• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Is the metal involved or not?A computational study of Cu(I)-catalyzed[4+1]annulation of vinyl indole and carbene precursor

    2022-06-20 06:21:12XioqinHeKngboZhongDnHengZhenZengHoNiRuopengBiYuLn
    Chinese Chemical Letters 2022年4期

    Xioqin He,Kngbo Zhong,Dn Heng,Zhen Zeng,Ho Ni,Ruopeng Bi,*,Yu Ln,b,*

    a School of Chemistry and Chemical Engineering,Chongqing Key Laboratory of Theoretical and Computational Chemistry,Chongqing University,Chongqing 400030,China

    b College of Chemistry and Institute of Green Catalysis,Zhengzhou University,Zhengzhou 450001,China

    ABSTRACT The Cu(I)-catalyzed[4+1]annulation of vinyl indoles and a carbene precursor is a powerful method for constructing cyclopentaindole derivatives.Density functional theory(DFT)calculations were used to elucidate the mechanism and regioselectivity of this reaction.After Cu-assisted indole C3-alkylation,direct 1,5-annulation was favored over the Cu-assisted annulation pathway.Furthermore,the regioselectivity for 1,5-annulation was attributed to the generated five-membered-ring product being more stable than the three-membered-ring product from 1,3-annulation,which was the kinetically favored pathway.

    Keywords:Carbene precursor Regioselectivity DFT calculations Cyclopentaindol C3-alkylation

    Carbene[1–3]is a significant and valuable active intermediate in synthetic chemistry that can be considered a C1 source for the construction of new organic compounds[4–11].Carbene contains two unshared valence electrons and a neutral carbon atom,with a valence of two.Therefore,carbene can be considered an unsaturated carbon atom,with similar reactivity to other unsaturated molecules.In particular,carbene can be used as an unsaturated molecule to participate in cycloaddition reactions with other unsaturated molecules.A series of pioneering studies have been reported in this area[12–15].

    Owing to its high reactivity,reactions using free carbene are usually difficult to control and obtain high selectivity from.Fortunately,introducing transition metals allows carbene reactivity to be regulated.The formation of metal-carbene complexes has led to extensive developments in carbene functionalization[16–23].Generally,F(xiàn)ischer-type metal-carbene complexes show electrophilicity because carbene donates one pair of electrons to the unoccupied orbital of late transition metals[24,25].Therefore,two possible reaction modes are proposed for Fischer-type metal-carbene complexes.In the mode A,the nucleophile attacks the carbon atom of the metal-carbene complex to afford a metal-carbon single bond,with electrophilic substitution(SE2)by another electrophile resulting in a bisfunctionalized carbene(Scheme 1,mode A)[26–30].Alternatively,we found that the nucleophilic addition intermediate can also dissociate from the metal species to afford a carbenion intermediate,with subsequent electrophilic substitution(SE1)occurring at theα-position of the enolate to give the product(Scheme 1,mode B)[31–32].

    Recently,the Hu group reported a transition-metal-catalyzed functionalization of diazo compounds,in which Cu(CH3CN)4PF6was selected to catalyze the annulation of diazo compounds and vinyl indoles,affording cyclopentaindole derivatives P1(Scheme 2a)[33].We became interested in whether the annulation process was Cu-assisted and whether the vinyl indole could be considered as an unsaturated molecule or a nucleophile in this reaction.Therefore,the reaction mechanism and chemoselectivity were key problems in this reaction.In the present study,density functional theory(DFT)calculations were used to elucidate the mechanism and chemoselectivity of this reaction.

    Fig.1.Gibbs energy profiles of the carbenation process.The values given by kcal/mol are the relative free energies calculated by M06-L/6–311+G(d,p)/SMD//B3-LYP/6–31G(d)(SDD for Cu)method in dichloromethane solvent.

    All the density functional theory(DFT)calculations were carried out using the Gaussian 09 series of programs[34].Density functional B3-LYP[35]with a standard 6–31G(d)basis set(SDD[36]basis set for Cu)was used for geometry optimizations.Harmonic vibrational frequency calculations were performed for all stationary points to confirm them as local minima or transition structure and to derive the thermochemical corrections for the enthalpies and free energies.The M06-L[37,38]functional proposed by Truhlaret al.was used with a 6–311+G(d,p)basis set to calculate the single-point energies in the solvent,because it was envisaged that this strategy would provide greater accuracy with regard to the energetic information.The solvent effects were considered by single-point calculations in dichloromethane solvent base on the gas-phase stationary points with SMD solvation model[39–41].The energies presented in this paper are the M06-L calculated Gibbs free energies in dichloromethane solvent with B3-LYP calculated thermodynamic corrections.The noncovalent interactions(NCIs)[42–44]and electrostatic potentials(ESPs)were calculated at the B3-LYP/6–31G(d)(SDD for Cu)level.

    As shown in Scheme 2b,possible pathways were accounted for during computational modeling of this reaction(Paths A and B).These pathways all started from cationic Cu(I)species I,which is carbenated by diazo compound R1,affording Fischer-type Cucarbene complex II.Intermolecular nucleophilic attack by the C3 position of vinyl indole R2 generates a zwitterionic intermediate III.In direct annulation pathway A,cleavage of the Cu-C bond release organic molecule IV with the regeneration of Cu(I)species I.Uncatalyzed 1,3-and 1,5-annulations of intermediate IV provide corresponding products VI and V.Alternatively,Cu-assisted annulation pathway B was also considered in our theoretical study.In this pathway,a 1,3-Cu shift generates Cu-enolate intermediate VII,which possesses a nucleophilic carbon for the subsequent 1,3-or 1,5-annulation.In this process,copper(I)is not eliminated until VI or V is formed as the final product.

    Scheme 1.Possible reaction modes for Fischer type metal-carbene complexes.

    Scheme 2.(a)Cu(I)-catalyzed[4+1]annulation of vinyl indoles and diazo compounds and(b)its proposed catalytic cycle.

    According to the proposed pathways,a detailed computational study was performed to investigate the mechanism of this Cu(I)-catalyzed annulation reaction.As shown in Fig.1,cationic copper(I)complex 1 was selected as the starting point for the free energy profiles,with two acetonitrile molecules selected as ligands(we consider the four coordination patterns for copper,see Fig.S3 in Supporting information for details).Cu-assisted aryldiazoacetate R1 denitrogenationviatransition state 5-ts affords Cu(I)-carbene complex 6,with a free energy decrease of 4.2 kcal/mol.The overall activation free energy for the carbenation process was 25.9 kcal/mol,which was the highest free energy barrier in the entire pathway.Therefore,carbenation was considered to be the rate-determining step of the catalytic cycle[45,46].Subsequent dissociation of one acetonitrile molecule afforded complex 7 with an increase in free energy of 3.5 kcal/mol.In the presence of dimethoxycarbonyl vinyl indole R2,C3 nucleophilic attack could occurviatransition state 8-ts to form zwitterionic intermediate 9.The chemoselectivity of nucleophilic addition was also investigated(see Fig.S4 in Supporting information for details).Ligand exchange with acetonitrileviatransition state 10-ts releases organic species 11 with the regeneration of active species 1(see Fig.S5 in Supporting information for details).

    Fig.2.Gibbs energy profiles of the Cu(I)-carbene complex 6 and 15 to nucleophilic addition process.The values given by kcal/mol are the relative free energies calculated by M06-L/6–311+G(d,p)/SMD//B3-LYP/6–31G(d)(SDD for Cu)method in dichloromethane solvent.

    In addition,we have considered the different coordination patterns for Cu(I)-carbene complex.As shown in Fig.2,C3 nucleophilic attack of metal-carbene 6 to dimethoxycarbonyl vinyl indole R2viatransition state 13-ts with an energy barrier of 19.6 kcal/mol to gives zwitterionic intermediate 14.This process is endergonic by 19.6 kcal/mol,which can be attributed to entropy loss.The relative free energies of transition state 13-ts were 2.4 kcal/mol higher than that of transition state 8-ts(Fig.1).In the other case,the coordination of two acetonitrile to the copper center results in formation of unstable intermediate 15 in an endergonic process with 7.4 kcal/mol free energy.Then C3 nucleophilic attackviatransition state 16-ts to gives zwitterionic intermediate 17 with an energy barrier of 20.5 kcal/mol.The relative free energies of transition state 16-ts were 10.7 kcal/mol higher than that of transition state 8-ts(Fig.1).Therefore,the paths involving the nucleophilic addition of intermediates 6 and 15 are unfavorable.

    Fig.3.(a)Gibbs energy profiles of direct annulation.The values given by kcal/mol are the relative free energies calculated by M06-L/6–311+G(d,p)/SMD//B3-LYP/6–31G(d)(SDD for Cu)method in dichloromethane solvent.Optimized geometries of transition states 18-ts and 20-ts.Bond lengths are shown in Angstroms(?A).(b)Electrostatic potential map and Mulliken charge for intermediate 11.

    Having obtained key intermediate 11,direct annulation of this intermediate was considered theoretically(Fig.3a).DFT calculations found that the free energy barrier of the 1,3-annulation processviatransition state 18-ts was only 1.6 kcal/mol.However,generated cyclopropane-type product 19 was only 9.5 kcal/mol more stable than intermediate 11.This clearly showed that compound 19 was the kinetic product,which can be obtained reversibly from 11.Alternatively,the corresponding 1,5-annulationviatransition state 20-ts gave an energy barrier of 2.5 kcal/mol,but as generated cyclopentene product 21 was 6.6 kcal/mol more stable than 1,3-annulation product 19.Therefore,compound 21 was the thermodynamic product.The entire annulation process can be descripted as a reversible 1,3-annulation of intermediate 11 to provide intermediate 19,which undergoes the reverse process to regenerate intermediate 11.Subsequently,1,5-annulation finally yields thermodynamic product 21.In this case,the overall activation free energy for the generation of 21 from 19 was only 12.0 kcal/mol.Therefore,compound 21 was observed as the major product experimentally.The rearomatization of intermediate 19 was also considered theoretically(see Fig.S6 in Supporting information for details).Although the free energy barrier of an intramolecular 1,2-hydrogen shift from intermediate 19 was only 25.3 kcal/mol,considering the generation of 21,the overall activation free energy for the formation of alkylated vinyl indole product 23 was up to 41.4 kcal/mol.The electrostatic potential(ESP)of complex 19 is shown in Fig.3b,clearly elucidating its character.In this structure,negative charge was mostly located at the C1 position,which could act as a nucleophile,while positive charge was mostly located at C2,which exhibited electrophilicity.Therefore,the formation of a C1-C2 bondvia1,3-annulation is kinetically favorable,but the generated three-membered ring is thermodynamically unfavorable.Interestingly,C5 also exhibits weak electrophilicity,and can bond with C1viathe corresponding 1,5-annulation.Generation of the five-membered ring is thermodynamically favorable.

    The Cu-assisted annulation was also considered theoretically.As shown in Fig.4,when intermediate 9 is generated by nucleophilic addition,a 1,3-Cu shift can occurviatransition state 24-ts with a barrier of 9.1 kcal/mol.Generated intermediate 25 possesses a nucleophilic enolate carbon,which can undergo corresponding annulation.Similar to direct annulation(Fig.3a),the free energy barrier of the 1,3-annulation processviatransition state 26-ts was only 2.5 kcal/mol,leading to the formation of kinetic product 19.The corresponding 1,5-annulationviatransition state 27-ts had an energy barrier of 7.5 kcal/mol,affording thermodynamic product 21.The electrostatic potential(ESP)map of complex 25 clearly showed that the presence of Cu decreased the nucleophilicity of the enolate moiety(Fig.4).Therefore,a higher energy barrier was observed in the 1,5-annulation process.

    Interestingly,when asymmetric 1,3-dicarlbonyl compounds was used as substrate,the 1,5-annulation exhibited diastereoselectivity.For example,when R3 was used as the 1,3-dicarlbonyl reactant in this reaction,anti-product P2 was the major product,with good diastereoselectivity(>95:5 dr;Fig.5a).DFT calculations were used to evaluate the generation of diastereoselectivity.As shown in Fig.5b,based on our mechanistic study,the diastereoselectivity of 1,5-annulation using 1,3-dicarlbonyl reactant R3 was determined by the energy difference between the two ring-closing transition states,28-ts-antiand 29-ts-syn.DFT calculation showed that the relative free energy of transition state 28-ts-anti,leading totransproduct P2,was 1.1 kcal/mol lower than that of transition state 29-ts-syn.Therefore,trans-product P2 was the major product,with a calculated 72:28 dr.This was in good agreement with the experimental observation that P2 was the major product with>95:5 dr.The higher relative free energy of transition states 29-ts-synwas attributed to steric repulsion in its geometry.To obtain a clear view of the energy difference between these two transition states,they were subjected to noncovalent interaction(NCI)analysis to determine steric repulsion.As shown in Fig.5c,observable steric repulsion between the phenyl group and ester group was labeled in the geometry information of transition state 29-ts-syn,leading to this transitions state having a higher relative free energy.Therefore,thetrans-product could be generated easilyviatransition state 28-ts

    anti.

    DFT calculations using the M06-L functional were used to study the mechanism of the Cu(I)-catalyzed[4+1]annulation of vinyl indoles and carbene precursors.As a result,a mixing mechanism involving sequential Cu-assisted indole C3-alkylation and direct 1,5-annulation was proposed and proved by our theoretical study.The reaction starts with carbenation of the Cu(I)species by a diazo compounds to afford a Cu-carbene complex,which can undergo intermolecular nucleophilic attack by the indole C3 position to afford alkylation with release of the Cu(I)catalyst.The generated zwitterionic intermediate then undergoes intramolecular annulation in the absence of a Cu species to yield the cyclopentaindole product.Carbenation of the Cu(I)species was found to be the ratedetermining step of the entire process.Interestingly,the competition between 1,3-and 1,5-annulation was considered,showing that 1,3-annulation leads to a three-membered-ring product as the kinetic product,which is easily generated,while the five-memberedring product was more stable.Therefore,five-membered cyclopentaindole will be observed as the major product of this reaction.This theoretical prediction is consistent with experimental observations.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Fig.4.Gibbs energy profiles for the Cu-assisted annulation.The values given by kcal/mol are the relative free energies calculated by M06-L/6–311+G(d,p)/SMD//B3-LYP/6–31G(d)(SDD for Cu)method in dichloromethane solvent.Optimized geometries of transition states 26-ts and 27-ts.Bond lengths are shown in angstrom(?A).Inset:Electrostatic potential map and Mulliken charge for intermediate 25.

    Fig.5.(a)Cu(I)-catalyzed[4+1]-annulation of asymmetric vinyl indoles and aryldiazoacetates.(b)Optimized structures of 28-ts-anti and 29-ts-syn(distances are given in angstroms(?A)).The values given by kcal/mol are the relative free energies calculated by M06-L/6–311+G(d,p)/SMD//B3-LYP/6–31G(d)(SDD for Cu)method in dichloromethane solvent.(c)NCI plots for transition state 28-ts-anti and 29-ts-syn(blue indicates strong attraction,green indicates very weak interaction,and red indicates strong repulsion).

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(Nos.21822303,21772020 and 22003006).We are thankful for a project(No.2018CDXZ0002)supported by the Fundamental Research Funds for the Central Universities(Chongqing University).The project was supported by the Graduate Research and Innovation Foundation of Chongqing,China(No.CYB20045).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.10.010.

    我的亚洲天堂| 精品亚洲乱码少妇综合久久| 亚洲熟女精品中文字幕| 亚洲专区中文字幕在线| 亚洲av国产av综合av卡| 国产精品久久久久久精品电影小说| 亚洲七黄色美女视频| 成人特级黄色片久久久久久久 | 五月开心婷婷网| 在线亚洲精品国产二区图片欧美| 9色porny在线观看| 免费久久久久久久精品成人欧美视频| 日本vs欧美在线观看视频| 国产精品久久久久久人妻精品电影 | 婷婷丁香在线五月| 电影成人av| 99re6热这里在线精品视频| 成人国产一区最新在线观看| 国产亚洲精品一区二区www | 国产精品偷伦视频观看了| 精品人妻熟女毛片av久久网站| 欧美日韩黄片免| 一区二区三区乱码不卡18| 国产精品久久电影中文字幕 | 日韩制服丝袜自拍偷拍| 亚洲自偷自拍图片 自拍| 午夜久久久在线观看| 亚洲熟女精品中文字幕| 亚洲人成77777在线视频| 久久精品熟女亚洲av麻豆精品| 日韩中文字幕欧美一区二区| 亚洲国产欧美网| 免费av中文字幕在线| 亚洲国产av新网站| 波多野结衣一区麻豆| 日本撒尿小便嘘嘘汇集6| 久久人妻福利社区极品人妻图片| 亚洲av美国av| tube8黄色片| 日韩免费av在线播放| 9热在线视频观看99| 99国产精品99久久久久| 国产激情久久老熟女| 三级毛片av免费| 男人操女人黄网站| 免费观看av网站的网址| 精品一区二区三卡| 国产精品久久久久久精品电影小说| 香蕉久久夜色| 欧美日韩视频精品一区| 国产在线免费精品| 黄网站色视频无遮挡免费观看| 又黄又粗又硬又大视频| 在线观看免费高清a一片| 色尼玛亚洲综合影院| 操美女的视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 天堂中文最新版在线下载| 国产精品av久久久久免费| 丝袜美腿诱惑在线| 黑丝袜美女国产一区| 日韩欧美三级三区| 久久亚洲精品不卡| 亚洲第一av免费看| www.自偷自拍.com| 久久精品国产a三级三级三级| 久久久国产欧美日韩av| 国产欧美日韩一区二区三区在线| 亚洲精品国产区一区二| 在线观看www视频免费| 色婷婷久久久亚洲欧美| 天天躁日日躁夜夜躁夜夜| 丁香六月欧美| 黄色毛片三级朝国网站| 日本av手机在线免费观看| 久久久久国产一级毛片高清牌| 免费在线观看黄色视频的| 成人手机av| 黄片大片在线免费观看| 亚洲国产欧美一区二区综合| 18禁美女被吸乳视频| 免费观看av网站的网址| 国内毛片毛片毛片毛片毛片| av有码第一页| 天堂动漫精品| 亚洲,欧美精品.| 国产伦理片在线播放av一区| h视频一区二区三区| 啦啦啦免费观看视频1| 日本五十路高清| 亚洲精品在线观看二区| 在线亚洲精品国产二区图片欧美| 国产精品国产高清国产av | 日本wwww免费看| tocl精华| 日本wwww免费看| 国产精品免费大片| √禁漫天堂资源中文www| 性高湖久久久久久久久免费观看| 性色av乱码一区二区三区2| 老鸭窝网址在线观看| 热99re8久久精品国产| 午夜激情久久久久久久| 桃花免费在线播放| 亚洲人成电影观看| 成人三级做爰电影| 午夜福利视频精品| 亚洲色图av天堂| 成年人午夜在线观看视频| 国产熟女午夜一区二区三区| 无人区码免费观看不卡 | 丰满少妇做爰视频| 脱女人内裤的视频| 欧美乱码精品一区二区三区| 亚洲一区中文字幕在线| 欧美成人午夜精品| 一区二区三区乱码不卡18| 高清欧美精品videossex| 国产老妇伦熟女老妇高清| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲精华国产精华精| cao死你这个sao货| 久久午夜亚洲精品久久| 青草久久国产| 日韩大码丰满熟妇| 性高湖久久久久久久久免费观看| 午夜福利,免费看| 精品少妇黑人巨大在线播放| 久久毛片免费看一区二区三区| 精品人妻在线不人妻| 日韩 欧美 亚洲 中文字幕| 国产精品影院久久| 自线自在国产av| 国产成人欧美| 激情视频va一区二区三区| 又紧又爽又黄一区二区| 成年人午夜在线观看视频| av不卡在线播放| 无限看片的www在线观看| 中文字幕精品免费在线观看视频| 欧美性长视频在线观看| 欧美精品啪啪一区二区三区| 国产精品99久久99久久久不卡| 黄色视频在线播放观看不卡| 国产精品亚洲一级av第二区| 亚洲精品在线美女| 国产深夜福利视频在线观看| 国产成人系列免费观看| av欧美777| 久久天堂一区二区三区四区| 久久中文看片网| 国产精品国产av在线观看| 国产免费av片在线观看野外av| 欧美变态另类bdsm刘玥| 久久狼人影院| 国产三级黄色录像| 久久人妻熟女aⅴ| 色精品久久人妻99蜜桃| 亚洲人成电影免费在线| 国产精品 国内视频| 精品国产乱码久久久久久男人| 国内毛片毛片毛片毛片毛片| 最近最新中文字幕大全免费视频| 91av网站免费观看| 中文字幕人妻丝袜制服| 在线看a的网站| 国产成人精品无人区| 国产成人精品无人区| 国产亚洲精品久久久久5区| 国产三级黄色录像| 午夜福利视频在线观看免费| 757午夜福利合集在线观看| 高清av免费在线| 天堂中文最新版在线下载| 丁香欧美五月| 亚洲精品一卡2卡三卡4卡5卡| 91大片在线观看| 久久精品亚洲av国产电影网| 99re6热这里在线精品视频| 婷婷成人精品国产| 国产99久久九九免费精品| 欧美日韩视频精品一区| 国产免费现黄频在线看| 搡老岳熟女国产| 日韩一区二区三区影片| 一边摸一边抽搐一进一出视频| 国产aⅴ精品一区二区三区波| 日韩一卡2卡3卡4卡2021年| 人妻久久中文字幕网| 淫妇啪啪啪对白视频| 精品福利观看| av线在线观看网站| 亚洲精品一二三| 五月开心婷婷网| 久久精品成人免费网站| 99香蕉大伊视频| 自拍欧美九色日韩亚洲蝌蚪91| 黄片播放在线免费| 亚洲中文日韩欧美视频| 老熟妇乱子伦视频在线观看| 999精品在线视频| 韩国精品一区二区三区| 欧美在线黄色| 女性生殖器流出的白浆| 亚洲av日韩在线播放| 亚洲五月婷婷丁香| 美女扒开内裤让男人捅视频| 久久影院123| 亚洲va日本ⅴa欧美va伊人久久| 久久精品亚洲熟妇少妇任你| 一边摸一边做爽爽视频免费| 天天影视国产精品| 国产精品国产av在线观看| 大陆偷拍与自拍| 亚洲五月婷婷丁香| 中文字幕色久视频| 亚洲成人手机| 久久久久久免费高清国产稀缺| 新久久久久国产一级毛片| 欧美午夜高清在线| 成人免费观看视频高清| 国产男女超爽视频在线观看| 亚洲av国产av综合av卡| 久久精品国产99精品国产亚洲性色 | 色精品久久人妻99蜜桃| 一边摸一边抽搐一进一小说 | 亚洲国产欧美一区二区综合| 最黄视频免费看| 免费av中文字幕在线| 亚洲专区字幕在线| 国产亚洲精品第一综合不卡| 少妇被粗大的猛进出69影院| 国产精品九九99| 51午夜福利影视在线观看| 一区二区三区精品91| 99久久精品国产亚洲精品| 我的亚洲天堂| 亚洲成人免费电影在线观看| 美女午夜性视频免费| 欧美老熟妇乱子伦牲交| 久久人妻熟女aⅴ| 亚洲人成电影免费在线| 黄片播放在线免费| 国产老妇伦熟女老妇高清| 18禁观看日本| kizo精华| 欧美精品一区二区大全| 欧美日韩一级在线毛片| 成人影院久久| 五月天丁香电影| 十八禁高潮呻吟视频| 亚洲中文av在线| 超色免费av| 成人国产av品久久久| 啦啦啦视频在线资源免费观看| 99国产精品一区二区三区| 亚洲国产成人一精品久久久| 欧美午夜高清在线| 51午夜福利影视在线观看| 亚洲人成伊人成综合网2020| av天堂久久9| 757午夜福利合集在线观看| 国产一区二区三区视频了| 精品视频人人做人人爽| 午夜福利在线免费观看网站| 18在线观看网站| 午夜激情久久久久久久| 搡老熟女国产l中国老女人| 女人被躁到高潮嗷嗷叫费观| 黄色视频不卡| 91国产中文字幕| 一本—道久久a久久精品蜜桃钙片| 午夜免费鲁丝| 高清欧美精品videossex| 黄色 视频免费看| 日韩欧美一区二区三区在线观看 | 水蜜桃什么品种好| 乱人伦中国视频| 深夜精品福利| 夜夜爽天天搞| 亚洲免费av在线视频| 高潮久久久久久久久久久不卡| 女性被躁到高潮视频| 久久久久久久国产电影| 80岁老熟妇乱子伦牲交| 久久人妻福利社区极品人妻图片| 亚洲人成电影观看| 欧美日韩亚洲高清精品| 欧美 日韩 精品 国产| av在线播放免费不卡| 色94色欧美一区二区| 午夜福利在线观看吧| 一进一出抽搐动态| 欧美精品av麻豆av| 国产精品99久久99久久久不卡| 午夜福利一区二区在线看| 日韩大码丰满熟妇| 欧美中文综合在线视频| 国产成人免费无遮挡视频| 国产亚洲一区二区精品| 一区福利在线观看| 黑丝袜美女国产一区| 日本av免费视频播放| 亚洲欧洲日产国产| 丝袜美足系列| 亚洲全国av大片| 99精品欧美一区二区三区四区| 欧美在线一区亚洲| 在线播放国产精品三级| 水蜜桃什么品种好| 一区二区日韩欧美中文字幕| 久久人妻熟女aⅴ| 操美女的视频在线观看| 一本久久精品| 少妇精品久久久久久久| 99精国产麻豆久久婷婷| 极品人妻少妇av视频| 一区二区三区国产精品乱码| 中文字幕制服av| 国产欧美亚洲国产| 成年人黄色毛片网站| 人人澡人人妻人| 国产日韩欧美视频二区| 1024香蕉在线观看| a级毛片在线看网站| 老司机午夜福利在线观看视频 | 无限看片的www在线观看| 精品人妻1区二区| 国产一区二区三区在线臀色熟女 | 亚洲五月色婷婷综合| 午夜福利乱码中文字幕| 日本a在线网址| 国产亚洲欧美精品永久| 亚洲男人天堂网一区| 国产成人精品久久二区二区91| 久久久久久亚洲精品国产蜜桃av| 精品卡一卡二卡四卡免费| 天天躁夜夜躁狠狠躁躁| 99在线人妻在线中文字幕 | 国产成人精品无人区| 国产成人欧美在线观看 | 啦啦啦中文免费视频观看日本| 国产精品99久久99久久久不卡| 国产高清激情床上av| 国产福利在线免费观看视频| 午夜激情久久久久久久| 欧美激情久久久久久爽电影 | 精品亚洲乱码少妇综合久久| 99在线人妻在线中文字幕 | 欧美人与性动交α欧美精品济南到| 色播在线永久视频| 男女无遮挡免费网站观看| 老鸭窝网址在线观看| 国产片内射在线| 老司机深夜福利视频在线观看| 日韩 欧美 亚洲 中文字幕| 丝袜人妻中文字幕| 国产在线精品亚洲第一网站| 老司机靠b影院| 99精国产麻豆久久婷婷| 老司机福利观看| 一级a爱视频在线免费观看| 亚洲视频免费观看视频| 十八禁人妻一区二区| 国产99久久九九免费精品| 嫩草影视91久久| 国产午夜精品久久久久久| 菩萨蛮人人尽说江南好唐韦庄| 精品国内亚洲2022精品成人 | 日韩大片免费观看网站| 91九色精品人成在线观看| 日韩欧美国产一区二区入口| 免费观看av网站的网址| 亚洲欧洲日产国产| 国产视频一区二区在线看| 高清视频免费观看一区二区| 国产欧美日韩一区二区精品| 王馨瑶露胸无遮挡在线观看| 成人国产一区最新在线观看| 免费观看av网站的网址| 少妇的丰满在线观看| 色播在线永久视频| 美女视频免费永久观看网站| 精品少妇黑人巨大在线播放| 美女主播在线视频| netflix在线观看网站| videos熟女内射| av超薄肉色丝袜交足视频| 人人澡人人妻人| 老熟女久久久| 人成视频在线观看免费观看| 免费在线观看日本一区| 久久久久久人人人人人| 午夜福利在线免费观看网站| 欧美黄色淫秽网站| 亚洲自偷自拍图片 自拍| 丝袜喷水一区| 亚洲精品自拍成人| 天堂8中文在线网| 日韩免费av在线播放| 叶爱在线成人免费视频播放| av网站在线播放免费| 亚洲专区中文字幕在线| 国产男女超爽视频在线观看| 一本—道久久a久久精品蜜桃钙片| 99国产精品一区二区三区| 国产不卡av网站在线观看| 免费在线观看黄色视频的| 一本久久精品| 国产免费av片在线观看野外av| 后天国语完整版免费观看| 精品卡一卡二卡四卡免费| 两个人免费观看高清视频| 免费观看a级毛片全部| 一区二区三区国产精品乱码| 一个人免费看片子| 欧美亚洲 丝袜 人妻 在线| 我的亚洲天堂| 女人高潮潮喷娇喘18禁视频| 在线观看免费日韩欧美大片| 色综合婷婷激情| 少妇被粗大的猛进出69影院| 精品一区二区三区四区五区乱码| 欧美精品亚洲一区二区| 亚洲精品国产精品久久久不卡| 可以免费在线观看a视频的电影网站| 水蜜桃什么品种好| 国产三级黄色录像| 欧美另类亚洲清纯唯美| 国产亚洲一区二区精品| 国产av精品麻豆| 成人影院久久| 自线自在国产av| 成在线人永久免费视频| 高清av免费在线| 不卡一级毛片| 俄罗斯特黄特色一大片| 欧美中文综合在线视频| 不卡一级毛片| 久久中文字幕一级| www.精华液| 97在线人人人人妻| 午夜福利在线观看吧| 免费一级毛片在线播放高清视频 | 亚洲精品成人av观看孕妇| 美女高潮到喷水免费观看| av天堂久久9| 男女无遮挡免费网站观看| 少妇的丰满在线观看| 天天躁夜夜躁狠狠躁躁| 国产黄色免费在线视频| 又黄又粗又硬又大视频| 亚洲精品一二三| 老司机午夜福利在线观看视频 | 久久久精品免费免费高清| 热99re8久久精品国产| 久久国产精品影院| 人人妻人人澡人人爽人人夜夜| av天堂久久9| 免费黄频网站在线观看国产| 麻豆av在线久日| 国产亚洲精品一区二区www | 日韩欧美一区视频在线观看| 国产精品秋霞免费鲁丝片| 国产在线免费精品| 美女扒开内裤让男人捅视频| 欧美 日韩 精品 国产| 一级片免费观看大全| 免费一级毛片在线播放高清视频 | 亚洲色图av天堂| 成人特级黄色片久久久久久久 | 国产成人影院久久av| 咕卡用的链子| 久久天堂一区二区三区四区| 三级毛片av免费| 国产精品1区2区在线观看. | 精品国产亚洲在线| 俄罗斯特黄特色一大片| 国产日韩一区二区三区精品不卡| 日本五十路高清| 嫁个100分男人电影在线观看| 又黄又粗又硬又大视频| 老汉色av国产亚洲站长工具| 91麻豆av在线| 女人被躁到高潮嗷嗷叫费观| 99国产精品一区二区蜜桃av | 搡老乐熟女国产| tube8黄色片| 黄色片一级片一级黄色片| 亚洲五月色婷婷综合| 国产av精品麻豆| 国产在线精品亚洲第一网站| 久久亚洲精品不卡| 老司机福利观看| 国产野战对白在线观看| 黄色片一级片一级黄色片| 国产日韩欧美视频二区| 天天操日日干夜夜撸| 9191精品国产免费久久| 99在线人妻在线中文字幕 | 午夜激情久久久久久久| 99国产极品粉嫩在线观看| 如日韩欧美国产精品一区二区三区| 亚洲专区国产一区二区| 男女之事视频高清在线观看| 99久久99久久久精品蜜桃| 黄色视频不卡| 亚洲情色 制服丝袜| 欧美黑人精品巨大| 精品久久蜜臀av无| 好男人电影高清在线观看| 久久午夜亚洲精品久久| 精品福利观看| 99国产精品一区二区蜜桃av | 国产99久久九九免费精品| 两个人免费观看高清视频| 夜夜夜夜夜久久久久| 飞空精品影院首页| 久久性视频一级片| 国产精品1区2区在线观看. | 丝袜喷水一区| 国产成人av教育| 日韩中文字幕欧美一区二区| 久久久久久久精品吃奶| 一本久久精品| 欧美日韩中文字幕国产精品一区二区三区 | 12—13女人毛片做爰片一| 国产免费福利视频在线观看| 9191精品国产免费久久| 国产午夜精品久久久久久| 欧美国产精品一级二级三级| 国产日韩欧美在线精品| 亚洲成国产人片在线观看| 人人妻,人人澡人人爽秒播| 久久久国产成人免费| 丰满饥渴人妻一区二区三| 纵有疾风起免费观看全集完整版| 国产在视频线精品| 欧美激情高清一区二区三区| 午夜福利影视在线免费观看| 黄频高清免费视频| 超碰成人久久| 日本a在线网址| 无限看片的www在线观看| 国产精品二区激情视频| 久久久久精品国产欧美久久久| 国产在线观看jvid| 日韩中文字幕视频在线看片| 亚洲伊人色综图| 国产熟女午夜一区二区三区| 亚洲欧美激情在线| 啪啪无遮挡十八禁网站| 国产亚洲精品一区二区www | 午夜福利乱码中文字幕| 操美女的视频在线观看| 国产精品影院久久| 操美女的视频在线观看| 老熟女久久久| 久久香蕉激情| 午夜两性在线视频| 国产精品 国内视频| 成年人午夜在线观看视频| 久久人妻熟女aⅴ| 亚洲中文日韩欧美视频| 亚洲精品美女久久av网站| 丰满迷人的少妇在线观看| 人妻一区二区av| 久久久久精品国产欧美久久久| 巨乳人妻的诱惑在线观看| 两人在一起打扑克的视频| 十八禁高潮呻吟视频| 久久这里只有精品19| www.自偷自拍.com| 日本撒尿小便嘘嘘汇集6| 人人妻,人人澡人人爽秒播| 日本wwww免费看| 久久精品国产a三级三级三级| 亚洲国产av新网站| 自线自在国产av| 国产区一区二久久| 极品少妇高潮喷水抽搐| 性少妇av在线| videos熟女内射| 最新在线观看一区二区三区| 免费看a级黄色片| 亚洲成a人片在线一区二区| 亚洲av成人不卡在线观看播放网| 亚洲国产av影院在线观看| 亚洲精品在线观看二区| 性少妇av在线| 免费少妇av软件| 亚洲综合色网址| 另类亚洲欧美激情| 青青草视频在线视频观看| 一二三四社区在线视频社区8| 精品高清国产在线一区| 国产有黄有色有爽视频| 在线 av 中文字幕| 男女边摸边吃奶| 国产欧美日韩一区二区三区在线| 色老头精品视频在线观看| 最新的欧美精品一区二区| 妹子高潮喷水视频| 69精品国产乱码久久久| 国产高清视频在线播放一区| bbb黄色大片| 欧美在线黄色| 亚洲欧洲精品一区二区精品久久久| 久久天堂一区二区三区四区| 久久热在线av| 女性生殖器流出的白浆| 99九九在线精品视频| 亚洲欧美一区二区三区黑人| 美女国产高潮福利片在线看| 久久精品91无色码中文字幕|