• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Artificial intelligence and cholangiocarcinoma:Updates and prospects

    2022-06-20 01:21:58HosseinHaghbinMuhammadAziz
    World Journal of Clinical Oncology 2022年2期

    Hossein Haghbin,Muhammad Aziz

    Hossein Haghbin,Department of Gastroenterology,Ascension Providence Southfield,Southfield,MI 48075,United States

    Muhammad Aziz,Department of Gastroenterology,University of Toledo Medical Center,Toledo,OH 43614,United States

    Abstract Artificial intelligence(AI)is the timeliest field of computer science and attempts to mimic cognitive function of humans to solve problems.In the era of “Big data”,there is an ever-increasing need for AI in all aspects of medicine.Cholangiocarcinoma(CCA)is the second most common primary malignancy of liver that has shown an increase in incidence in the last years.CCA has high mortality as it is diagnosed in later stages that decreases effect of surgery,chemotherapy,and other modalities.With technological advancement there is an immense amount of clinicopathologic,genetic,serologic,histologic,and radiologic data that can be assimilated together by modern AI tools for diagnosis,treatment,and prognosis of CCA.The literature shows that in almost all cases AI models have the capacity to increase accuracy in diagnosis,treatment,and prognosis of CCA.Most studies however are retrospective,and one study failed to show AI benefit in practice.There is immense potential for AI in diagnosis,treatment,and prognosis of CCA however limitations such as relative lack of studies in use by human operators in improvement of survival remains to be seen.

    Key Words: Artificial intelligence;Machine learning;Cholangiocarcinoma;Diagnosis;Treatment;Prognosis

    lNTRODUCTlON

    The ever-growing rate of technological advancement in medicine has resulted in the era of “Big data”.Artificial intelligence(AI)and its various techniques are used to harness the infinite potential of Big data in medical field[1].AI,the timeliest field of computer science,involves development of computer algorithms attempting to mimic cognitive function of humans in order to learn and solve problems[2].Since invention of the first operational computer by Alan Turing in 1940s,we have seen a prodigious rise in AI advancement.Machine learning(ML)is a very practical area of AI that enables computers to learn without direct programming.ML helps machines learn from previous data and improve their learning behavior by gaining experience from data patterns,thereby establishing ever improving predictive models[3].Various AI techniques including representation learning,natural language processing,and different ML techniques,such as regression trees,support-vector machines(SVM),artificial neural networks(ANN)and more recently,deep learning(DL),have been used in medical field[4].ML and DL have vastly increased the scope of AI and enabled individualized medicine rather than algorithm-only-based care and has resulted in improved accuracy,efficiency,and outcomes[4].

    Despite all the benefits of AI,one should be wary of the drawbacks[5].The field of AI brings enormous potential however it concurrently brings big ethical problems.ML algorithms,to some extent,function as “black-boxes” where there is difficulty in finding the logic behind the decision by the machine.This will have medicolegal consequences which will be more pronounced as the models become more sophisticated and companies behind ML software reluctant to reveal the details of their software.Moreover,AI poses threats to privacy,data security,and patient autonomy.Lastly,ML algorithms do make mistakes and may not provide accurate results across race,gender,and socioeconomic status spectrum[5].

    Cholangiocarcinoma(CCA)is the second most common primary malignancy of the liver.CCA originates from the epithelial cells of the bile ducts exclusive of gallbladder and ampulla of Vater.CCA is an aggressive tumor diagnosed sporadically in advanced stages with high mortality[6].The incidence of CCA is increasing;therefore,there is increased interest in diagnosis,prognosis,and treatment of this malignancy[7].Both serum markers and radiologic imaging are used for diagnosis of CCA.A combination of serum markers like liver function tests,carbohydrate antigen(CA)19-9,and carcinoembryonic antigen(CEA)are utilized to diagnose the disease[8].The presence of the vast array of serum markers has led to utilization of the markers in novel AI tools in combination with imaging.Positron emission tomography with fluorodeoxyglucose(FDG-PET)integrated with computed tomography(CT)and Magnetic resonance imaging(MRI)in combination with magnetic resonance cholangiopancreatography(MRCP)are valuable tools harnessed by AI to assess the extent of tumor and stage the disease[9,10].Treatment includes surgical management,neoadjuvant/adjuvant chemotherapy and chemoradiotherapy,hepatic artery radioembolization,and orthotopic liver transplant in selected patients[11-14].Endoscopic retrograde cholangiopancreatography(ERCP)has two roles of diagnosis and treatment of CCA.Its diagnostic role includes inspecting and providing samples from the biliary system.As palliative treatment,stent placement provides increased quality of life especially in most unresectable cases[15].Novel AI tools have been able to help in individualizing candidates for each treatment modality.

    Increased mortality from CCA in the last decade has coincided with development of AI technology.Figure 1 illustrates how AI can be used to diagnose,treat,and prognose patients with CCA.This review depicts how AI can analyze the radiologic,serologic,and histologic markers of CCA to diagnose,stage,and aid with an individualized treatment plan in addition to giving a prognostic estimate with or without treatment modalities.

    Figure 1 Application of artificial intelligence in addressing cholangiocarcinoma.LR: Logistic regression;SVM: Support-vector machine.

    AI has shown promise to aid in diagnosis of CCA.AI is particularly helpful in CCA diagnosis as the condition is not common and there is heterogeneity in anatomical location of the tumor and risk factors of the tumor[16].This makes the traditional algorithms inferior compared to AI.Many AI tools in the field of ML have been utilized for diagnosis of CCA(Table 1).LR is a linear regression model used for binary classification of problems[17].SVM is an appropriate model for small samples,high-dimensional,and non-linear patterns assigning labels to objects and has advantage of avoiding “over learning” problem[18].ANN or multilayer perceptron is an attempt to simulate the biologic nervous system with neurons interconnected able to do parallel processing[17].Developed by Huanget al,Extreme Learning Machines(ELM)are a type of feedforward neural network models that have shown superiority over SVMs and traditional feedforward neural networks[19].Convoluted neural network(CNN),a type of DL consists of multilayer of ANN that results in a superior learning ability of complex tasks and has been used in radiology and imaging of the malignancy and associating the radiological data to the clinicopathologic data[20,21].Every method has their advantages and drawbacks illustrated in Table 1.

    Table 1 Advantages and disadvantages of artificial intelligence models used for cholangiocarcinoma diagnosis in radiology

    Al lN THE DlAGNOSlS OF CCA

    Serum markers

    Evaluation of serum markers is amongst the least invasive and most available data that is present in many patients even before there is a suspicion for diagnosis of CCA.Due to wide availability,these tests are used in adjunct with radiological and other clinical factors in diagnosis of CCA.Sometimes serological models are enough to diagnose the malignancy;for example,Negriniet al[22]developed a ML model that analyzed 15 bile acids of the serum and was able to diagnose CCA with good sensitivity of 79% and excellent accuracy,Area Under Curve(AUC),and specificity of 86.4%,95%,and 100%,respectively.ANN based model using combination CCA associated carbohydrate antigen and alkaline phosphatase showed promise in diagnosing CCA with a sensitivity and specificity of more than 95%[23].

    Cytology

    ERCP and Cytology of brushings is a valuable tool for diagnosis of CCA.As a common malignant cause of biliary stricture is CCA,cytology can be crucial in early stages of the malignancy when radiology may have limited roles.Urmanet al[24],using a neural network model studying metabolomic and proteomic profile of bile from 36 CCA patients,was able to satisfactorily distinguish CCA from benign stricture with AUC,sensitivity,and specificity of 98.4%,94.1% and 92.3%,respectively.

    Histology

    Histology remains the gold standard for diagnosis of malignancies including CCA.From their Shanghai laboratory,Sunet al[25]developed a CNN model for diagnosis of CCA from microscopic hyperspectral pathological slides with promising results.After setting up the first benchmark based on microscopic pathological images consisting of 880 images with pixels manually labeled as tumor or non-tumor for the AI learning,the CNN model was able to diagnose CCA with 88.3% accuracy[25].AI assistance in histology has not always shown benefits.Stanford University researchers developed an AI diagnostic assistant using DL model to assist pathologists in differentiating hepatocellular carcinoma(HCC)from CCA(26).The model had a good accuracy rate of 84.2% on a set of 80 slides however it failed to improve performance among pathologists[Odds ratio(OR)1.287,95%CI: 0.886-1.871].For all case difficulty levels,the model highly biased the decision of pathologists which led them to wrong diagnosis[26].The authors concluded that this would question the use of current AI technology for difficult subspecialty tasks[26].Sometimes CCA can manifest as cancer of unknown primary site(CUP)as it metastasizes to other organs.AI has been used to delineate source of CUP,consisting of 3 to 5% of tumors[27].CUP-AI-Dx is a CNN model that was trained on more than 18,000 tumors including CCA and has achieved an accuracy of 98.54% in finding the primary site of tumor from the human body system in cross-validation[28].

    CT

    To elucidate the lesion detected by ultrasound,further workup is required with CT,MRI,and MRCP.As CNN is a DL technique that consists of multilayers of ANN,it has shown great potential especially once it comes to radiology image analysis of pixels.Human yield in diagnosing CCA is limited.Nakaiet al[29]have developed CNN models factoring in a combination of CT with serum tumor markers including CEA and CA 19-9.Their CNN model was superior to human radiologists in detecting CCA(0.68vs0.45;P= 0.04)[29].One challenge in diagnosing CCA is differentiating intrahepatic CCA from other intrahepatic malignancies.Xuet al[30]have developed an AI model on 28 intrahepatic lymphomas and 101 CCAs.Their model was able to differentiate between the two tumors with AUC and accuracy both more than 85%.Pannopratet al[31]have developed CNN model that can differentiate between CCA and hepatocellular carcinoma(the most common primary liver malignancy)with an 88% accuracy.Zhanget al[32]performed a retrospective analysis of contrast enhanced CT of 86 patients with CCA and 46 with combined CCA/HCC tumors,which are difficult to differentiate from CCA necessitating biopsy and surgery.Using ML techniques to classify the lesions as CCA or combined CCA/HCC achieved an AUC of 94.2%[32].

    MRI and MRCP

    MRI and MRCP have a superior function to diagnose CCA than CT due to ability to illustrate soft tissue,vasculature,and biliary system better than that of CT.ML has been widely utilized in MRI and MRCP.Xuet al[33]and Yuet al[34]each studied MRI of more than 100 patients with CCA and developed SVM models that showed superiority(validation group AUC 87.0% and 90%,respectively).Logeswaranet al[35]in a 2009 study showed 88 to 94% detection rate of Multilayer Perceptron ANN in diagnosis of CCA in MRCP.Yanget al[36]developed an AI model for MRI diagnosis and evaluation of extent of lymph node metastasis of CCA patients.After training the model on 100 CCA patients,the model was able to differentiate highvslow risk CCA groups and lymph node metastasis with AUCs of 80% and 90% in testing cohorts,respectively[36].Table 2 lists the studies using AI models to diagnose CCA.

    Table 2 Studies utilizing artificial intelligence in the diagnosis of cholangiocarcinoma

    AI: Artificial intelligence;ANN: Artificial Neural Network;CCA: Cholangiocarcinoma;CNN: Convolutional neural network;CT: Computed tomography;DL: deep learning;ML: machine learning;ELM: Extreme learning machine;LR: Logistic regression;MRCP: Magnetic resonance cholangiopancreatography;MRI: Magnetic resonance imaging;SVM: Support-vector machine,US: Ultrasound.

    TREATMENT AND PROGNOSlS OF CCA

    ML techniques have also been used for treatment and prognosis of CCA.Almost all studies use a combination of radiological,histological,serological,and clinical data for the best results in predicting the survival of the patients and their response to treatment.Table 3 illustrates the studies using AI models to treat and prognose CCA.The fact that such sophisticated models are needed is proof to the complexity of the CCA pathophysiology and ever developing variety of treatment protocols that makes decision making impossible without help of AI technology.One example of such potential is studied by Tsilimigraset al[37].They constructed a ML model that predicted survival of CCA patients after surgery based on preop serological and radiological data[37].They conducted an international multi-institutional study on 826 CCA patients,clustering them into groups based on CA 19-9,neutrophil-tolymphocyte ratio,and tumor size.Their machine learning model showed an excellent agreement with cluster(k = 0.93,95%CI: 0.90-0.96).This study shows that ML models detect patterns and clusters not detectable to humans using traditional statistical techniques[38].In this study,AI was able to detect a group of high-risk patients otherwise undetectable.These groups benefit the most from additional neoadjuvant therapy prior to resection as they have a high recurrence[37,38].

    Table 3 Studies utilizing artificial intelligence in the treatment and prognostication of cholangiocarcinoma

    CT imaging

    Another example of tight interrelation between prognosis and treatment is by Jeonget al[39]who elaborated a ML algorithm using the combination of serology,patient characteristics,and CT images of 1421 CCA patients to classify patients to stable and latent risk group.The model was able to predict the disease-free survival between latent and stable groups and response to adjuvant therapy in latent group with excellent ability proven by hazard ratios(HR)of 3.56 and 0.46,respectively(P< 0.001 for both)[39].Tanget al[40]drew up a predictive model of CCA survival after studying 101 patients with CCA.Their AI model analyzed radiologic characteristics of the CT scan,tumor markers,and past clinical history like cirrhosis with AUC of 78% and 75% for 3-year and 5-year overall survival,respectively[40].

    CA 19-9

    CA 19-9 as a tumor marker has shown promise in prognosis of CCA.Liet al[41]and Mülleret al[42]each validated an AI model to prognosticate the CCA tumors based on clinical,tumor markers such as CA 19-9,serologic like albumin level,and clinical data like nodal metastasis.Liet al[41]model retrospectively studied a total of 1390 patients and achieved a Concordance Index(C-index)superior to the staging system proposed by the 8thedition of the American Joint Committee on Cancer(C-index: 0.693,95%CI: 0.663-0.723).Mülleret al[42]model was able to predict the 1-year survival of patients with an AUC of 89% and 80% for the training and validation sets,respectively.

    Palliative measures

    Palliative measures like stent placement recommended for inoperable hilar CCAs,are also analyzed by AI models.Shaoet aldeveloped an ANN model based on data of 288 CCA patients requiring stent placement that can predict stent occlusion with high AUC of 96%(95%CI: 94-99%)[43].

    FUTURE DlRECTlONS

    The literature review showed a wealth of studies utilizing AI in CCA,however there is room for much improvement.First,there is need for larger prospective studies including different races,nationalities,and socioeconomic statuses to validate role of AI in diagnosis,treatment,and prognosis of CCA.As study from Stanford showed the AI may not prove to be beneficial in all cases in real life;therefore,in some cases there is need for prospective studies showing AI effectiveness in practice[26].This precaution is accentuated since there was a lack of negative studies in our review of the literature which can potentially bias toward increased efficacy of AI.Furthermore,the prognostic data should be validated by implementing the data into treatment strategies and seeing an increase in not only survival but also quality of life in CCA patients.One last recommendation for medical field is that healthcare professionals’ education should be improved to prepare them for the ever-increasing role of AI in daily diagnosis,treatment,and prognosis of CCA and at the same time informing them of the current limits

    and future potentials of the AI technology.

    CONCLUSlON

    In the recent years,we have seen an increase in CCA incidence and,in parallel,a more exponential rise in AI utilization in medicine.AI will be able to utilize the vast amount of data to assist healthcare professionals in addressing CCA.Currently the AI models are showing potential in diagnosis,treatment,and prognosis of CCA.Nonetheless,AI has limits that should be considered;further research is needed to validate use of AI models in real life in use by medical professional to determine their effectiveness and acceptance as auxiliary tools to augment human intelligence.Finally,ethical issues regarding AI including equity and transparency will also need to be addressed to improve acceptance of the technologies by healthcare industry and,more importantly,the patients.

    FOOTNOTES

    Author contributions:Haghbin H and Aziz M designed and performed the research study.Haghbin H and Aziz M wrote the manuscript;all authors have read and approved the final manuscript.

    Conflict-of-interest statement:Authors have no conflict of interest.

    Open-Access:This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers.It is distributed in accordance with the Creative Commons Attribution NonCommercial(CC BYNC 4.0)license,which permits others to distribute,remix,adapt,build upon this work non-commercially,and license their derivative works on different terms,provided the original work is properly cited and the use is noncommercial.See: https://creativecommons.org/Licenses/by-nc/4.0/

    Country/Territory of origin:United States

    ORClD number:Hossein Haghbin 0000-0001-8947-287X;Muhammad Aziz 0000-0001-5620-8597.

    S-Editor:Gong ZM

    L-Editor:A

    P-Editor:Gong ZM

    色综合欧美亚洲国产小说| 午夜福利视频在线观看免费| 91精品三级在线观看| 美女大奶头黄色视频| 女人精品久久久久毛片| 欧美乱码精品一区二区三区| 亚洲图色成人| 亚洲av电影在线进入| 国产一区二区三区av在线| 丰满乱子伦码专区| 一边摸一边抽搐一进一出视频| av线在线观看网站| 久久精品人人爽人人爽视色| 精品国产一区二区久久| 欧美乱码精品一区二区三区| 丝袜喷水一区| 免费观看av网站的网址| 国产成人欧美在线观看 | 99九九在线精品视频| 欧美成人精品欧美一级黄| 18禁国产床啪视频网站| 十八禁人妻一区二区| 国产亚洲欧美精品永久| 9热在线视频观看99| 亚洲成人免费av在线播放| 国产精品一区二区在线观看99| 免费观看a级毛片全部| 两个人看的免费小视频| 国产日韩欧美视频二区| 国产伦理片在线播放av一区| 男人操女人黄网站| 久久久久久久精品精品| 欧美日韩亚洲高清精品| 欧美日本中文国产一区发布| 男人操女人黄网站| av国产精品久久久久影院| 黄网站色视频无遮挡免费观看| 少妇被粗大的猛进出69影院| 在线观看免费日韩欧美大片| 精品一区二区三区av网在线观看 | 99精国产麻豆久久婷婷| 亚洲一级一片aⅴ在线观看| 好男人视频免费观看在线| 免费黄网站久久成人精品| 欧美日本中文国产一区发布| 亚洲欧洲国产日韩| 亚洲成人手机| tube8黄色片| 国产伦人伦偷精品视频| 爱豆传媒免费全集在线观看| 欧美 亚洲 国产 日韩一| 国产亚洲精品第一综合不卡| 亚洲第一区二区三区不卡| 女人精品久久久久毛片| 国产精品嫩草影院av在线观看| 波多野结衣av一区二区av| 精品国产一区二区三区久久久樱花| 国产麻豆69| 亚洲成人手机| 男女午夜视频在线观看| 久久精品国产亚洲av高清一级| 十分钟在线观看高清视频www| 欧美乱码精品一区二区三区| 国产成人系列免费观看| 国产女主播在线喷水免费视频网站| 国产精品人妻久久久影院| 又黄又粗又硬又大视频| 日本91视频免费播放| 久久女婷五月综合色啪小说| 亚洲精品乱久久久久久| 夜夜骑夜夜射夜夜干| 精品亚洲成国产av| 国产成人精品久久二区二区91 | 嫩草影视91久久| 女人久久www免费人成看片| 最黄视频免费看| 啦啦啦在线免费观看视频4| 亚洲国产欧美日韩在线播放| 成人免费观看视频高清| 亚洲成国产人片在线观看| 午夜日韩欧美国产| 亚洲欧美色中文字幕在线| 51午夜福利影视在线观看| 久久久久视频综合| 亚洲欧美中文字幕日韩二区| 80岁老熟妇乱子伦牲交| 欧美人与性动交α欧美精品济南到| 国产99久久九九免费精品| 欧美 日韩 精品 国产| 啦啦啦 在线观看视频| 操出白浆在线播放| 日韩免费高清中文字幕av| 国产一区有黄有色的免费视频| 欧美xxⅹ黑人| 国产人伦9x9x在线观看| 免费黄网站久久成人精品| 老司机影院毛片| 亚洲av男天堂| 日本一区二区免费在线视频| 黄色毛片三级朝国网站| 午夜精品国产一区二区电影| 999久久久国产精品视频| 啦啦啦 在线观看视频| 男女免费视频国产| 成人国语在线视频| 久久精品亚洲熟妇少妇任你| 1024香蕉在线观看| 视频区图区小说| 99久久综合免费| 十八禁高潮呻吟视频| 香蕉丝袜av| 一级片'在线观看视频| 9热在线视频观看99| 久久久欧美国产精品| 亚洲精品,欧美精品| 91老司机精品| 国产亚洲精品第一综合不卡| 国产福利在线免费观看视频| 久久午夜综合久久蜜桃| 久久久久久人人人人人| 制服丝袜香蕉在线| 久久久久久久久免费视频了| 亚洲伊人色综图| 国产免费福利视频在线观看| 亚洲av电影在线观看一区二区三区| 青春草国产在线视频| 欧美日本中文国产一区发布| 日韩大片免费观看网站| 国产精品99久久99久久久不卡 | 国产成人a∨麻豆精品| 精品亚洲乱码少妇综合久久| 国产福利在线免费观看视频| 亚洲国产精品一区三区| 亚洲av在线观看美女高潮| 一级毛片黄色毛片免费观看视频| 中文字幕最新亚洲高清| 女人被躁到高潮嗷嗷叫费观| 肉色欧美久久久久久久蜜桃| 久久ye,这里只有精品| 亚洲成人一二三区av| 精品酒店卫生间| 操美女的视频在线观看| 国产亚洲av高清不卡| 久久精品国产亚洲av涩爱| 国产极品粉嫩免费观看在线| 日本欧美国产在线视频| 欧美人与善性xxx| 又大又黄又爽视频免费| 亚洲自偷自拍图片 自拍| 秋霞伦理黄片| 久久久久精品久久久久真实原创| 曰老女人黄片| 国产一区二区激情短视频 | 欧美人与性动交α欧美精品济南到| 亚洲婷婷狠狠爱综合网| 另类亚洲欧美激情| 性少妇av在线| 亚洲三区欧美一区| 国产成人精品在线电影| 2018国产大陆天天弄谢| 亚洲专区中文字幕在线 | 国产精品国产三级国产专区5o| 亚洲精品美女久久av网站| 99久久精品国产亚洲精品| 亚洲欧美中文字幕日韩二区| 久久久久久久久久久免费av| 欧美精品av麻豆av| 97在线人人人人妻| av在线观看视频网站免费| 久久97久久精品| 国产精品麻豆人妻色哟哟久久| 男女边摸边吃奶| 久久97久久精品| 亚洲欧美色中文字幕在线| 国产精品国产三级专区第一集| 日本av手机在线免费观看| 久久精品国产a三级三级三级| 国产成人精品久久久久久| 亚洲欧洲精品一区二区精品久久久 | 少妇精品久久久久久久| 亚洲色图 男人天堂 中文字幕| 一级毛片我不卡| 久久精品aⅴ一区二区三区四区| 欧美亚洲 丝袜 人妻 在线| 一二三四中文在线观看免费高清| 人妻 亚洲 视频| 中文字幕人妻熟女乱码| 国产 精品1| 19禁男女啪啪无遮挡网站| 久久久久视频综合| 久久久久久人妻| 最近最新中文字幕大全免费视频 | 一区二区三区激情视频| 亚洲七黄色美女视频| 中国国产av一级| 久久久久久人人人人人| 亚洲精品日韩在线中文字幕| 欧美日韩国产mv在线观看视频| 久久婷婷青草| 国产精品秋霞免费鲁丝片| 丝袜脚勾引网站| 久久精品国产亚洲av涩爱| 成人国语在线视频| 韩国高清视频一区二区三区| 成人毛片60女人毛片免费| 精品一区二区三区av网在线观看 | 欧美日韩福利视频一区二区| 一二三四在线观看免费中文在| www.av在线官网国产| 国产男人的电影天堂91| 亚洲图色成人| 亚洲天堂av无毛| 超碰成人久久| videosex国产| 欧美久久黑人一区二区| 精品视频人人做人人爽| 国产成人免费观看mmmm| 飞空精品影院首页| 麻豆av在线久日| 嫩草影院入口| 欧美变态另类bdsm刘玥| 一级片免费观看大全| 国产视频首页在线观看| 丰满少妇做爰视频| 激情五月婷婷亚洲| 老司机在亚洲福利影院| 人妻一区二区av| 久久久精品国产亚洲av高清涩受| 我要看黄色一级片免费的| 精品人妻在线不人妻| 波多野结衣一区麻豆| 啦啦啦在线免费观看视频4| 国产在线一区二区三区精| 亚洲成人av在线免费| 中文精品一卡2卡3卡4更新| 少妇人妻精品综合一区二区| 国产成人一区二区在线| av福利片在线| 女人爽到高潮嗷嗷叫在线视频| 精品一区二区三卡| 伦理电影大哥的女人| 国产极品天堂在线| 多毛熟女@视频| 日韩一区二区三区影片| 深夜精品福利| 99精品久久久久人妻精品| 色播在线永久视频| 乱人伦中国视频| 人人妻人人澡人人爽人人夜夜| 性少妇av在线| 一本久久精品| 一级爰片在线观看| 欧美在线一区亚洲| 在线观看国产h片| 国产亚洲一区二区精品| 1024香蕉在线观看| 日本av免费视频播放| 丁香六月欧美| 99久久人妻综合| 精品国产一区二区三区久久久樱花| 中国三级夫妇交换| 曰老女人黄片| 欧美激情 高清一区二区三区| 如日韩欧美国产精品一区二区三区| 日日摸夜夜添夜夜爱| 99久久人妻综合| 母亲3免费完整高清在线观看| 日韩av免费高清视频| 国产黄色视频一区二区在线观看| 亚洲人成网站在线观看播放| 亚洲av日韩在线播放| xxx大片免费视频| 97精品久久久久久久久久精品| 亚洲精品美女久久久久99蜜臀 | 叶爱在线成人免费视频播放| 2018国产大陆天天弄谢| 欧美 日韩 精品 国产| 国产成人精品久久二区二区91 | 国产精品一区二区精品视频观看| 久久精品熟女亚洲av麻豆精品| 国产av一区二区精品久久| 免费少妇av软件| 纵有疾风起免费观看全集完整版| 激情五月婷婷亚洲| 超碰97精品在线观看| 99精国产麻豆久久婷婷| 最近最新中文字幕免费大全7| 午夜福利影视在线免费观看| 精品人妻一区二区三区麻豆| 看十八女毛片水多多多| 18禁裸乳无遮挡动漫免费视频| 黄色视频在线播放观看不卡| 国产一卡二卡三卡精品 | xxx大片免费视频| 在线免费观看不下载黄p国产| 亚洲久久久国产精品| 国产麻豆69| 国产老妇伦熟女老妇高清| 久久天堂一区二区三区四区| 少妇被粗大猛烈的视频| 亚洲国产欧美网| 美女中出高潮动态图| 成人手机av| 咕卡用的链子| 男人添女人高潮全过程视频| 欧美亚洲 丝袜 人妻 在线| 中文字幕高清在线视频| 青春草视频在线免费观看| 亚洲美女黄色视频免费看| netflix在线观看网站| 秋霞伦理黄片| 国产欧美日韩综合在线一区二区| 我要看黄色一级片免费的| 亚洲视频免费观看视频| 国产国语露脸激情在线看| 热99国产精品久久久久久7| 亚洲精华国产精华液的使用体验| 亚洲av成人精品一二三区| 亚洲欧美清纯卡通| 国产成人精品福利久久| 国产一区二区 视频在线| 国产日韩欧美在线精品| 精品午夜福利在线看| av在线app专区| 操出白浆在线播放| 免费黄网站久久成人精品| 欧美人与性动交α欧美精品济南到| 一二三四在线观看免费中文在| 亚洲av日韩在线播放| 亚洲情色 制服丝袜| 国产亚洲精品第一综合不卡| 18禁裸乳无遮挡动漫免费视频| 99久久人妻综合| 国产极品粉嫩免费观看在线| 黑人巨大精品欧美一区二区蜜桃| 亚洲天堂av无毛| 妹子高潮喷水视频| 黄片无遮挡物在线观看| 国产精品久久久久久精品古装| 亚洲av国产av综合av卡| 亚洲五月色婷婷综合| 成年美女黄网站色视频大全免费| 夜夜骑夜夜射夜夜干| 天天添夜夜摸| 亚洲精品国产av成人精品| 精品国产一区二区三区久久久樱花| 热re99久久国产66热| 国产精品.久久久| 久久99热这里只频精品6学生| 欧美黑人欧美精品刺激| 观看美女的网站| 国产精品二区激情视频| 久久久久久久精品精品| 国产一区二区激情短视频 | av免费观看日本| 国产精品熟女久久久久浪| 欧美人与善性xxx| 亚洲伊人久久精品综合| 777久久人妻少妇嫩草av网站| 成年人免费黄色播放视频| 成年女人毛片免费观看观看9 | 视频区图区小说| 国产精品99久久99久久久不卡 | 少妇猛男粗大的猛烈进出视频| 成年动漫av网址| 亚洲欧美成人综合另类久久久| 久热爱精品视频在线9| 免费高清在线观看日韩| 在线观看国产h片| 久久狼人影院| 日本猛色少妇xxxxx猛交久久| 精品一品国产午夜福利视频| 亚洲欧洲精品一区二区精品久久久 | 国产成人精品久久二区二区91 | 叶爱在线成人免费视频播放| 99久国产av精品国产电影| 狠狠婷婷综合久久久久久88av| 欧美乱码精品一区二区三区| 亚洲欧美一区二区三区黑人| 国产精品99久久99久久久不卡 | 天天躁夜夜躁狠狠躁躁| 亚洲伊人久久精品综合| 国产精品久久久av美女十八| 国产男女内射视频| 欧美老熟妇乱子伦牲交| 啦啦啦中文免费视频观看日本| 人人妻,人人澡人人爽秒播 | av又黄又爽大尺度在线免费看| 巨乳人妻的诱惑在线观看| 中文字幕色久视频| 午夜福利乱码中文字幕| 丰满迷人的少妇在线观看| 深夜精品福利| 午夜福利视频精品| 最近中文字幕2019免费版| 中文字幕av电影在线播放| 久久久久久久久久久免费av| 夜夜骑夜夜射夜夜干| 大话2 男鬼变身卡| 在线免费观看不下载黄p国产| 十八禁人妻一区二区| 一级a爱视频在线免费观看| a级毛片在线看网站| 亚洲精品成人av观看孕妇| 国产精品成人在线| 天天躁夜夜躁狠狠躁躁| 国产精品亚洲av一区麻豆 | 我的亚洲天堂| 人人妻人人澡人人爽人人夜夜| 欧美乱码精品一区二区三区| 午夜福利网站1000一区二区三区| 一边摸一边做爽爽视频免费| 国产熟女午夜一区二区三区| 亚洲伊人色综图| 18禁裸乳无遮挡动漫免费视频| 女人被躁到高潮嗷嗷叫费观| 久久精品亚洲av国产电影网| 欧美 日韩 精品 国产| 亚洲欧美成人综合另类久久久| 九九爱精品视频在线观看| 极品人妻少妇av视频| 免费黄网站久久成人精品| 只有这里有精品99| 日韩一区二区三区影片| 少妇被粗大猛烈的视频| 18禁动态无遮挡网站| 亚洲av中文av极速乱| 国产 精品1| 欧美日韩成人在线一区二区| 999久久久国产精品视频| av片东京热男人的天堂| 久久精品熟女亚洲av麻豆精品| 亚洲精品国产色婷婷电影| 国产精品二区激情视频| 亚洲一卡2卡3卡4卡5卡精品中文| 蜜桃国产av成人99| 色婷婷av一区二区三区视频| 日韩视频在线欧美| 久久ye,这里只有精品| 99国产精品免费福利视频| 国精品久久久久久国模美| 欧美日韩综合久久久久久| 免费日韩欧美在线观看| 18在线观看网站| 国产精品久久久久久久久免| e午夜精品久久久久久久| 欧美在线黄色| 久久久久人妻精品一区果冻| 赤兔流量卡办理| 欧美日韩亚洲国产一区二区在线观看 | 久久久久久久久久久免费av| www.熟女人妻精品国产| 男女午夜视频在线观看| 日韩伦理黄色片| 亚洲三区欧美一区| 久久免费观看电影| 中文字幕精品免费在线观看视频| 国产成人精品福利久久| 我的亚洲天堂| 国产一卡二卡三卡精品 | 少妇 在线观看| 亚洲精品aⅴ在线观看| 人妻人人澡人人爽人人| 女性生殖器流出的白浆| 精品一区二区三区av网在线观看 | 久久亚洲国产成人精品v| 在线观看三级黄色| 国产爽快片一区二区三区| 只有这里有精品99| 亚洲国产精品成人久久小说| 老司机影院毛片| 91精品伊人久久大香线蕉| 午夜福利免费观看在线| 黄片播放在线免费| 亚洲第一av免费看| 菩萨蛮人人尽说江南好唐韦庄| 国产一级毛片在线| 超色免费av| 久热爱精品视频在线9| 欧美精品一区二区大全| 2021少妇久久久久久久久久久| 日韩熟女老妇一区二区性免费视频| 一区二区三区四区激情视频| 中文字幕人妻丝袜一区二区 | 尾随美女入室| 免费av中文字幕在线| 成年动漫av网址| 日韩中文字幕视频在线看片| 日韩制服丝袜自拍偷拍| 日本午夜av视频| 亚洲av综合色区一区| 久久精品亚洲av国产电影网| 中文乱码字字幕精品一区二区三区| 人体艺术视频欧美日本| av在线播放精品| 亚洲欧美成人精品一区二区| 欧美精品av麻豆av| 一区二区日韩欧美中文字幕| 亚洲av福利一区| 亚洲成人免费av在线播放| 国产麻豆69| 免费少妇av软件| 久久久久久久久免费视频了| 国产av码专区亚洲av| 侵犯人妻中文字幕一二三四区| 国产欧美日韩综合在线一区二区| 久久狼人影院| 国产av国产精品国产| 中文字幕人妻丝袜制服| 精品国产超薄肉色丝袜足j| 色婷婷av一区二区三区视频| 久久久欧美国产精品| 91精品伊人久久大香线蕉| 欧美精品一区二区大全| 久久久久久人人人人人| 2018国产大陆天天弄谢| 19禁男女啪啪无遮挡网站| 五月天丁香电影| 亚洲天堂av无毛| 搡老岳熟女国产| 人人妻人人添人人爽欧美一区卜| 国产伦人伦偷精品视频| 免费看av在线观看网站| 可以免费在线观看a视频的电影网站 | e午夜精品久久久久久久| 午夜免费男女啪啪视频观看| 99久久综合免费| 男女边摸边吃奶| av线在线观看网站| 久久久久精品国产欧美久久久 | 亚洲精品一区蜜桃| 久久ye,这里只有精品| 欧美最新免费一区二区三区| 久久人人爽人人片av| 一区二区av电影网| 国产精品久久久人人做人人爽| 热re99久久国产66热| 亚洲激情五月婷婷啪啪| 十八禁高潮呻吟视频| 搡老乐熟女国产| 精品国产一区二区三区久久久樱花| 99热全是精品| 中国三级夫妇交换| 男女床上黄色一级片免费看| 无限看片的www在线观看| 欧美精品一区二区免费开放| 一个人免费看片子| 日本av手机在线免费观看| 在线看a的网站| 国产一级毛片在线| 熟女少妇亚洲综合色aaa.| 五月开心婷婷网| 老司机在亚洲福利影院| 亚洲国产av影院在线观看| 免费看不卡的av| 一区二区三区乱码不卡18| 亚洲人成电影观看| 精品亚洲成a人片在线观看| 亚洲情色 制服丝袜| 欧美xxⅹ黑人| 女的被弄到高潮叫床怎么办| 夫妻午夜视频| 波野结衣二区三区在线| 国产精品一二三区在线看| 久久这里只有精品19| 亚洲欧美成人精品一区二区| 中文字幕精品免费在线观看视频| 一区在线观看完整版| 国产淫语在线视频| 国产1区2区3区精品| 男女边摸边吃奶| 国产亚洲精品第一综合不卡| 人人妻人人添人人爽欧美一区卜| 成人毛片60女人毛片免费| 久久人人97超碰香蕉20202| 激情五月婷婷亚洲| 中文字幕另类日韩欧美亚洲嫩草| 国产一级毛片在线| 自拍欧美九色日韩亚洲蝌蚪91| www.精华液| 性高湖久久久久久久久免费观看| 精品少妇一区二区三区视频日本电影 | 99九九在线精品视频| 街头女战士在线观看网站| 美女中出高潮动态图| 嫩草影院入口| 中文欧美无线码| 日韩精品免费视频一区二区三区| 大片免费播放器 马上看| 91国产中文字幕| 久久狼人影院| 精品国产国语对白av| 在线观看免费日韩欧美大片| 日韩 欧美 亚洲 中文字幕| 99久久综合免费| 国产精品成人在线| 久久婷婷青草| 一区二区三区乱码不卡18| 观看av在线不卡| 国产又色又爽无遮挡免| 免费在线观看视频国产中文字幕亚洲 | 国产欧美亚洲国产| 亚洲欧美日韩另类电影网站| 国产成人欧美在线观看 | 女人精品久久久久毛片| 亚洲精品美女久久av网站| 一级a爱视频在线免费观看| 亚洲成国产人片在线观看| 精品酒店卫生间| 天堂俺去俺来也www色官网| 日韩av免费高清视频| 99国产综合亚洲精品| 丝袜在线中文字幕| 国产视频首页在线观看| 亚洲av日韩在线播放|