• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Facile and diverse logic circuits based on dumbbell DNA-templated fluorescent copper nanoclusters and S1 nuclease detection

    2022-06-20 08:00:36ZefengGuAnchenFuRuQiuRuSunZhijuanCao
    Chinese Chemical Letters 2022年5期

    Zefeng Gu, Anchen Fu, Ru Qiu, Ru Sun, Zhijuan Cao

    Shanghai Key Laboratory of Bioactive Small Molecules & Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203,China

    Keywords:Logic gates Dumbbell DNA templates Poly-thymine loops Copper nanoclusters Nucleic acid enzymes

    ABSTRACT DNA-based logic gates promote the development of molecular computing and show enormous potential in the fields of nanotechnology and biotechnology.Dumbbell oligonucleotides (DNA) with poly-thymine(poly-T) loops and a nicked random double strand have been demonstrated to be an efficient template for the formation of fluorescent copper nanoclusters (CuNCs) in our previous work.Herein, a new platform technology is presented with which to construct molecular logic gates by employing CuNCs probe as a basic output generator, coupling of functional nucleases as the inputs.Two dumbbell DNAs are used with the difference in stem length (8 bp and 16 bp, respectively).The degradation of DNA templates can be tuned by various nucleic acid enzymes, single-stranded nuclease (S1), double-stranded specific nuclease(DSN), E.coli DNA ligase, exonucleases I and III.Briefly, S1 can digest both DNA templates, while the cleavage ability of DSN will be resistant by the short stem of SS-DNA (short-stem DNA).Exonuclease I and III can degrade these two nicked DNA templates, which are inhibited due to the ligation of E.coli DNA ligase.With this novel strategy, a set of logic gates is successfully constructed at the molecular level,including “YES”, “PASS 0”, “OR”, “INHIBIT”, which take the advantages of no label, easy operation, fast speed, high efficiency and low cost.Furthermore, S1 nuclease, as the biomarker of numerous carcinogens,is selectively detected in the range of 0.05–50 U/mL with the detection limit of 0.005 U/mL (1 × 10-6 U)based on this platform.

    Conventionally, a logic gate is an elementary building block of a digital circuit, which are capable of performing all types of Boolean logic by receiving electronic inputs representing true (“1”, high voltage) or false (“0”, low voltage) and then generating the appropriate electronic outputs [1,2].This method is limited in siliconbased electronic devices, top-down lithographic processes, the necessity of the minimum feature size.Since the 1980s, de Silvaet al.have greatly improved the emergence of bottom-up molecular logic gates based on fluorescence response [3].In 1993 [4], de Silva developed the “AND” gate in solution by molecular logic gates which were capable of performing various Boolean logic, mostly by receiving one or more input values and generating a single logical output.In 1994, Adleman encoded a small graph in molecules of oligonucleotides to perform DNA-based logical operations [5].Along this line, molecular logic gates have stimulated the dramatic development of molecular-scale computers and shown enormous potential in nanotechnology, biotechnology, and medicine [6].Various materials, such as nucleic acids [3], organic molecules [7],proteins [8], enzymes [9], and supramolecular hydrogels [10] have been used for the development of molecular-scale logic gates.Among them, DNA-based logic gates attracted considerable research efforts owing to predominant properties, including wellordered structure, easy modification and highly specific recognition [11,12].Plentiful achievements have been made, but there are still some significant issues which should be taken seriously.For example, lots of logic devices with multi-output signals are developed by using of covalently labeled reporters (e.g., dye, redox or fluorescent quencher), which is of time and cost-consumption[13-18].Nanomaterials, such as graphene, carbon dots, need to be introduced to aid the establishment of logic gates [19], increasing the complexity of a logic system and are not conducive to the repeatability and assembly of different logic systems.In recent years, some label-free probes and straightforward strategies were also promoted to simplify the logic systems.For example, Yanget al.reviewed some homogeneous signal actuators [20] and proposed a versatile DNA-supramolecular logic platform [21].Huanget al.also made some achievements on the label-free logic devices [22].In order to avoid the covalent linking of probes or the addition of nanomaterials, Lvet al.[23] reported the logic gates based onin-situformation of fluorescent silver nanoclusters.Unfortunately, it took more than 5 h to generate the fluorescent products (AgNCs), and usually complicated oligonucleotides design was involved.Therefore, to explore a simple logic platform in a timeand cost-effective way is urgently demanded.

    DNA-scaffolded fluorescent copper nanoclusters attract much more attention in fluorescent bio-sensing by virtue of fast synthesis (within several minutes, much faster than AgNCs), low cost and excellent photophysical properties of mega-Stokes shifting [24,25].Different types of DNA templates were reported to form copper nanoclusters (CuNCs) for various applications [26,27].Our group reported that hairpin or dumbbell DNA with a poly-T loop could be a promising template for the formation of CuNCs [28].The DNA structure was composed of two poly-T loops regions and a random dsDNA stem.By comparison of previous templates, dumbbell DNA-templated CuNCs showed enhanced fluorescent properties for biochemical sensing.Meanwhile, nucleases, such as exonucleases, endonucleases, are capable to hydrolyze phosphodiester bonds in DNA or RNA into mono- or oligonucleotide fragments [29,30], while the ligase can link two ends of the DNA template.Therefore, those nucleases, especially single-stranded nuclease (S1), play an important role in various biological procession in living systems, such as DNA replication, repair and recombination,genotyping, mapping, as well as molecular cloning.The abnormal levels of nucleases were related to the disease states [30].

    In this study, regarding the distinct features and great potential in many fields of fluorescent CuNCs, we report diverse logic gates, including “YES”, “PASS 0”, “OR”, and “INHIBIT”.The logic circuit signal reporter, CuNCs can be formed within twenty minutes,alleviating the time-consuming sequence design, and also reducing the costly labeling and covalent binding procedures.In addition,these logic gates are operated in homogeneous solution to avoid the immobilization procession.Thus, it shows superior features of high speed, simplicity and integration.

    The sequences of dumbbell DNA template used in this work are shown in Table S1 (Supporting information), which are the same at two poly-T loops and different in stem length.The LS-DNA (longstem DNA) template has a 16-base pair (bp) double-strand stem,while the SS-DNA (short-stem DNA) has an 8-bp one.The strongly fluorescent CuNCs were reported with an emission peak at 630 nm and an average diameter of about 2.6 nm (Fig.S1 in Supporting information) under the condition of CuSO4and ascorbic acid (Fig.S2 in Supporting information) [31].When DNA templates were destroyed by nucleases, the fluorescence would be quenched due to the absence of CuNCs.As depicted in Scheme 1, the fluorescent signal of LS-DNA templated CuNCs can be quenched by either S1 nuclease or double-stranded specific nuclease (DSN), while that of SS-DNA templated CuNCs can only be quenched by S1 nuclease,but not DSN.That is because the dumbbell DNA with a short stem(usually less than 10 bp) is resistant to the cleavage of DSN [32].Both DNA templates can be degraded by exonucleases (Exo) I and III thoroughly, but inhibited byE.coliligase which can link the 3′and 5′ terminus of the dumbbell DNA templates to be a closed loop without a nick.Based on these principles, we can simply establish several single-input and dual-input logic circuits.

    Scheme 1.Schematic principle of nucleic acid enzymes switched fluorescent signal of DNA-templated CuNCs.

    According to nuclease-induced cleavage of DNA templates, the logic gates were developed by assigning the fluorescent signal as the output and nucleic acid enzymes as inputs.The normalized fluorescent signal (0.5) was set as a threshold value.The strong fluorescent signal generated from well-templated CuNCs (higher than 0.5) was defined as the output of 0, and the weak fluorescent signal from fragmented DNA templates (lower than 0.5) was defined as the output of 1 after introducing various enzymes.

    The simplest “YES” and “PASS 0” logic circuits were first achieved based on the input-dependent signal variation.In this logic system, S1 and DSN with the concentration of 0 U or 10 U were defined as the input 0 or 1, respectively.As shown in Fig.1a,SS-DNA-templated CuNCs were first considered as the initial state,showing strong fluorescence and giving an output of 0.With the addition of 10 U S1 nuclease as the input 1, the fluorescent intensity obviously decreased due to the degradation of SS-DNA template, resulting in output 1.The logic circuit was defined to be“YES”.Correspondingly, with the addition of 10 U DSN as input 1,the fluorescent intensity has no obvious change (output 0) because that the short-stem of SS-DNA (less than 10 bp) was resistant to the cleavage of DSN effectively.Thus, the logic circuit was “PASS 0”.The columns in Fig.1c represented the normalized fluorescence signal corresponding to output signals of “YES” and “PASS 0” gates under different inputs, respectively, which was consistent with the fluorescence images by Camara (Canon E450, Fig.1b).

    Furthermore, logic gate “OR” (seen in Figs.1d-f) was also implemented successfully on the simple platform of LS-DNA templated CuNCs.In this logic circuit platform, LS-DNA was used as the template for fluorescent CuNCs.S1 and DSN were employed as the dual inputs, respectively.As shown in Fig.1d, either of two inputs (1/0, 0/1) and both of them (1/1) were able to present output 1, which was the result of no formation of CuNCs, indicating that these two nucleases trigger cleavage procession on LS-DNA templates.The fluorescent images (Fig.1e) and normalized fluorescent signals (Fig.1f) confirmed the above results.Thus, a typical “OR”logic gate was achieved.

    Fig.1.(a) Schematic description of SS-DNA-templated CuNCs undergoing structural and fluorescent change upon addition of enzyme inputs.(b) Fluorescence images of CuNCs with different inputs S1 (0 and 1) or DSN (0 and 1) in MOPs buffer.(c) Normalized fluorescence intensities of CuNCs in two types of single-input logic circuits (“YES”and “PASS 0”).Measurement conditions:SS-DNA (50 pmol), 50 μmol/L CuSO4, 2 mmol/L ascorbic acid, S1 0 U (input 0) and 10 U (input 1), DSN 0 U (input 0) and 10 U(input 1).(d) Schematic description of LS-DNA-templated CuNCs undergoing structural and fluorescent change upon addition of enzyme inputs.(e) Fluorescence images of CuNCs with input S1 (0 and 1) or DSN (0 and 1) in MOPs buffer.(f) Normalized fluorescence intensities of CuNCs in the two types of dual-input logic circuits (OR).Measurement conditions:LS-DNA (50 pmol), 50 μmol/L CuSO4, 2 mmol/L ascorbic acid, S1 0 U (input 0) and 10 U (input 1), DSN 0 U (input 0) and 10 U (input 1).(g)Schematic description of “INHIBIT” logic gate based on SS-DNA or LS-DNA-templated CuNCs undergoing structural and fluorescent change upon addition of enzyme inputs.(h) Fluorescence images of CuNCs with inputs of E.coli DNA ligase/Exo (0,0; 1,0; 0,1 and 1,1) in MOPs buffer.(i) Normalized fluorescence intensities of CuNCs in the logic circuit (“INHIBIT”).Measurement conditions:SS-DNA or LS-DNA (0.25 μmol/L), 50 μmol/L CuSO4, 2 mmol/L ascorbic acid, 50 μmol/L NAD+, E.coli DNA ligase 0 U (input 0)and 10 U (input 1), Exo 0 U (input 0) and 10 U (input 1).

    Figs.1g-i depicted the mechanism of “INHIBIT” logic gate.Of note, both SS-DNA and LS-DNA templates can be employed to establish this logic gate.E.coliDNA ligase and Exo (including Exo I& III) were used as input pairs and the normalized fluorescent signals as the output.Only in the presence of the input of Exo (0/1)did the fluorescence decrease, leading to output 1.Otherwise, any other inputs including none of them (0/0),E.coliby itself (1/0) or both of them (1/1) did not change the fluorescence intensity, which yielded output 0.The reason was thatE.coliDNA ligase could link two ends of the DNA templates, which inhibited the cleavage of Exo.Thus, the DNA templates were retained to form fluorescent CuNCs.The fluorescent images and normalized fluorescent signal were shown in Figs.1h and i.

    Then, we studied the cleavage ability of S1 and DSN on the SSDNA template with or without the presence ofE.coliligase or Exo I & III.As shown in Fig.2, existence of either Exo I & III or S1 decreased the fluorescence signal (columns 2 and 3), while DSN did not (column 4).E.coliDNA ligase inhibited the cleavage function of Exo I & III (column 6), but not S1 (column 7).When the presence ofE.coliDNA ligase on its own (column 5), or with DSN(column 8), showed almost the same fluorescence signal with the blank (only DNA templates without any enzymes, column 1).Those results achieved the IDENTITY logic gate.That is, the fluorescence signal was quenched due to the existence of S1 no matter that other four enzymes coexisted or not (output 1), which was further confirmed by the results of gel electrophoresis.

    Fig.2.(a) Normalized fluorescence intensities of SS-DNA-templated CuNCs with S1,DSN, E.coli ligase or Exo I & III (Column:1.none, 2.Exo I & III, 3.S1, 4.DSN, 5. E.coli DNA ligase, 6. E.coli DNA ligase + Exo I & III, 7. E.coli DNA ligase + S1, and 8.E.coli DNA ligase + DSN).(b) Gel electrophoresis image.Measurement conditions:SS-DNA (50 pmol), 50 μmol/L CuSO4, 2 mmol/L ascorbic acid, 50 μmol/L NAD+, S1 10 U, DSN 10 U, E.coli DNA ligase 10 U and Exo I & III 10 U.

    S1 nuclease protection is the easiest way to map cleavage sitesin vivoand a positive result here is definitive evidence of endonucleolytic cleavage, which has been particularly used to probe the disruption of the DNA structure by numerous carcinogens and antimitotic drugs [33,34].Here, based on this new strategy, S1 nuclease activity was detected selectively based on SS-DNA template CuNCs which would not be influenced by DSN and Exo I & III.Before the quantification, we studied and optimized various experimental conditions, including SS-DNA template in the range of 0.125–0.5 μmol/L, CuSO4in the range of 12.5–200 μmol/L, ascorbic acid in the range of 0.25–4 mmol/L, NAD+(nicotinamide adenine dinucleotide) in the range of 12.5–200 μmol/L, Exo I & III andE.coliDNA ligase in range of 1.25–20 U.Then, we obtained the optimal reaction conditions.That was 50 pmol DNA template (0.25 μmol/L),10 U ofE.coliDNA ligase, 10 U Exo I & III, 50 μmol/L NAD+, 50 μmol/L, and 2 mmol/L ascorbic acid (Figs.S2 and S3 in Supporting information).As shown in Fig.3, a good linear correlation existed between the fluorescent ratio [(I0-I)/I0] and S1 concentration in a broad range of 0.05–50 U/mL.The limit of detection (LOD) for S1 nuclease was calculated to be 0.005 U/mL (10-6U, 3σ).

    Fig.3.(a) Fluorescent signal responses with different concentrations of S1 nuclease.(b) Plot of FL intensity ratio [(I0-I)/I0] versus the concentration of S1 nuclease(y = 0.0777x + 0.182 with a correlation coefficient of 0.9963).Measurements were performed by using 0.25 μmol/L short stem DNA, 10 U E.coli DNA ligase, 50 μmol/L NAD+, 50 μmol/L CuSO4, and 2 mmol/L ascorbic acid in MOP buffer.The error bars denote the standard deviation for three independent measurements.

    In summary, we have constructed a series of logic gates (“YES”,“PASS 0”, “OR” and “INHIBIT”) by using dumbbell DNA template fluorescent CuNCs as the functional component (output), and multiple nucleic acid enzymes as inputs.As compared to previous ones, the dumbbell DNAs can template the formation of CuNCs within several minutes which contributes to time- and costeffective protocol for molecular logic gates.The design also eliminates the usage of organic dyes and nanomaterial quenchers, and other components, greatly simplifying the establishment of the logic circuit platform.In further, S1 nuclease has been detected in a wide range with low sensitivity (10-6U).Together, these results introduce a new platform technology for logic gate operation that enables the simple circuits required for communication between various computational elements.We expect that this work can be an important point for research on nucleases logic systems and will be highly beneficial in future molecular computing and biochemical and electronic applications.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The authors are grateful to the projects of Innovative research team of high-level local universities in Shanghai and a key laboratory program of the Education Commission of Shanghai Municipality (No.ZDSYS14005), Program for high-level local universities in Shanghai (No.IDF301027/022) and Shanghai Agriculture Science and Technology Support Project (No.21N31900500), and the National Natural Science Foundation of China (No.21505023).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.09.020.

    亚洲美女黄片视频| 日韩高清综合在线| 免费看日本二区| 天堂av国产一区二区熟女人妻| 全区人妻精品视频| 亚洲精品色激情综合| 亚洲精品影视一区二区三区av| 中出人妻视频一区二区| 香蕉久久夜色| 亚洲国产精品999在线| 国产一区二区激情短视频| 天天躁日日操中文字幕| 国产av一区在线观看免费| 欧美激情久久久久久爽电影| 91av网一区二区| 有码 亚洲区| 极品教师在线免费播放| 亚洲av成人av| 国产探花在线观看一区二区| 99热这里只有是精品50| 久久久久久久久中文| 少妇熟女aⅴ在线视频| 久久精品91蜜桃| 日韩欧美国产一区二区入口| 村上凉子中文字幕在线| 男女做爰动态图高潮gif福利片| 亚洲av美国av| 黄色视频,在线免费观看| 日本 欧美在线| 69av精品久久久久久| 久久性视频一级片| 日本撒尿小便嘘嘘汇集6| 99久久成人亚洲精品观看| 国产欧美日韩精品一区二区| 韩国av一区二区三区四区| 国产精品99久久99久久久不卡| 久久久久久人人人人人| 91字幕亚洲| 搡老岳熟女国产| 午夜免费观看网址| 最近最新中文字幕大全免费视频| 欧美另类亚洲清纯唯美| 婷婷精品国产亚洲av| 午夜a级毛片| 亚洲aⅴ乱码一区二区在线播放| 少妇的丰满在线观看| 国产伦在线观看视频一区| 亚洲真实伦在线观看| a级毛片a级免费在线| 黄色片一级片一级黄色片| 国产精品电影一区二区三区| 日本与韩国留学比较| 国产精品自产拍在线观看55亚洲| 欧美丝袜亚洲另类 | 日韩高清综合在线| 免费人成在线观看视频色| 不卡一级毛片| 美女高潮喷水抽搐中文字幕| 丰满乱子伦码专区| 日本与韩国留学比较| 成人特级黄色片久久久久久久| 亚洲一区二区三区色噜噜| 国产一区在线观看成人免费| 美女黄网站色视频| 国产国拍精品亚洲av在线观看 | 两个人视频免费观看高清| 黄片大片在线免费观看| 麻豆国产av国片精品| 国产亚洲欧美98| 国产av一区在线观看免费| 小蜜桃在线观看免费完整版高清| 国产成+人综合+亚洲专区| 黄色日韩在线| 国内少妇人妻偷人精品xxx网站| 亚洲精品成人久久久久久| 99在线人妻在线中文字幕| 免费看十八禁软件| 日日夜夜操网爽| 伊人久久大香线蕉亚洲五| 精品久久久久久久毛片微露脸| 精品无人区乱码1区二区| 日韩欧美在线乱码| 在线观看一区二区三区| 亚洲av免费高清在线观看| 中文字幕久久专区| 2021天堂中文幕一二区在线观| 黄色视频,在线免费观看| 首页视频小说图片口味搜索| 网址你懂的国产日韩在线| 他把我摸到了高潮在线观看| 亚洲人与动物交配视频| 成人精品一区二区免费| www日本黄色视频网| 欧美在线一区亚洲| 亚洲av成人精品一区久久| 麻豆久久精品国产亚洲av| 国产黄a三级三级三级人| 可以在线观看的亚洲视频| 在线国产一区二区在线| 国产真人三级小视频在线观看| 日韩av在线大香蕉| 99热这里只有是精品50| 2021天堂中文幕一二区在线观| 69人妻影院| 欧美国产日韩亚洲一区| 999久久久精品免费观看国产| 哪里可以看免费的av片| 最新在线观看一区二区三区| 免费av不卡在线播放| 国产91精品成人一区二区三区| 久久九九热精品免费| 美女被艹到高潮喷水动态| 嫩草影视91久久| 我要搜黄色片| 一本精品99久久精品77| 97碰自拍视频| 夜夜爽天天搞| 啦啦啦韩国在线观看视频| 男人舔奶头视频| 免费大片18禁| 最近最新中文字幕大全电影3| 国产99白浆流出| 亚洲无线在线观看| 亚洲国产精品久久男人天堂| 精品国产亚洲在线| 欧美性猛交╳xxx乱大交人| 国产精品久久久久久久久免 | 亚洲国产高清在线一区二区三| 国产欧美日韩精品亚洲av| 少妇人妻精品综合一区二区 | 成人特级黄色片久久久久久久| 九色成人免费人妻av| xxxwww97欧美| 手机成人av网站| 国产一区二区在线观看日韩 | 亚洲色图av天堂| 高清日韩中文字幕在线| 亚洲成a人片在线一区二区| 欧美成人a在线观看| 国产单亲对白刺激| 亚洲精品在线美女| 少妇裸体淫交视频免费看高清| 亚洲avbb在线观看| 久久久久久人人人人人| 久久亚洲真实| 亚洲中文日韩欧美视频| 欧美av亚洲av综合av国产av| 一本一本综合久久| 99国产精品一区二区三区| 色综合亚洲欧美另类图片| 国产真实乱freesex| 成人永久免费在线观看视频| 五月玫瑰六月丁香| 色综合欧美亚洲国产小说| 国产精品久久久久久久电影 | 手机成人av网站| 亚洲精品色激情综合| 国内精品久久久久久久电影| 国产精品亚洲一级av第二区| 欧美一区二区亚洲| 午夜久久久久精精品| 成年女人看的毛片在线观看| 俄罗斯特黄特色一大片| 精品一区二区三区av网在线观看| 亚洲精品日韩av片在线观看 | 欧美激情久久久久久爽电影| 国产精品三级大全| 高清在线国产一区| 久久人人精品亚洲av| 老鸭窝网址在线观看| 欧美一级a爱片免费观看看| 日本与韩国留学比较| 色精品久久人妻99蜜桃| 日日摸夜夜添夜夜添小说| 无遮挡黄片免费观看| 成人无遮挡网站| av专区在线播放| 亚洲国产精品sss在线观看| 国模一区二区三区四区视频| 欧美高清成人免费视频www| avwww免费| 欧美色视频一区免费| 特级一级黄色大片| 亚洲熟妇熟女久久| 久久久久精品国产欧美久久久| 日韩免费av在线播放| 51午夜福利影视在线观看| 国产 一区 欧美 日韩| 人人妻,人人澡人人爽秒播| 亚洲黑人精品在线| 午夜免费男女啪啪视频观看 | 精品国内亚洲2022精品成人| 少妇丰满av| 99在线视频只有这里精品首页| 国产免费男女视频| 女生性感内裤真人,穿戴方法视频| 成年女人毛片免费观看观看9| 亚洲成人免费电影在线观看| 国内毛片毛片毛片毛片毛片| 中文字幕久久专区| 香蕉av资源在线| 非洲黑人性xxxx精品又粗又长| 黄色成人免费大全| 在线观看美女被高潮喷水网站 | 欧美日韩国产亚洲二区| 亚洲熟妇熟女久久| 精品人妻一区二区三区麻豆 | 久9热在线精品视频| 国产探花极品一区二区| 国产三级黄色录像| 国产aⅴ精品一区二区三区波| 国产三级在线视频| av女优亚洲男人天堂| 成人高潮视频无遮挡免费网站| 男女床上黄色一级片免费看| 免费看日本二区| 三级国产精品欧美在线观看| 一边摸一边抽搐一进一小说| 中文资源天堂在线| 国产av不卡久久| 午夜福利成人在线免费观看| 精品人妻偷拍中文字幕| 国产成人影院久久av| 好看av亚洲va欧美ⅴa在| 91麻豆精品激情在线观看国产| 免费在线观看成人毛片| 成人av一区二区三区在线看| 亚洲精品久久国产高清桃花| 日韩精品中文字幕看吧| 欧美日韩中文字幕国产精品一区二区三区| xxx96com| 久久99热这里只有精品18| 亚洲成人久久爱视频| 国产精品98久久久久久宅男小说| 欧美一区二区亚洲| 少妇的逼水好多| 久久久成人免费电影| xxxwww97欧美| 好男人电影高清在线观看| 欧美成人一区二区免费高清观看| 一个人看视频在线观看www免费 | 在线十欧美十亚洲十日本专区| www.999成人在线观看| 性欧美人与动物交配| 色哟哟哟哟哟哟| 丝袜美腿在线中文| 欧美乱色亚洲激情| 久久久久久大精品| 久久人妻av系列| 搡老岳熟女国产| 黄色片一级片一级黄色片| 九九在线视频观看精品| 丝袜美腿在线中文| 伊人久久精品亚洲午夜| 欧美性猛交╳xxx乱大交人| 夜夜躁狠狠躁天天躁| 国产一区在线观看成人免费| av片东京热男人的天堂| 又粗又爽又猛毛片免费看| 亚洲精品久久国产高清桃花| 国产黄片美女视频| 狠狠狠狠99中文字幕| a级一级毛片免费在线观看| 国产精品av视频在线免费观看| av女优亚洲男人天堂| 一级黄色大片毛片| 69av精品久久久久久| 亚洲成av人片在线播放无| 亚洲av免费在线观看| 成人亚洲精品av一区二区| 波多野结衣高清无吗| 久久性视频一级片| 在线天堂最新版资源| 91在线精品国自产拍蜜月 | 亚洲av熟女| 看片在线看免费视频| 国产精品,欧美在线| 99久国产av精品| 日韩人妻高清精品专区| av女优亚洲男人天堂| 欧美区成人在线视频| 91在线精品国自产拍蜜月 | 色精品久久人妻99蜜桃| 激情在线观看视频在线高清| 性色av乱码一区二区三区2| 丁香六月欧美| 老汉色av国产亚洲站长工具| 亚洲av成人精品一区久久| 搡女人真爽免费视频火全软件 | 成人国产一区最新在线观看| 国产淫片久久久久久久久 | 波多野结衣高清无吗| 18禁美女被吸乳视频| 日本一本二区三区精品| 18禁国产床啪视频网站| 国产精品永久免费网站| 欧美在线黄色| 国产97色在线日韩免费| 男女午夜视频在线观看| 国产中年淑女户外野战色| 色哟哟哟哟哟哟| 性色avwww在线观看| 色老头精品视频在线观看| 久久久精品欧美日韩精品| 人妻丰满熟妇av一区二区三区| 他把我摸到了高潮在线观看| 久久久久精品国产欧美久久久| av国产免费在线观看| 两人在一起打扑克的视频| 日韩免费av在线播放| 久久九九热精品免费| 又紧又爽又黄一区二区| 免费看十八禁软件| 女同久久另类99精品国产91| 久久天躁狠狠躁夜夜2o2o| www日本在线高清视频| 欧美性感艳星| 久久久久免费精品人妻一区二区| 欧美性感艳星| 一本综合久久免费| 午夜亚洲福利在线播放| 免费看光身美女| 极品教师在线免费播放| 国产伦在线观看视频一区| 午夜福利免费观看在线| 亚洲午夜理论影院| 亚洲性夜色夜夜综合| 国产精品电影一区二区三区| 麻豆国产97在线/欧美| 国产高清videossex| 搡女人真爽免费视频火全软件 | 日韩免费av在线播放| 亚洲欧美日韩高清专用| 老汉色∧v一级毛片| 久久性视频一级片| 三级国产精品欧美在线观看| 午夜精品在线福利| 人妻夜夜爽99麻豆av| 一本一本综合久久| 国产高清视频在线播放一区| 99精品久久久久人妻精品| 夜夜看夜夜爽夜夜摸| 亚洲精品久久国产高清桃花| 日韩中文字幕欧美一区二区| 免费观看的影片在线观看| 亚洲专区国产一区二区| 中国美女看黄片| 老司机在亚洲福利影院| 国模一区二区三区四区视频| 日韩中文字幕欧美一区二区| 精品欧美国产一区二区三| 成年女人看的毛片在线观看| 好男人在线观看高清免费视频| 亚洲 欧美 日韩 在线 免费| 国产精品嫩草影院av在线观看 | 欧美最黄视频在线播放免费| 成年女人永久免费观看视频| 18+在线观看网站| 淫秽高清视频在线观看| 欧美日本视频| 51午夜福利影视在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av熟女| 色老头精品视频在线观看| 亚洲av熟女| 国产精品一区二区三区四区免费观看 | 少妇的丰满在线观看| 久久久久亚洲av毛片大全| 国产成人av教育| 精品人妻偷拍中文字幕| 日本撒尿小便嘘嘘汇集6| 婷婷精品国产亚洲av在线| 老司机午夜十八禁免费视频| 亚洲自拍偷在线| 欧美3d第一页| 啦啦啦免费观看视频1| 少妇的丰满在线观看| 亚洲国产精品999在线| 亚洲精品456在线播放app | 国产av在哪里看| 亚洲欧美激情综合另类| 色在线成人网| 亚洲人成网站在线播| 国内揄拍国产精品人妻在线| 天堂影院成人在线观看| 亚洲,欧美精品.| 国产精品一区二区免费欧美| 99热只有精品国产| 美女被艹到高潮喷水动态| 国产一区二区亚洲精品在线观看| 色综合婷婷激情| 听说在线观看完整版免费高清| 亚洲无线观看免费| 国产高清有码在线观看视频| 国产精品1区2区在线观看.| 最近最新免费中文字幕在线| 亚洲国产高清在线一区二区三| 亚洲成av人片免费观看| 国产乱人视频| 又爽又黄无遮挡网站| www日本黄色视频网| 亚洲男人的天堂狠狠| 久久这里只有精品中国| 一本精品99久久精品77| 99在线人妻在线中文字幕| 真人做人爱边吃奶动态| 嫩草影院精品99| 好看av亚洲va欧美ⅴa在| 性色av乱码一区二区三区2| 欧美精品啪啪一区二区三区| 欧美成人一区二区免费高清观看| 国内精品美女久久久久久| 麻豆成人午夜福利视频| 亚洲真实伦在线观看| 午夜精品久久久久久毛片777| 午夜两性在线视频| 国产亚洲欧美在线一区二区| 久久精品夜夜夜夜夜久久蜜豆| 国产亚洲精品久久久com| 无限看片的www在线观看| 欧美又色又爽又黄视频| 日本免费a在线| 一本精品99久久精品77| 老熟妇仑乱视频hdxx| 噜噜噜噜噜久久久久久91| 精品午夜福利视频在线观看一区| www日本在线高清视频| 国产高清激情床上av| 亚洲精品影视一区二区三区av| www.熟女人妻精品国产| 九九在线视频观看精品| 亚洲狠狠婷婷综合久久图片| 国产单亲对白刺激| 欧美激情久久久久久爽电影| 欧美在线黄色| 丝袜美腿在线中文| 最近最新中文字幕大全电影3| 麻豆久久精品国产亚洲av| 19禁男女啪啪无遮挡网站| 国产成人av教育| 午夜免费男女啪啪视频观看 | 动漫黄色视频在线观看| 一二三四社区在线视频社区8| 麻豆国产av国片精品| 日日夜夜操网爽| 一进一出好大好爽视频| 色综合欧美亚洲国产小说| 欧美av亚洲av综合av国产av| 在线看三级毛片| 12—13女人毛片做爰片一| 十八禁人妻一区二区| 婷婷精品国产亚洲av| 欧美日韩乱码在线| 国产又黄又爽又无遮挡在线| 婷婷精品国产亚洲av在线| 午夜精品在线福利| 国产黄片美女视频| av天堂在线播放| 99久久精品热视频| 性色avwww在线观看| 可以在线观看毛片的网站| 嫩草影视91久久| 亚洲欧美日韩卡通动漫| 国产成+人综合+亚洲专区| 18禁在线播放成人免费| 91在线观看av| 中文字幕熟女人妻在线| 麻豆一二三区av精品| 麻豆国产97在线/欧美| 日日夜夜操网爽| 亚洲熟妇熟女久久| 免费观看精品视频网站| 国产精品一区二区三区四区久久| 亚洲天堂国产精品一区在线| 国产私拍福利视频在线观看| 级片在线观看| 91麻豆精品激情在线观看国产| 亚洲第一电影网av| 丰满的人妻完整版| 国产精品永久免费网站| 成人三级黄色视频| 51国产日韩欧美| 精品人妻偷拍中文字幕| 一本一本综合久久| 亚洲成人免费电影在线观看| 亚洲精品久久国产高清桃花| 国产精品1区2区在线观看.| 91久久精品国产一区二区成人 | 亚洲美女黄片视频| 美女高潮的动态| av中文乱码字幕在线| 美女 人体艺术 gogo| 大型黄色视频在线免费观看| 午夜精品久久久久久毛片777| av在线蜜桃| 国产欧美日韩一区二区精品| 国产一级毛片七仙女欲春2| 国产精华一区二区三区| 一级黄色大片毛片| 午夜福利在线观看吧| 亚洲精品一卡2卡三卡4卡5卡| 母亲3免费完整高清在线观看| 成年版毛片免费区| 亚洲aⅴ乱码一区二区在线播放| 岛国在线观看网站| 欧美成人性av电影在线观看| 国语自产精品视频在线第100页| 久9热在线精品视频| 美女大奶头视频| 国产精品一区二区免费欧美| 偷拍熟女少妇极品色| 小说图片视频综合网站| 免费在线观看成人毛片| 精品国产美女av久久久久小说| 小蜜桃在线观看免费完整版高清| 免费人成视频x8x8入口观看| 一进一出抽搐gif免费好疼| 色综合欧美亚洲国产小说| 免费高清视频大片| 久久精品国产亚洲av涩爱 | 国产69精品久久久久777片| 午夜免费成人在线视频| 中文字幕精品亚洲无线码一区| 国产99白浆流出| 精品欧美国产一区二区三| 757午夜福利合集在线观看| 丰满乱子伦码专区| 久久久久久久亚洲中文字幕 | 久久婷婷人人爽人人干人人爱| 成年免费大片在线观看| 不卡一级毛片| a在线观看视频网站| 变态另类成人亚洲欧美熟女| 一夜夜www| 国产色婷婷99| 日韩欧美一区二区三区在线观看| av片东京热男人的天堂| 又紧又爽又黄一区二区| 一个人免费在线观看电影| 午夜免费男女啪啪视频观看 | www.999成人在线观看| 熟女少妇亚洲综合色aaa.| 国产男靠女视频免费网站| 最近在线观看免费完整版| 国产精品98久久久久久宅男小说| 亚洲狠狠婷婷综合久久图片| 九色国产91popny在线| 国产精品香港三级国产av潘金莲| 99久久精品国产亚洲精品| 久久久久久九九精品二区国产| 一边摸一边抽搐一进一小说| 两性午夜刺激爽爽歪歪视频在线观看| 深夜精品福利| 亚洲天堂国产精品一区在线| 黄色女人牲交| 欧洲精品卡2卡3卡4卡5卡区| 最新中文字幕久久久久| 黄色丝袜av网址大全| 久久精品影院6| 香蕉久久夜色| 亚洲aⅴ乱码一区二区在线播放| 日本黄色视频三级网站网址| 99精品久久久久人妻精品| 2021天堂中文幕一二区在线观| 国产97色在线日韩免费| 丁香欧美五月| 亚洲avbb在线观看| 久久久久久久久大av| 国产在视频线在精品| 免费av毛片视频| 中文在线观看免费www的网站| 久久这里只有精品中国| 九色国产91popny在线| 久久精品影院6| 麻豆一二三区av精品| 90打野战视频偷拍视频| 欧美高清成人免费视频www| 亚洲18禁久久av| 99久久精品一区二区三区| 天堂√8在线中文| 精品一区二区三区av网在线观看| 国产私拍福利视频在线观看| 国产综合懂色| 五月玫瑰六月丁香| 看免费av毛片| 有码 亚洲区| 午夜免费男女啪啪视频观看 | 一夜夜www| 少妇熟女aⅴ在线视频| 久久久久久久精品吃奶| 国产乱人伦免费视频| 欧美xxxx黑人xx丫x性爽| 12—13女人毛片做爰片一| 国产69精品久久久久777片| 久久精品国产亚洲av香蕉五月| 日韩大尺度精品在线看网址| 噜噜噜噜噜久久久久久91| 国产黄片美女视频| av女优亚洲男人天堂| 亚洲国产精品sss在线观看| 一本精品99久久精品77| 久久久国产精品麻豆| 99久久九九国产精品国产免费| 久久久色成人| 欧美av亚洲av综合av国产av| 一本精品99久久精品77| 90打野战视频偷拍视频| 免费无遮挡裸体视频| 男插女下体视频免费在线播放| 麻豆久久精品国产亚洲av| 国产中年淑女户外野战色| www日本黄色视频网| 亚洲第一电影网av| 中文字幕人妻丝袜一区二区| 波多野结衣巨乳人妻|