching vibrations at 3074,2998,and 1615 cm-1,assigned to =C–H,–C–H and C=C,respectively(Fig.S1 in Supporting information).The1H NMR spectrum of 4t shows the characteristics proton signals for the pentalene(H5)and cyclobutane(H15)at 5.45 and 2.15 ppm as singlet,respectively(Fig.1a).The chemical shift of methylene(CH2)and methine proton(CH)on the cyclopropyl ring attached to the cyclobutane ring appear below 0.5 ppm(δH–0.33,td;0.14–0.03,m;0.19,ddd;0.50–0.44,m)and 1.47,tt,respectively.Among them,one proton(H13B)on a cyclopropyl ring showing upfield shift(δH–0.33),which is caused by the shielding effect from the adjacent pentalene ring.Whereas the protons on the cyclopropyl ring attached to the pentacene core resonated in the region of 0.51–1.83 ppm.Correspondingly,the13C{1H} NMR spectrum shows the characteristics sp3tertiary carbon(C15)and sp3quaternary carbon(C11)and at 38.26 and 71.53 ppm,respectively(Fig.1b).The sp2tertiary carbons of the pentalene core resonated at 159.66(C4),142.90(C6),161.99(C7),145.47(C16),130.53(C17)ppm,together with sp2secondary carbon(C5)at 101.28 ppm.The carbons of the cyclopropyl group appeared in the range of–0.18-15.96 ppm.All these assignments for protons on 4t were further supported by DEPT135 and 2D NMR spectroscopic data,including1H–13C HMBC,1H–1H COSY,and1H–1H NOESY experiments.The detailed data of 1D and 2D NMR are shown in Tables S1,S2 and Figs.S2-S5(Supporting information).The experimental1H and13C{1H} NMR data match well with the theoretical data(Figs.S6-S9 and Table S1 in Supporting information).The composition of 4t has been further confirmed by the matrix-assisted laser desorption/ionization–time–of–flight(MALDITOF)mass spectrum(m/zcalcd.for C40H44[M]+,524.343;found 524.391)(Fig.S10 in Supporting information).

    High-quality single crystals suitable for X-ray diffraction of pentalene dimers were grown by slow evaporation of the reaction mixture for 2–3 days.It crystallizes as a polymorph in the centrosymmetric triclinic and monoclinic crystal system with the space group ofP-1 andP21/c,respectively(Table S3 in Supporting information).Although some reports on pentalene dimers are well documented,and various geometries and isomers were suggested,no crystal structures with such kinds of dimers were reported to date.To our knowledge,this is the first example of a pentalene dimer,which has been unambiguously determined by single-crystal X-ray analysis.Due to the similarity of their molecular structures,we take the triclinic system(4t)as a representative for discussions in detail below.

    The 4t exhibits a stair-like structure(Fig.2)with two pentalene units fused on a central cyclobutane ring left and right.The formula of 4t is C40H44.Of note,a total of eight cyclopropyl groups attached to above dimerized pentalene core,with six on the pentalene and the other two on the central cyclobutane ring.The bond length of the four-membered cyclobutane ring is slightly longer than those of carbon-carbon single bonds and varies in the range of 1.56-1.60 ?A.The dimerized pentalene core showedC2hsymmetry,alternate long(1.449(2),1.4905(19),1.5337(2)and 1.491(2)?A for C5–C6,C4–C17,C7–C11,and C15–C16,respectively)and short bonds(1.359(2),1.354(2),and 1.353(2)?A for C4–C5,C6–C7 and C16–C17,respectively),which are in good agreement with the previously reported structures of pentalene derivatives(Fig.2a,Table S4 in Supporting information)[32].The cyclopropyl C–C bond lengths vary in the range of 1.473(3)-1.515(2)?A,indicating the single bond nature.The conjugated pentalene ring(A)deviates from the nonconjugated ring(B)with an average of 2.62° and 2.56° for 4t and 4m,respectively(Figs.S11 and S12 in Supporting informaion).The dihedral angles between the planes of the two pentalene units are 11.55° and 10.48° for 4t and 4m,respectively(Figs.S13 and S14 in Supporting information).The bond lengths and bond angles in both polymorphs are similar.More interestingly,through C–H···πand van der Waals interactions,C40H44molecules in 4t and 4m packed inABABandABCDfashions along a and c axis,respectively,(Figs.S15 and S16 in Supporting information),which dictate their different crystallized space groups in solid-state.The bond lengths comparison between the crystal structure and geometrically optimized structure(vide infra)is in good agreement,as shown in Fig.S17(Supporting information).

    Fig.1.(a)1H NMR and(b)13C{1H} NMR spectrum of 4t in CDCl3.The asterisks indicate the resonance of the residual solvent signals.

    Fig.2.Crystal structure of pentalene dimer(a)front view(b)side view.Thermal ellipsoids are shown at the 50% probability level.

    To shed insights into the reaction mechanism of the pentalene dimer,a process of dimerization,cyclization followed by cycloaddition is proposed.The mechanism for the formation of 4 is illustrated in Scheme 2.The proposed mechanism can be roughly divided into two steps.The first step is the Giles Gasser dimerization of terminal aliphatic alkyne(1)in the presence of Cu(I)in situgenerated and oxygen as an oxidant to produce(2).The second step is the cyclotetramerization of a dimerized alkyne to give pentalene(3),which is prone to dimerization in order to relieve its electronic strain resulting from the conjugated 8πantiaromatic system to yield pentalene dimer(4)finally.Baileyet al.isolated and structurally characterized stable dihydropentalenes(Ph4PnH2)from cyclotetramerization of phenylacetylene catalyzed by PdCl2,where there is no driving force for dimerization in the fulvenic 6πaromatic dihydropentalene[33].

    Following the above similar synthetic route,we also performed a series of parallel reactions in the presence of only Cu(CF3COO)2,only copper powder,or in the absence of Cu(CF3COO)2and copper powder.All these reactions do not produce the pentalene dimer,confirming that both Cu(CF3COO)2and Cu powder are essential for the reaction.Furthermore,to understand the influence of substituents on the terminal alkyne,the reactions of phenyl andtert–butyl substituted alkyne,i.e.,phenyl acetylene andtert–butyl acetylene were carried out under identical conditions.Both the reactions yielded some uncharacterized products.This may be due to the fact that the steric hindrance of the phenyl substituent is greater than the cyclopropyl group and does not engage in oxidative coupling.On the other hand,electron-donating tendency imposed by thetert–butyl substituent oftert–butyl acetylene is not enough to induce the oxidative coupling.

    Although we did not obtain single crystals of Cu(I)complexes,Cu(I)species in mother liquor catalyzed the formation of pentalene dimer.In order to confirm the presence of Cu(I)species in mother liquor,we performed the ESI-MS of the mother liquor.As depicted in Fig.S18(Supporting information),we observe three peaks centered atm/z576.8051(1a),706.7958(1b)and 834.7783(1c).After carefully checking the separation between the isotopes,we found that 1a-1c are monovalent species and are assigned to[Cu5(cPrC≡C)4]+(1a,calcd.m/z576.8022),[Cu6(cPrC≡C)5]+(1b,calcd.m/z706.7693)and[Cu7(cPrC≡C)6]+(1c,calcd.m/z834.7381),respectively(Table S5 in Supporting information).

    To further identify the pentalene dimer formation mechanism,spin-polarized density functional theory calculations were performed at the theoretical level of D3(BJ)-B3LYP/6-31+G(d,p)//M06/TZVP by using Gaussian 09 package[34].Four possible reaction pathways were considered:Path 1(Fig.3)and Paths 2–4(Fig.S19),for details see Figs.S19-S70 and Tables S6-S56(Supporting information).In the initial reaction,the cyclopropyl alkyne attacks on the Cu to form Int1–2 with the releasing energy of 2.84 kcal/mol,indicating that the triple bond of cyclopropyl alkyne is thermodynamically activated.Then,the Int1–2 undergoes subsequent reactions in two ways:(1)removing the H of C–H to form Int1–3(Path 1);(2)bonding with a cyclopropyl alkyne to become Int3–1(Path 3),respectively.As shown in Fig.3 and Fig.S19a,the Int1–3 is formed by removing the H atom of C–H from Int1–2 with the required energy of 33.84 kcal/mol.After removing the H,the C of Int1–3 with one unpaired electron is beneficial to react with the next cyclopropyl alkyne to produce Int1–4.In the uphill process with the activation energy of 17.29 kcal/mol(TS1–2),the C–C coupling occurs from Int1–4 to Int1–5.Meanwhile,Int1–5 has two reaction ways:(1)directly bond with another Int1–5 intermediate(Path 1),(2)combine with the reactant cyclopropyl alkyne for subsequent reactions(Path 2).For the former(Fig.3),both carbon atoms in Int1–5 connected to Cu gradually get closer to generate Int1–7viaintermediate Int1–6 and TS1–3.Both carbon atoms feature doublets state,resulting in the activation energy of 21.92 kcal/mol in this reaction process and the reducing energy of 11.18 kcal/mol compared to Int1–1,thermodynamically.The pentalene(Int1–9)was gained from the intermediate of Int1–7 and Int1–8 through two-step successive C–C coupling of TS1–4(5.32 kcal/mol)and TS1–5(32.84 kcal/mol),respectively.Such reaction features an exothermic process with about 106.17 kcal/mol for Int1–1.

    Pentalene(Int1–9)is synthesized from the cyclopropyl acetylene through the above four reaction paths.Furthermore,Int1–9 bonds with the intermediate after removing Cu from Int1–9 to form Int1–10 with larger exothermic energy of 226.39 kcal/mol.The best way to form pentalene dimer from Int1–10 is taken into account.Int1–10 directly crosses the 38.63 kcal/mol energy barrier to produce the final product.In general,the synthesis of pentalene dimer is mainly through multistep carbon-carbon coupling from the cyclopropyl alkyne.In view of the activation energy barriers,among the four paths,Path 1 with the rate-determining step of 38.63 kcal/mol is thermodynamically preferable.

    Fig.3.Gibbs free energy diagram of reaction coordinates(Path 1)for the product pentalene dimer formation from the reactant cyclopropyl alkyne at 298.15 K,unit:kcal/mol.

    The electronic absorption spectrum of 4t was recorded in dichloromethane(DCM)(Fig.S71 in Supporting information).The absorption band at 391 nm may be assigned to theπ-π*,whereas the shoulder band and intense band at 326 and 298 nm,respectively,are credited to then-π*transitions.Furthermore,to get a deep insight into the electronic transitions,solid-state UV–vis spectrum under reflectance mode was measured(Fig.S72a in Supporting information).The bandgap energy(Eg)for 4t and 4m was calculated to be 2.18 and 2.2 eV,respectively(Fig.S72b in Supporting information).The slightly different bandgaps of two polymorphs of C40H44should rise from the different molecule packing in bulk phases.

    To understand the electronic structure and the origin of the absorption band of 4t,density functional theory(DFT)and timedependent density functional theory(TD-DFT)calculations were carried out employing Gaussian 09 program(Revision A.02)6–31G(d,p)basis set for C,and H at B3LYP(Becke-3-Lee-Yang-Parr)level(details see Supporting information).The solvent calculation was conducted in DCM using the polarized continuum model(PCM).The frontier molecular orbital(FMO)plots of the 4t are shown in Fig.S73(Supporting information).The HOMO of 4t is delocalized over the pentalene subunits,and the LUMO is delocalized over the pentalene unit attached to the cyclobutane ring.The calculated UV–vis absorption spectrum of 4t was simulated using TD-DFT energy(vertical excitation and oscillator strengths)calculations on the optimized ground-state structures(Tables S57 and S58 in Supporting information),and these data are in good correlations with the experimental absorption spectrum(Fig.4).The theoretical bandgap energies of 4t calculated at B3LYP level equal to 3.56 eV and matches the respective optical band energy of 3.12 eV(in DCM).The TD-DFT calculation shows that the main absorption band at ~426 nm is contributed by the transitions from HOMO to LUMO,whereas the band at 298 nm is contributed by the transitions from HOMO-2 and HOMO-3 to LUMO.The absorption band centered at 258 nm is originated from the transitions from HOMO-2 to LUMO and LUMO+1(Fig.5).

    Fig.4.Comparison of experimental and computed(6-31G(d,p)level by B3LYP methods)absorption spectra of 4t.

    Fig.5.Frontier molecular orbitals of 4t at the B3LYP/6-31G(d,p)level in DCM solvent using PCM model.

    In conclusion,a simple and efficient route to synthesize a novel cyclopropyl substituted pentalene dimer has been serendipitously discovered and successfully characterized by X-ray crystallography,demonstrating the first example of such compounds in the solidstate.The reaction starting fromcPrC≡CH has undergone multiple transformations,including acetylenic coupling,followed by cyclization and[2+2]cycloaddition,and finally pentalene dimer is obtained.The reaction mechanism was further investigated and elucidated in detail by theoretical calculations.The rate-determining step with the activation energy of 38.63 kcal/mol clearly indicated that Path 1 was the most thermodynamically preferred among the four proposed paths.The successful synthesis of pentalene dimer avoids the pyrolysis,flammable organolithium or Grignard reagents and is performed utilizing readily available components under ambient conditions.We believe that the proposed synthetic route would provide new insights into the synthesis and investigation of the physicochemical properties of the elusive pentalene derivatives.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China(Nos.91961105,21822107,21571115,21827801),the Natural Science Foundation of Shandong Province(Nos.ZR2019ZD45,JQ201803 and ZR2017MB061),and the Taishan Scholar Project of Shandong Province of China(Nos.tsqn201812003 and ts20190908).Project for Scientific Research Innovation Team of Young Scholar in Colleges and Universities of Shandong Province(No.2019KJC028),Natural Science Foundation of Shandong Province(No.ZR2020ZD35).We thank Y.Z.Tan(Xiamen University),Y.Wang,Z.H.Xu,and L.Liu(Shandong University)for helpful discussions.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.10.036.

    悠悠久久av| 黄网站色视频无遮挡免费观看| 国精品久久久久久国模美| 久久国产亚洲av麻豆专区| 99久久综合免费| 一本大道久久a久久精品| 在线观看舔阴道视频| 国产精品久久久久成人av| 9191精品国产免费久久| 国产99久久九九免费精品| 精品少妇内射三级| 人人妻人人添人人爽欧美一区卜| 国产99久久九九免费精品| 日日夜夜操网爽| 久久热在线av| 亚洲第一欧美日韩一区二区三区 | 国产伦理片在线播放av一区| 国产精品国产av在线观看| 久久中文看片网| 91av网站免费观看| 中文字幕另类日韩欧美亚洲嫩草| 久久久久久久久久久久大奶| 汤姆久久久久久久影院中文字幕| 美女主播在线视频| av片东京热男人的天堂| 美女扒开内裤让男人捅视频| 国产精品 欧美亚洲| 欧美大码av| 亚洲中文日韩欧美视频| 精品久久久精品久久久| netflix在线观看网站| 欧美日韩av久久| 亚洲精品成人av观看孕妇| 涩涩av久久男人的天堂| 久久av网站| 久久中文字幕一级| 日本a在线网址| 人成视频在线观看免费观看| 视频区图区小说| 国产成人啪精品午夜网站| 午夜久久久在线观看| 日本av手机在线免费观看| 啦啦啦在线免费观看视频4| 狂野欧美激情性bbbbbb| 日韩制服丝袜自拍偷拍| 亚洲精品久久成人aⅴ小说| 男女无遮挡免费网站观看| 日本黄色日本黄色录像| 久久女婷五月综合色啪小说| 久久人妻福利社区极品人妻图片| 黄频高清免费视频| 免费人妻精品一区二区三区视频| 国产极品粉嫩免费观看在线| 国产精品亚洲av一区麻豆| 搡老乐熟女国产| 日韩免费高清中文字幕av| 又黄又粗又硬又大视频| 九色亚洲精品在线播放| 欧美精品啪啪一区二区三区 | 新久久久久国产一级毛片| 久久精品aⅴ一区二区三区四区| 久久久精品免费免费高清| 久久精品人人爽人人爽视色| 国产精品二区激情视频| av视频免费观看在线观看| a级片在线免费高清观看视频| 蜜桃在线观看..| 国产精品二区激情视频| 视频区欧美日本亚洲| 在线看a的网站| 国产精品成人在线| 亚洲国产av新网站| 久久午夜综合久久蜜桃| 美国免费a级毛片| 亚洲精品第二区| 婷婷色av中文字幕| 精品亚洲乱码少妇综合久久| 国产日韩欧美在线精品| 久久亚洲国产成人精品v| 国产欧美日韩一区二区三 | 在线观看免费午夜福利视频| 免费久久久久久久精品成人欧美视频| 黄色毛片三级朝国网站| 日韩 亚洲 欧美在线| 日韩制服丝袜自拍偷拍| 久久精品熟女亚洲av麻豆精品| 宅男免费午夜| 亚洲九九香蕉| 久久99一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 国产精品一区二区免费欧美 | 国产一区二区激情短视频 | 五月天丁香电影| 欧美精品亚洲一区二区| 另类精品久久| 热99久久久久精品小说推荐| 亚洲中文av在线| 亚洲九九香蕉| 日本wwww免费看| 一区二区三区四区激情视频| 一本久久精品| 日韩欧美国产一区二区入口| 人人妻人人爽人人添夜夜欢视频| 久久久国产精品麻豆| 69av精品久久久久久 | 欧美日韩成人在线一区二区| 2018国产大陆天天弄谢| 欧美日韩国产mv在线观看视频| 热re99久久精品国产66热6| 巨乳人妻的诱惑在线观看| 性色av乱码一区二区三区2| 亚洲五月婷婷丁香| 午夜激情久久久久久久| 久久精品亚洲熟妇少妇任你| 91精品伊人久久大香线蕉| 色婷婷久久久亚洲欧美| 国产深夜福利视频在线观看| 男人添女人高潮全过程视频| 久久精品aⅴ一区二区三区四区| 久久女婷五月综合色啪小说| 91国产中文字幕| 日本撒尿小便嘘嘘汇集6| 欧美久久黑人一区二区| av在线播放精品| 伦理电影免费视频| 欧美日韩av久久| 男人舔女人的私密视频| 亚洲第一青青草原| 国内毛片毛片毛片毛片毛片| 亚洲av国产av综合av卡| 日韩制服骚丝袜av| 久久ye,这里只有精品| xxxhd国产人妻xxx| av电影中文网址| 狠狠精品人妻久久久久久综合| 精品人妻在线不人妻| 欧美黄色片欧美黄色片| 欧美精品一区二区大全| 国产麻豆69| 亚洲情色 制服丝袜| 女人爽到高潮嗷嗷叫在线视频| 97精品久久久久久久久久精品| 亚洲精品国产av蜜桃| 午夜福利,免费看| 交换朋友夫妻互换小说| 免费不卡黄色视频| 久久久久久久精品精品| 欧美精品啪啪一区二区三区 | 黄网站色视频无遮挡免费观看| 啦啦啦免费观看视频1| 成在线人永久免费视频| 美女大奶头黄色视频| 桃花免费在线播放| 国产精品一区二区免费欧美 | 麻豆av在线久日| 人人妻人人澡人人看| 亚洲精品国产色婷婷电影| 丰满少妇做爰视频| 另类精品久久| 精品一区二区三卡| av有码第一页| 亚洲一区二区三区欧美精品| 两人在一起打扑克的视频| 两个人看的免费小视频| 国产精品熟女久久久久浪| 精品国产一区二区三区四区第35| 亚洲精华国产精华精| 操美女的视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 老司机靠b影院| 黄色视频,在线免费观看| 国产男女内射视频| 久久人人97超碰香蕉20202| 亚洲欧美一区二区三区黑人| 脱女人内裤的视频| 考比视频在线观看| 亚洲伊人久久精品综合| 性色av一级| 成在线人永久免费视频| 我的亚洲天堂| 欧美av亚洲av综合av国产av| 午夜精品久久久久久毛片777| 亚洲自偷自拍图片 自拍| 日韩 欧美 亚洲 中文字幕| 99国产精品免费福利视频| 久久午夜综合久久蜜桃| 日本av手机在线免费观看| 侵犯人妻中文字幕一二三四区| 日本91视频免费播放| www.av在线官网国产| 亚洲国产精品一区二区三区在线| 在线观看免费日韩欧美大片| 桃红色精品国产亚洲av| 汤姆久久久久久久影院中文字幕| 亚洲精品国产色婷婷电影| 亚洲专区国产一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 久久av网站| av网站免费在线观看视频| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美精品av麻豆av| 丰满饥渴人妻一区二区三| 午夜福利在线免费观看网站| 两个人看的免费小视频| 午夜福利乱码中文字幕| 亚洲伊人久久精品综合| 成人av一区二区三区在线看 | 99久久综合免费| 久热这里只有精品99| 在线观看免费午夜福利视频| 亚洲五月色婷婷综合| 国产成人精品在线电影| 精品欧美一区二区三区在线| 日韩欧美国产一区二区入口| 制服诱惑二区| 手机成人av网站| 岛国毛片在线播放| av天堂久久9| 亚洲成人免费av在线播放| 嫁个100分男人电影在线观看| netflix在线观看网站| 1024香蕉在线观看| 大码成人一级视频| 久久久久久久国产电影| 国产精品偷伦视频观看了| 女人爽到高潮嗷嗷叫在线视频| 国产伦理片在线播放av一区| 夫妻午夜视频| av在线app专区| 免费高清在线观看视频在线观看| 国产老妇伦熟女老妇高清| 国产一区二区三区综合在线观看| 黑人猛操日本美女一级片| 成年av动漫网址| 免费看十八禁软件| 亚洲va日本ⅴa欧美va伊人久久 | 国产99久久九九免费精品| 青春草视频在线免费观看| 女警被强在线播放| 婷婷成人精品国产| 中国美女看黄片| 咕卡用的链子| 亚洲成av片中文字幕在线观看| 精品欧美一区二区三区在线| 精品亚洲成a人片在线观看| 久久精品亚洲av国产电影网| 丝袜脚勾引网站| 亚洲av电影在线进入| 久久热在线av| 青春草视频在线免费观看| 18禁黄网站禁片午夜丰满| 久久人人爽人人片av| 免费观看av网站的网址| 99久久99久久久精品蜜桃| 国产91精品成人一区二区三区 | av不卡在线播放| 国产欧美亚洲国产| 我的亚洲天堂| 考比视频在线观看| 国产精品免费大片| 99国产极品粉嫩在线观看| 青草久久国产| 国产精品一区二区精品视频观看| 久久人妻熟女aⅴ| 青青草视频在线视频观看| 日本欧美视频一区| 一本—道久久a久久精品蜜桃钙片| 老汉色∧v一级毛片| cao死你这个sao货| 美女福利国产在线| 欧美激情极品国产一区二区三区| 欧美久久黑人一区二区| 欧美午夜高清在线| 午夜成年电影在线免费观看| 男女无遮挡免费网站观看| 99热网站在线观看| av线在线观看网站| 操出白浆在线播放| 亚洲国产欧美日韩在线播放| 黄片大片在线免费观看| 久久精品亚洲熟妇少妇任你| 肉色欧美久久久久久久蜜桃| 黑人操中国人逼视频| 国产精品二区激情视频| 9色porny在线观看| 亚洲,欧美精品.| 国产激情久久老熟女| 日本五十路高清| 99香蕉大伊视频| 一边摸一边做爽爽视频免费| 色精品久久人妻99蜜桃| 亚洲午夜精品一区,二区,三区| 精品国产一区二区三区久久久樱花| 久久青草综合色| 蜜桃在线观看..| 一级片'在线观看视频| 久久 成人 亚洲| 欧美黑人精品巨大| 欧美中文综合在线视频| 国产xxxxx性猛交| 欧美日韩一级在线毛片| 国产高清视频在线播放一区 | 人人妻,人人澡人人爽秒播| 免费看十八禁软件| 国产精品1区2区在线观看. | 91麻豆精品激情在线观看国产 | 欧美激情极品国产一区二区三区| 久久99热这里只频精品6学生| 欧美午夜高清在线| 成人影院久久| 考比视频在线观看| www.熟女人妻精品国产| 久久毛片免费看一区二区三区| 老司机福利观看| 久久人人97超碰香蕉20202| 亚洲色图 男人天堂 中文字幕| 黑人巨大精品欧美一区二区mp4| 最近最新中文字幕大全免费视频| 在线十欧美十亚洲十日本专区| 久久国产精品大桥未久av| 中文字幕av电影在线播放| a级片在线免费高清观看视频| 午夜久久久在线观看| 搡老岳熟女国产| 日韩一卡2卡3卡4卡2021年| 中文字幕制服av| 欧美日韩视频精品一区| 国产一级毛片在线| 99香蕉大伊视频| 欧美日韩黄片免| 亚洲人成电影观看| 久久人人爽人人片av| 国产精品 国内视频| 免费日韩欧美在线观看| 满18在线观看网站| 下体分泌物呈黄色| 伊人亚洲综合成人网| 国产精品熟女久久久久浪| 欧美日韩亚洲综合一区二区三区_| 热re99久久国产66热| 岛国毛片在线播放| 国产成人a∨麻豆精品| 日韩三级视频一区二区三区| 国产99久久九九免费精品| 99精品欧美一区二区三区四区| 精品一区在线观看国产| 久久久欧美国产精品| 一级毛片电影观看| 午夜福利乱码中文字幕| 久久久久精品国产欧美久久久 | 成年女人毛片免费观看观看9 | 免费日韩欧美在线观看| cao死你这个sao货| 亚洲精品一卡2卡三卡4卡5卡 | 一区二区三区乱码不卡18| 精品久久久久久久毛片微露脸 | 99国产精品免费福利视频| 9色porny在线观看| 国产一区二区三区综合在线观看| 日日摸夜夜添夜夜添小说| 19禁男女啪啪无遮挡网站| 久久青草综合色| 国产一区二区三区综合在线观看| 免费一级毛片在线播放高清视频 | 人人妻人人澡人人看| 狠狠精品人妻久久久久久综合| 欧美日韩福利视频一区二区| 日韩制服丝袜自拍偷拍| 两人在一起打扑克的视频| 精品人妻一区二区三区麻豆| 亚洲成国产人片在线观看| 一个人免费看片子| 高清av免费在线| 一区福利在线观看| 午夜激情久久久久久久| 国产av一区二区精品久久| 亚洲欧洲日产国产| 亚洲成人国产一区在线观看| 50天的宝宝边吃奶边哭怎么回事| av有码第一页| 99九九在线精品视频| 俄罗斯特黄特色一大片| 老司机深夜福利视频在线观看 | 热re99久久精品国产66热6| 在线观看免费日韩欧美大片| 国产高清视频在线播放一区 | 日韩电影二区| 黑人猛操日本美女一级片| 欧美午夜高清在线| 高潮久久久久久久久久久不卡| 捣出白浆h1v1| 热re99久久国产66热| 老司机影院毛片| 咕卡用的链子| 满18在线观看网站| 精品少妇一区二区三区视频日本电影| 日本av免费视频播放| 999精品在线视频| 美女主播在线视频| 精品人妻1区二区| 在线av久久热| 精品一品国产午夜福利视频| 成人18禁高潮啪啪吃奶动态图| 日本精品一区二区三区蜜桃| 一区二区三区四区激情视频| 99精国产麻豆久久婷婷| 亚洲va日本ⅴa欧美va伊人久久 | 色婷婷久久久亚洲欧美| 视频在线观看一区二区三区| 超碰97精品在线观看| 欧美日韩一级在线毛片| 新久久久久国产一级毛片| 久久久久视频综合| 欧美变态另类bdsm刘玥| 精品国产乱子伦一区二区三区 | a级毛片黄视频| 中亚洲国语对白在线视频| 亚洲专区国产一区二区| 成人黄色视频免费在线看| 狠狠精品人妻久久久久久综合| 老司机午夜十八禁免费视频| 精品一区二区三卡| 91大片在线观看| 国产欧美日韩精品亚洲av| 久久 成人 亚洲| 精品国产一区二区三区久久久樱花| 两性午夜刺激爽爽歪歪视频在线观看 | 国产区一区二久久| av欧美777| 欧美大码av| 亚洲国产日韩一区二区| 欧美乱码精品一区二区三区| 亚洲黑人精品在线| 在线观看www视频免费| 在线观看免费午夜福利视频| 一个人免费看片子| 久久久精品94久久精品| 亚洲精品美女久久av网站| 王馨瑶露胸无遮挡在线观看| 国产伦人伦偷精品视频| 亚洲欧美日韩另类电影网站| 免费久久久久久久精品成人欧美视频| 男女无遮挡免费网站观看| 亚洲avbb在线观看| 人妻一区二区av| 一级毛片女人18水好多| 欧美日韩亚洲综合一区二区三区_| 色老头精品视频在线观看| 中亚洲国语对白在线视频| 超碰97精品在线观看| 一区二区av电影网| 国产高清国产精品国产三级| 亚洲精品粉嫩美女一区| 国产精品久久久久成人av| 中亚洲国语对白在线视频| 不卡一级毛片| 女人精品久久久久毛片| 国产av一区二区精品久久| 高潮久久久久久久久久久不卡| 久久女婷五月综合色啪小说| 亚洲国产精品成人久久小说| 国产av又大| 国产在线一区二区三区精| 亚洲综合色网址| 亚洲精品一二三| 午夜福利视频精品| 国产成人精品无人区| 亚洲中文字幕日韩| 黄色片一级片一级黄色片| 国产一区有黄有色的免费视频| 国产精品欧美亚洲77777| a级片在线免费高清观看视频| 一级毛片精品| 久久99一区二区三区| 国产精品一二三区在线看| 99久久国产精品久久久| 国产淫语在线视频| 天堂8中文在线网| 成人亚洲精品一区在线观看| 老熟妇乱子伦视频在线观看 | 国产精品99久久99久久久不卡| 亚洲五月婷婷丁香| 午夜免费成人在线视频| 欧美另类一区| 成年人免费黄色播放视频| 国产在视频线精品| 午夜福利在线观看吧| 久久久久久久大尺度免费视频| 爱豆传媒免费全集在线观看| 欧美午夜高清在线| 大片免费播放器 马上看| 男女免费视频国产| 激情视频va一区二区三区| 视频区图区小说| 美女中出高潮动态图| 黄色a级毛片大全视频| 最近中文字幕2019免费版| 国产精品1区2区在线观看. | 人人妻人人澡人人爽人人夜夜| 欧美激情久久久久久爽电影 | 啦啦啦在线免费观看视频4| 天堂中文最新版在线下载| 亚洲三区欧美一区| 国产一区二区在线观看av| av欧美777| 亚洲色图综合在线观看| 成年美女黄网站色视频大全免费| 99热全是精品| 操美女的视频在线观看| 欧美午夜高清在线| 精品国产国语对白av| 久久天躁狠狠躁夜夜2o2o| 午夜视频精品福利| 91麻豆av在线| 亚洲久久久国产精品| 夜夜骑夜夜射夜夜干| 一区二区三区精品91| 国产日韩欧美亚洲二区| 亚洲国产精品一区三区| 99精国产麻豆久久婷婷| 亚洲熟女毛片儿| av片东京热男人的天堂| 国产又色又爽无遮挡免| 欧美日韩国产mv在线观看视频| 亚洲一区二区三区欧美精品| av线在线观看网站| 亚洲欧洲精品一区二区精品久久久| 91成年电影在线观看| av免费在线观看网站| 视频区图区小说| 久久精品aⅴ一区二区三区四区| 黄色毛片三级朝国网站| 母亲3免费完整高清在线观看| 中文字幕制服av| 免费久久久久久久精品成人欧美视频| 美女高潮到喷水免费观看| 手机成人av网站| 18禁黄网站禁片午夜丰满| 日韩欧美一区视频在线观看| 亚洲中文日韩欧美视频| 亚洲av国产av综合av卡| 精品亚洲成a人片在线观看| 欧美大码av| 国产有黄有色有爽视频| 日韩中文字幕欧美一区二区| 国产精品亚洲av一区麻豆| 午夜福利乱码中文字幕| 精品第一国产精品| 欧美日本中文国产一区发布| 久久午夜综合久久蜜桃| 欧美性长视频在线观看| 亚洲伊人色综图| 2018国产大陆天天弄谢| 亚洲av美国av| 亚洲第一欧美日韩一区二区三区 | 国产av国产精品国产| 黄色视频,在线免费观看| 欧美国产精品va在线观看不卡| 电影成人av| 亚洲精品在线美女| 欧美日韩福利视频一区二区| 亚洲精品一区蜜桃| 亚洲第一欧美日韩一区二区三区 | 欧美精品高潮呻吟av久久| 国产精品欧美亚洲77777| 深夜精品福利| 丰满少妇做爰视频| 欧美精品人与动牲交sv欧美| 激情视频va一区二区三区| 精品熟女少妇八av免费久了| 亚洲精品一区蜜桃| 亚洲成国产人片在线观看| 巨乳人妻的诱惑在线观看| 国产高清videossex| 日韩视频一区二区在线观看| 久久久精品区二区三区| 大片电影免费在线观看免费| 欧美日韩中文字幕国产精品一区二区三区 | 99久久综合免费| 国产一区二区 视频在线| 啦啦啦 在线观看视频| 国产精品1区2区在线观看. | 肉色欧美久久久久久久蜜桃| 老司机靠b影院| svipshipincom国产片| 亚洲人成77777在线视频| 麻豆乱淫一区二区| 精品欧美一区二区三区在线| 成人免费观看视频高清| 国产精品国产三级国产专区5o| 国产成人一区二区三区免费视频网站| 日韩欧美一区二区三区在线观看 | 国产男人的电影天堂91| 国产三级黄色录像| 国产日韩欧美视频二区| 精品欧美一区二区三区在线| 亚洲av日韩精品久久久久久密| 国产精品国产三级国产专区5o| 大码成人一级视频| 午夜福利免费观看在线| 麻豆乱淫一区二区| 日本wwww免费看| 99精品欧美一区二区三区四区| 老熟妇乱子伦视频在线观看 | 色94色欧美一区二区| 一级毛片精品| 丰满少妇做爰视频| 一个人免费在线观看的高清视频 | 国产高清视频在线播放一区 | 国产亚洲一区二区精品| 亚洲精品中文字幕一二三四区 | 正在播放国产对白刺激| 国产精品香港三级国产av潘金莲| 可以免费在线观看a视频的电影网站| 亚洲欧美色中文字幕在线|