• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-energy aqueous supercapacitors enabled by N/O codoped carbon nanosheets and “water-in-salt” electrolyte

    2022-06-20 08:00:32JingjingYnLingMioHuiDunDzhngZhuYokngLvLingchunLiLihuGnMingxinLiu
    Chinese Chemical Letters 2022年5期

    Jingjing Yn, Ling Mio, Hui Dun, Dzhng Zhu, Yokng Lv, Lingchun Li,Lihu Gn, Mingxin Liu,c,*

    a Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China

    b School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, China

    c College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China

    d College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China

    Keywords:Porous carbon nanosheets N/O codoping Water-in-salt electrolyte High-energy supercapacitor

    ABSTRACT A facile fabrication strategy is reported to obtain N/O codoped porous carbon nanosheets for purpose of ameliorating the charge transfer and accumulation in the concentrated LiTFSI (lithium bis(trifluoromethane sulfonyl)imide) electrolyte.By tunning the feed ratio of comonomers, the porous nanosheet structure is endowed with a significant ion-adsorption surface area (1630 m2/g) and interconnected hierarchical porosity; meanwhile, high-level N/O dopants (N:3.58 at%, O:12.91 at%) increase the effective contact area for electrolyte ions, and further facilitate rapid ion/electron transfer.Benefiting from the advantageous features, carbon nanosheets electrode reveal an enhanced specific capacitance (375 F/g)in three-electrode configuration and the H2SO4-based device yields a high gravimetric energy density of 11.4 Wh/kg.Particularly, the ion-diffusion highways in porous carbon nanosheets contribute to the 2.25 V LiTFSI-based symmetric device with a high energy delivery up to 33.1 Wh/kg.This work offers an inspiring strategy for facile fabrication of carbon nanosheets, and demonstrates their promising application in “water-in-salt” electrolyte-based supercapacitor systems.

    Carbon-based aqueous supercapacitors (CASs) with fast charge/discharge process, superior cyclic stability and high power density, have received tremendous attention in both theoretical and industrial researches in recent years [1-4].Whereas, the lower energy densities of CASs relative to non-aqueous ones hinder their large scale applications, and thus achieving high energy density is of vital importance for these promising devices.According to the equation of energy density:E= 1/2CV2[5,6], the specific capacitance (C) and voltage window (V) are two pivotal parameters for energy density of CASs.The specific capacitance is strongly related to the surface area, porous structure and heteroatom doping of carbon-based electrodes [7,8].And the voltage window mainly depends on the composition and concentration of the electrolytes [6,9-11].Therefore, exploiting the high-capacitance carbon electrode with large over-voltage window for hydrogen/oxygen evolution is a desirable avenue to achieve the high energy density for alleviating the future energy demands.

    Carbon nanosheets are considered as superior electrode materials in terms of their well-developed porosity, open-ended porous architecture and continuous conductive pathways [12-15].For example, Wei and coworkers designed 3D hierarchical carbons with cross-linked porous sheets [16], wherein multi-level porous channels in carbon nanosheets conduce to fast ion transport and effi-cient electrolyte permeation, thereby generating a high energy delivery of 31.9 Wh/kg in 2.2 V ZnSO4electrolyte.However, carbon nanosheets generally exhibit a tendency to self-restack and/or aggregate during the thermal process, resulting in a significant loss of active ion-adsorption area and a decreasing overall capacitance[17].Therefore, establishing porous carbon nanosheets with large ion-adsorption area, high-level heteroatom decoration and hierarchical porous architecture is a remarkable challenge in pursuit of high-performance supercapacitors.Furthermore, the well-designed porous carbon nanosheets should combine the following characteristics of:(1) the interconnected carbon nanosheets can provide the enhanced specific surface area and abundant electroactive sites for ion-adsorption [18,19]; (2) large specific surface area can facilitate charge accommodation at electrode/electrolyte interphase[20-22]; (3) hierarchical porous structure can accelerate the effective electrolyte permeation and promote charge transfer kinetics [15,23,24]; (4) heteroatom-containing groups can improve the surface accessibility and electron conduction, coupled with inducing extrapseudo-capacitance [25,26].Recently, considerable efforts have been devoted to constructing heteroatom-doped, hierarchically porous carbon nanosheets either by solvothermal strategies or lithographic patterning [27-29].Since multi-stepped procedures or additional etching treatments are still required in the synthesis process, great expectations are still placed on developing a simple route to construct carbon nanosheets as high-performance supercapacitor electrodes.

    Equally important, the energy density is in positive proportion to the square of the potential window, indicating that the increased effective potential window is significantly conducive to the enhanced energy generation of supercapacitor.The organic electrolytes and ionic liquids are known to furnish an electrochemical stability window greater than 3 V, which contributes to a high-energy configuration.However, complicated purification and manufacturing, low conductivity, high flammability and toxicity of organic electrolytes and ionic liquids raise extra concerns[30,31].By comparison, aqueous electrolytes outperform better in above mentioned problems except for the inherent narrow voltage window (~1.23 V) [32].Furthermore, the pseudocapacitive materials using aqueous electrolytes can occur Faraday redox reactions, consequently generating the extra pseudocapacitance.Quite recently, researchers have reported that the “water-in-salt” electrolyte (lithium bis(trifluoromethane sulfonyl)imide, LiTFSI) could broaden the voltage window for aqueous supercapacitors [33], as a majority of water molecules incorporate with Li+and participate in the solvation sheaths, consequently hindering the free water decomposition for an enlarged electrochemical stability window [30,34].However, the low conductivity and high viscosity deteriorating the ion diffusibility will be expected to surmount for carbon nanosheet-based supercapacitors employing “water-in-salt”electrolytes.

    Herein, we reported a facile cost-economical and time-saving approach for constructing N/O dual-doped carbon nanosheets(MPKx) with the contiguous open porous channels.The large ionadsorption surface area (1630 m2/g) and the interconnected conductive framework in porous carbon nanosheets, together with high-doping N/O species (N:3.58 at%, O:12.91 at%), result in an enhanced gravimetric capacitance of 375 F/g in a threeelectrode configuration using H2SO4electrolyte.The typical carbon nanosheets-based symmetric devices generate a high specific energy of 11.4 Wh/kg in H2SO4.Moreover, the ion-infiltration highways in porous carbon nanosheets contribute to the 2.25 V LiTFSIbased symmetric device with a high energy delivery up to 33.1 Wh/kg, together with a capacitance retention of 91% after 10000 charge/discharge cycles.

    The synthesis process of MPKxis schematically illustrated in Fig.1.Firstly, terephthalaldehyde (TPA) is mixed with excessivem-phenylenediamin (PLD) by usingp-toluenesulfonic acid as catalyst to prepare TPA/PLD intermediate blend (PMPK0, Fig.S1a in Supporting information) with reversible imine bonds prior to the participation ofp-benzoquinone (BZQ).The conjugated-bond TPA/PLD/BZQ intercondensation polymer (PMPK2) with compact sheet-like architecture is reassembled by the mixture of highly active BZQ and the intermediate oligomer TPA/PLD with reversible imine bond (Fig.S1b in Supporting information).The structures of PMPKxwith similar spectra are characterized by FT-IR spectra(Fig.S2 in Supporting information).The typical absorption peaks at 1605 and 1690 cm–1are the corresponding stretching vibration of C=N (the typical skeleton characteristic in TPA/PLD) and C=O (deriving from TPA and/or BZQ) [35,36].The peak at 1590 cm–1originates from the stretching vibration of C=C [37], and the bending vibration of N-H at 3340 cm–1reflects the presence of a secondary amine [38].

    Fig.1.Schematic illustration of the synthesis of MPKx.

    The morphologies of the sheet-dominated MPKxare characterized using SEM and TEM.A SEM image of PMPK0(Fig.S1a) exhibits a spherical structure with the average diameter of ~660 nm.A layered porous architecture with microsized cavities connected through coalescent carbon sheets in MPK0(Figs.2a and e) are generated, resulting from the TPA/PLD intermediate blend pyrogenic decomposition together with the sublimation of inner molecular volatile matter.Then, by the addition of BZQ into the PMPK0condensation system, the established sheet-like PMPK1(Fig.S1b) is derived from the reaction between highly active BZQ and TPA/PLD oligomer and finally transformed into MPK1with a crumpled sheet(Figs.2b and f) after carbonization/activation function of KOH.As BZQ dosage increasing, the loose sheets with nano-thickness for MPK2with well-developed open pores (Figs.2c and g) are originated from the regular leaf-like PMPK2copolycondensate (Fig.S1c in Supporting information).High-resolution TEM (lower left corner inset in Fig.2g) reveals that the MPK2nanosheets are essentially amorphous carbon with distorted graphite layers (Fig.2g).Furthermore, a tremendous of white dots can be observed, demonstrating the existence of abundant micropores.With the amount of BZQ up to 3 mmol, the leaf-like PMPK3(Fig.S1d in Supporting information) are evolved into MPK3composing of dense and interconnected carbon nanosheets (Figs.2d and h).Therefore, the participation of BZQ has a significant effect on the copolycondensation kinetics into reassemble a frizzy and loose layer architecture,and the open coalescent channels in carbon nanosheets are highly available for electrolyte ion adsorption and continuously smooth transport, as well as shorten the diffusion highways of ions.Moreover, the morphology and heteroatom doping of N and O elements within porous carbon nanosheets are preliminarily characterized by EDS element mapping apparatus.The EDS elemental mappings(Figs.2i-k) of MPK2reveal the homogenous distribution of N and O elements in the carbon matrix, which reflects the sheet-like framework distribution of these elements (Fig.2l).

    Fig.2.SEM images of MPK0 (a), MPK1 (b), MPK2 (c) and MPK3 (d).TEM images of MPK0 (e), MPK1 (f), MPK2 (g, inset is the high-resolution TEM image) and MPK3 (h).EDS elemental mappings of MPK2:C (i), N (j), O (k) and overlapped elemental mapping images of C, N and O in MPK2 (l).

    XPS tests are further implemented to analyze the surface elemental content and the chemical state for each MPKxsample.The XPS survey (Fig.3a) confirms that nitrogen and oxygen species are successfully incorporated into the MPKxskeleton.The highresolution N 1s spectra of MPKxare deconvoluted into four fitted peaks (Figs.S3a-d and Table S1 in Supporting information),which are assigned to pyridinic nitrogen (398.2 eV, N-6), pyrrolic or pyridonic nitrogen (399.5 eV, N-5), graphitic or quaternary nitrogen (400.3 eV, N-Q) and oxidized nitrogen (401.6 eV, N-X), respectively [39].N-5 and N-6 can create the electroactive sites and defects to yield more open channels, together with introduction of the extra pseudocapacitance.N-Q can significantly ameliorate electron transfer to achieve the increased electronic conductivity and rapid charge transmission [40,41].The high-resolution O 1s spectra (Figs.S3e-h and Table S1 in Supporting information) exhibit three fitted peaks at 530.7, 532.1 and 533.6 eV, corresponding to O-1 (C=O), O-2 (C-OH and/or C-O-C) and O-3 (COO-), separately[36].The conjugated carbon bonded with electron-rich oxygen can regulate sufficient electron density located on the surface of carbons [42,43].Furthermore, the dopant oxygen is beneficial to the electrolyte ions easily accessible to the polarized surface and rapid ion transport, resulting in an enhanced integral capacity [44,45].The synergistic effect of N/O dopants is further confirmed by the contact angle using water droplets on the surface of MPKx.Compared with hydrophobic AC (125°), MPKxsamples are hydrophilic with the contact angles ranging from 34–58° (Fig.3b), implying the excellent wettability.In particular, the lowest contact angle (34°) of MPK2demonstrates the highly hydrophilic feature due to the effi-cient employment of ion-adsorption area furnished by its highest heteroatom contents.

    Fig.3.XPS spectra of MPKx (a).Wetting angles of water droplet on the surface of MPKx and activated carbon (AC) (b).N2 adsorption-desorption isotherms (c) and pore size distribution (d) of MPKx.

    N2adsorption-desorption isotherms for MPKxsamples (Fig.3c)exhibit type Ⅰisotherm feature with a steep increase atP/P0= 0.05,indicating the existence of abundant micropores [15].Meanwhile,the hysteresis loop atP/P0= 0.4–0.95 and the sharply rise atP/P0= 0.95–1.0 suggest the coexistence of micro-, meso- and macroporous structure [46], which is also confirmed by pore size distribution profiles (Fig.3d).Detailed structural information is demonstrated in Table S2 (Supporting information).As the increasing BZQ, the specific surface areas increase from 908 m2/g (MPK0)to 1630 m2/g (MPK2) and then decreases to 1464 m2/g (MPK3),owing to the reassembled nanosheets and frizzy structures with ample interconnected open macropore.The abundant micropore is mostly concentrated atca.0.5, 0.8 and 1.2 nm (Fig.3d), contributing to the supreme micropore surface area (1573 m2/g) and micropore volume (0.61 cm3/g).XRD patterns (Fig.S4a in Supporting information) display two typically broad peaks located at 26 and 44° corresponding to the planes of (002) and (100), revealing the amorphous carbon characteristic [16,47], which is consistent with the TEM analysis.Raman spectra of all MPKxsamples in Fig.S4b (Supporting information) exhibit two prominent peaks at 1345 (D band, disordered and defect feature) and 1590 cm–1(G band, graphitic feature) [26,48].The intensity ratios between D band and G band (ID/IG) for MPKxare 0.93 except for MPK0(0.85).Thus, the introduction of BZQ into copolycondensate system not only furnishes a superior ion-accessible multiscale porous structure and a high surface area (1630 m2/g), but also generates the intrinsic defects for carbon nanosheets to generate extra pseudocapacitance.

    Electrochemical evaluation of all the MPKxelectrodes is examined in a three-electrode configuration with 1 mol/L H2SO4aqueous electrolyte.All CV curves (Fig.S5a in Supporting information)of MPKxelectrodes at 10 mV/s present roughly rectangular shapes with two conspicuous redox peaks at around 0.2-0.6 V attributed to the redox reaction derived from nitrogenous/oxygenated functional groups in MPKxskeleton [49], reflecting the coexistence of electric double-layer capacitance (EDLC) and pseudocapacitance.By comparison, the CV curve of MPK2possesses the largest integrate area, indicating its enlarged capacitive property.Electrochemical impedance spectroscopy (EIS) is performed to investigate the electron transport and ion diffusion [50].Fig.S5b (Supporting information) shows the Nyquist plots of all MPKxelectrodes consisting of a little semicircle and vertical lines at the high- and low-frequency region separately.The equivalent series resistance (Rs) values derived from theZ′-intercept for MPKxelectrodes are almost identical of 1.11Ω, while the charge-transfer resistance (Rct) values inferred from the semicircle diameter are 1.16, 0.97, 0.48 and 0.82Ωfor MPK0, MPK1, MPK2and MPK3, respectively.The lowestRctvalue of MPK2reflects rapid charge transfer arising from the conductive 3D framework in carbon nanosheets.The corresponding GCD profiles (Fig.S5c in Supporting information) for MPKxelectrodes at 1 A/g show nearly symmetrical isosceles triangles, further illustrating the existence of EDLC and pseudocapacitance, and MPK2displays the superior capacity calculated from the longest charge/discharge time.The CV curves with almost rectangular-shapes at various scan rates (Figs.S5d and S6a-c in Supporting information) and the corresponding GCD curves at various densities (Figs.S5e and S6d-f in Supporting information) of MPKxdemonstrate a satisfactory capacity and remarkable rate performance, implying the efficient electromigration of electrolyte ions to the electrode/electrolyte interphase.The specific capacitance of MPK2(Fig.S5f in Supporting information) at 10 A/g is 278 F/g (74.2% capacitance retention), indicating good rate performance.The excellent rate capability is attributed to rapid ions transport and short diffusion distance in open-developed porous carbon nanosheets, as well as a large ion-adsorption area and high-level heteroatom contents in carbon nanosheets skeleton.

    To further assess the effect of N/O codoping on capacitive behaviors of MPK2, the contributions of pseudocapacitance and EDLC are investigated.The total response current (i) with the scan rate(v) can be analyzed by the power-law relationship ofi=avb[51,52].The parameters ofaandbare adjustable constants, and the b value ranging from 0.5 to 1 can be determined by the slope of log(i)vs.log(v) curves.Whenb-value is close to 0.5, it demonstrates the slow-kinetics behavior, whereasb-value of 1.0 represents a fast-kinetics process.Theb-values are calculated to be 0.88 and 0.89 for charge and discharge process (Fig.S6a in Supporting information), indicating the co-existence of hybrid-kinetics behaviors.The pseudocapacitive- and EDLC-contributions for MPK2are further investigated and quantitatively analyzed according to the following equationi(V) =k1v+k2v1/2[53-55].Wherek1vcorresponds to the EDLC-controlled contribution andk2v1/2represents the pseudocapacitance-dominant process.Figs.S7b and S8(Supporting information) display the contributions of the EDLCcontrolled in red region and the pseudocapacitive-dominant in green region at different scan rates.The MPK2electrode exhibits a 18.7% EDLC-controlled contribution ratio at a low scan rate of 10 mV/s and an increasing ratio of 42.1% at a relatively high scan rate of 100 mV/s (Fig.S7c in Supporting information), illuminating the superior ion storage capability of carbon nanosheets at high sweep rate.Therefore, the plentiful N/O heteroatoms codoping into the carbon nanosheets skeleton not only ameliorate the electrode/electrolyte interfacial compatibility, but also generate extra pseudocapacitance to increase the integral capability.

    The MPK2electrode is further fabricate into the symmetric devices using 6 mol/L KOH and 1 mol/L H2SO4as electrolyte to evaluate its practical application.The symmetrical behaviors in all the CV curves (Figs.S9a and c in Supporting information) and GCD profiles (Figs.S9b and d in Supporting information) during charge/discharge process are presented, indicating the excellent ion transmission efficiency and reversible capability.The relationship between capacitances and current densities is calculated from GCD profiles at 0.5–10 A/g and the profiles are shown in Fig.S9e (Supporting information).The symmetric device fabricated with H2SO4electrolyte equips with a relatively high capacitance of 278 F/g at 0.5 A/g and a capacitance retention of 90% at 10 A/g, compared with the device assembled with KOH electrolyte (77% retention of initial capacitance).As shown in Fig.S9f (Supporting information), H2SO4and KOH-loaded devices display lowRsvalue of 0.18 and 0.25Ω, separately.Besides, theRctvalues of H2SO4and KOH-loaded devices are 0.06 and 0.05Ω, respectively.These results of MPK2electrode reveal the good conductivity, rapid electron transmission and high diffusion pathway for electrolyte ions.H2SO4-loaded device delivers a relatively larger energy output (11.4 Wh/kg, 250 W/kg) (Fig.S9h in Supporting information) than that of KOH-loaded device (8.9 Wh/kg) at the similar power density.The interface Faraday reactions of N/O species in acidic and/or basic electrolyte are shown in Fig.S9g (Supporting information).The long-term cyclic performance is satisfactory with the capacitance retention of 98.6% and 97.6% using KOH and H2SO4after 5000 cycles at 1 A/g, respectively (Fig.S9i in Supporting information).Therefore, the superb electrochemical performance of carbon nanosheets can be ascribed to the unique 3D structures assembled with porous carbon nanosheets and the high-level heteroatoms decoration.

    By comparison with acidic and/or basic electrolyte, N/O codoped carbon nanosheets generally exhibit a weak specific capacitance using water-in-salt electrolyte (15 mol/kg LiTFSI), owing to the absence of the Faraday redox reaction in a low OH–and/or H+concentration [3,33].Nevertheless, the lower concentration of H2O molecules in LiTFSI which are strongly incorporated with Li+,thereby facilitating the passivation of water decomposition [56,57].The compatibility between multiscale porous N/O codoped carbon nanosheets and high concentrated LiTFSI electrolyte contributes to the symmetrical supercapacitor endowed with an enlarged stable voltage window and consequently a high-energy output.The maximum working voltage of MPK2//MPK2device can reach to 2.25 V at 10 mV/s without obvious redox peaks derived from water decomposition (Fig.4a), manifesting a high oxidative stability of water in LiTFSI electrolyte.The GCD profiles at 0.5–10 A/g (Fig.4b and Figs.S10e-g in Supporting information) and the CV curves at 10–100 mV/s (Figs.S10a-d in Supporting information) reveal the excellent rate capacity and high reversibility of MPKxelectrodes.The ionic conductivity and viscosity of the 15 m LiTFSI electrolyte are 10.8 mS/cm and 0.022 Pa·s respectively, which reveals the passivate ion migration within the hierarchical porous channels [58].When the current density is progressively increased from 0.5 A/g to 8 A/g,H2SO4-based device (Fig.S11 in Supporting information) possesses a high-quality capacitance of 320 F/g with a capacitance retention of 86.8% compared with KOH- (79.3%) and LiTFSI-based devices(56.2%), revealing that the low viscosity and high conductivity benefit to a rapid ion kinetics within hierarchical porous nanosheets architecture and thereby result in the excellent rate capability.The interfacial contact resistance for MPK2electrode in Fig.4c is ~1.2Ω, revealing efficient electron transfer.In addition, the relaxation time constant (τ) is 16 s (Fig.4d), indicating a well-defined response of MPK2-based supercapacitor.The durability (Fig.4e) is characterized and the capacitance of MPK2electrode still retains 165 F/g at 1 A/g with ~97% retention of initial value after consecutive 70 cycles, indicating the exceptional durability.The long-term cyclicality and high coulombic efficiency are displayed in Fig.4f.Even after 10000 cycles, the capacitance retention preserves 91%and coulombic efficiency is about 98%, demonstrating the satisfactory cycling performance.The MPK2-based device harvests an enlarged energy delivery of 33.1 Wh/kg (550 W/kg) (Fig.4g), outperforming other sheet-like carbon-loaded supercapacitors (Table S3 in Supporting information).Furthermore, the thermohygrograph can be successfully driven to detect the temperature and humidity in the room by the fully charged MPK2//MPK2device using LiTFSI electrolyte (Fig.4h).Meanwhile, the 2.0 V red light-emitting diode(LED) can be easily lighted by MPK2//MPK2device (Fig.4i), indicating the potential application for efficient energy storage devices.

    Fig.4.The electrochemical performances of MPK2-based device:CV curves at different voltage windows at 10 mV/s (a), GCD curves (b), Nyquist plots (c), the normalized real and imaginary part capacitance (d), cyclic stability at different current densities (e), cycling performance at 1 A/g (f), Ragone plots (g) and photograph of thermohygrograph and LED powered by the MPK2//MPK2 supercapacitors (h, i).

    Overall, the MPK2electrode exhibits the high specific capacitance, supreme rate capacity and excellent cyclicality, which ascribed to its architectural advantages.First, the interconnected carbon nanosheets contribute to the enhancement of the electroconductivity of the electrode, resulting in satisfactory rate capability and excellent cyclic performance [59,60].Second, the enlarged ion-adsorption surface area and the compatibility between porous surface of N/O codoped carbon nanosheets and high concentrated LiTFSI electrolyte facilitate the fast ion permeation and sorption,thereby conducing to efficient charge accumulation [61,62].Third,the abundant N/O dopants not only enhance the ion-accessibility of electrode/electrolyte interphase by lavish electron density, but also generate extra pseudocapacitance through Faraday redox reaction for the enhancement of integral capacitance [63,64].

    In conclusion, hierarchical porous carbon nanosheets with N/O codoping derived from copolycondensation of aldehyde-aminequinone are successfully fabricated through varying the feed ratio of comonomers.The robust carbon nanosheets framework generating fromπ-conjugated aromatic rings and conjugated-bond in copolymers are preserved during annealing, resulting in the enlarged ion-adsorption surface area (1630 m2/g), open-ended porous architecture and enriched N/O codoping contents (N:3.58 at%,O:12.91 at%).Integrating the advantageously structural features with electroactive heteroatoms species in the typical MPK2electrode furnishes the assembled symmetric device with a high energy generation of 11.4 Wh/kg in H2SO4electrolyte.Furthermore,the compatibility between typical carbon nanosheets and concentrated LiTFSI leads to the 2.25 V MPK2-loaded device exhibiting an enhanced energy delivery (33.1 Wh/kg), demonstrating that N/O codoped porous carbon nanosheets assembled supercapacitor has a great potential for the practical electrical devices.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work is financially supported by the National Natural Science Foundation of China (Nos.21875165, 51772216, 22172111 and 21905207), the Science and Technology Commission of Shanghai Municipality, China (Nos.20ZR1460300, 14DZ2261100), Anhui University of Science and Technology Introduced Talent Research Startup Fund (No.13210572), Zhejiang Provincial Natural Science Foundation of China (No.LY19B010003), the Fundamental Research Funds for the Central Universities and the Large Equipment Test Foundation of Tongji University.

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.08.123.

    av视频免费观看在线观看| 日韩欧美精品免费久久| 免费在线观看视频国产中文字幕亚洲 | 少妇猛男粗大的猛烈进出视频| 亚洲精品日本国产第一区| 麻豆乱淫一区二区| 久久久a久久爽久久v久久| 久久av网站| 国产精品av久久久久免费| 丝袜人妻中文字幕| 美女国产视频在线观看| 国产成人免费无遮挡视频| 嫩草影院入口| 韩国av在线不卡| 免费看av在线观看网站| 99热全是精品| 婷婷色综合www| 国产免费视频播放在线视频| 欧美国产精品一级二级三级| 高清欧美精品videossex| 一级毛片我不卡| 色婷婷久久久亚洲欧美| 我要看黄色一级片免费的| 天天躁日日躁夜夜躁夜夜| 激情视频va一区二区三区| 日韩一区二区三区影片| 我要看黄色一级片免费的| 一本久久精品| 日日爽夜夜爽网站| 啦啦啦视频在线资源免费观看| 国精品久久久久久国模美| 伦理电影免费视频| 国产精品一区二区在线不卡| 国产一区二区 视频在线| 久久久久久久久免费视频了| 啦啦啦在线免费观看视频4| 男男h啪啪无遮挡| 色视频在线一区二区三区| 国产精品久久久久久av不卡| 中文字幕av电影在线播放| 国产1区2区3区精品| 老司机影院成人| 国产无遮挡羞羞视频在线观看| 如何舔出高潮| 极品少妇高潮喷水抽搐| 巨乳人妻的诱惑在线观看| 人妻一区二区av| 久久久久精品人妻al黑| 伦理电影大哥的女人| 伊人亚洲综合成人网| 日韩伦理黄色片| 可以免费在线观看a视频的电影网站 | 在线天堂中文资源库| 国产欧美亚洲国产| 69精品国产乱码久久久| 校园人妻丝袜中文字幕| 久久久久久免费高清国产稀缺| 日本91视频免费播放| 欧美变态另类bdsm刘玥| 男女边摸边吃奶| 精品一区二区免费观看| 综合色丁香网| 如何舔出高潮| 成人免费观看视频高清| 最新中文字幕久久久久| 毛片一级片免费看久久久久| 国产深夜福利视频在线观看| 90打野战视频偷拍视频| 亚洲伊人久久精品综合| 欧美精品av麻豆av| 老司机影院成人| 国产亚洲精品第一综合不卡| 免费女性裸体啪啪无遮挡网站| 搡女人真爽免费视频火全软件| 黑人欧美特级aaaaaa片| 妹子高潮喷水视频| 亚洲久久久国产精品| 一级片免费观看大全| 国产精品亚洲av一区麻豆 | 晚上一个人看的免费电影| 赤兔流量卡办理| 高清黄色对白视频在线免费看| 亚洲国产av影院在线观看| 久久青草综合色| 国产亚洲一区二区精品| 欧美+日韩+精品| 亚洲精品自拍成人| av一本久久久久| 亚洲精品日本国产第一区| 国产野战对白在线观看| 制服丝袜香蕉在线| 国产精品偷伦视频观看了| 桃花免费在线播放| 亚洲综合精品二区| 老女人水多毛片| 黄色配什么色好看| 久久这里只有精品19| 最近中文字幕高清免费大全6| 午夜老司机福利剧场| 侵犯人妻中文字幕一二三四区| 国产精品蜜桃在线观看| 丝袜喷水一区| 黑丝袜美女国产一区| 亚洲精品久久久久久婷婷小说| 国产精品免费大片| 最近2019中文字幕mv第一页| 国产不卡av网站在线观看| 久久久久久久久久久久大奶| 成人影院久久| 国产无遮挡羞羞视频在线观看| kizo精华| 波多野结衣一区麻豆| 黑人欧美特级aaaaaa片| 国产欧美日韩一区二区三区在线| 老司机影院毛片| 两性夫妻黄色片| 精品久久久久久电影网| 99久久精品国产国产毛片| 亚洲伊人色综图| 久久精品人人爽人人爽视色| 欧美日韩一级在线毛片| 亚洲熟女精品中文字幕| 欧美bdsm另类| 七月丁香在线播放| 搡女人真爽免费视频火全软件| 丰满乱子伦码专区| 亚洲欧美日韩另类电影网站| 欧美+日韩+精品| 91aial.com中文字幕在线观看| 久久综合国产亚洲精品| 国产欧美日韩一区二区三区在线| 久久国产精品大桥未久av| 亚洲欧洲国产日韩| 我要看黄色一级片免费的| 黑人巨大精品欧美一区二区蜜桃| 国产亚洲一区二区精品| 精品酒店卫生间| 最黄视频免费看| 久久精品久久精品一区二区三区| 自线自在国产av| 久久女婷五月综合色啪小说| 亚洲精品乱久久久久久| 亚洲欧美日韩另类电影网站| 精品少妇黑人巨大在线播放| 日韩制服骚丝袜av| 国产片特级美女逼逼视频| 精品一区二区三卡| 2022亚洲国产成人精品| 亚洲精品av麻豆狂野| 欧美成人精品欧美一级黄| 久久鲁丝午夜福利片| 久久精品亚洲av国产电影网| 大片电影免费在线观看免费| 亚洲国产欧美网| 2021少妇久久久久久久久久久| 亚洲国产成人一精品久久久| 久久久精品免费免费高清| 波野结衣二区三区在线| av在线观看视频网站免费| 有码 亚洲区| 一级a爱视频在线免费观看| 欧美变态另类bdsm刘玥| av福利片在线| 老司机影院成人| 久久精品aⅴ一区二区三区四区 | 久久国内精品自在自线图片| 亚洲,欧美精品.| 波多野结衣一区麻豆| 高清不卡的av网站| 欧美97在线视频| 亚洲av欧美aⅴ国产| 男女国产视频网站| 在线亚洲精品国产二区图片欧美| 岛国毛片在线播放| av在线观看视频网站免费| 国产精品一区二区在线不卡| 久久人人97超碰香蕉20202| 90打野战视频偷拍视频| 国产男女内射视频| 蜜桃国产av成人99| 午夜福利一区二区在线看| 日韩一本色道免费dvd| 国产高清国产精品国产三级| 国产欧美日韩一区二区三区在线| 中文字幕另类日韩欧美亚洲嫩草| 男女高潮啪啪啪动态图| 亚洲精品在线美女| 老司机影院毛片| av又黄又爽大尺度在线免费看| 亚洲一区中文字幕在线| 人妻一区二区av| 日韩伦理黄色片| 亚洲欧美一区二区三区久久| 成人午夜精彩视频在线观看| 免费女性裸体啪啪无遮挡网站| 久久久精品国产亚洲av高清涩受| 亚洲国产最新在线播放| 国产黄频视频在线观看| 少妇人妻 视频| 久久久久久久精品精品| a 毛片基地| 亚洲精品一区蜜桃| 免费看不卡的av| 精品福利永久在线观看| 女人精品久久久久毛片| 99久久综合免费| 国产精品蜜桃在线观看| 国产伦理片在线播放av一区| 亚洲国产精品一区二区三区在线| a级毛片在线看网站| 成人黄色视频免费在线看| 在线观看三级黄色| 久久精品夜色国产| 国产免费现黄频在线看| 男女边吃奶边做爰视频| 黑人巨大精品欧美一区二区蜜桃| 亚洲激情五月婷婷啪啪| 国产精品久久久久久av不卡| 男女无遮挡免费网站观看| 一区二区三区精品91| 亚洲色图综合在线观看| 久久精品熟女亚洲av麻豆精品| 久久精品亚洲av国产电影网| 欧美精品av麻豆av| 老汉色∧v一级毛片| 国产成人一区二区在线| 两性夫妻黄色片| 久久午夜福利片| 日韩精品免费视频一区二区三区| 国产熟女午夜一区二区三区| 在线 av 中文字幕| 午夜福利一区二区在线看| 欧美人与性动交α欧美精品济南到 | 国产成人欧美| kizo精华| 精品人妻偷拍中文字幕| 亚洲熟女精品中文字幕| 男女高潮啪啪啪动态图| 国产精品免费视频内射| 老熟女久久久| 国产探花极品一区二区| 老鸭窝网址在线观看| 大码成人一级视频| 丰满迷人的少妇在线观看| 超碰成人久久| 久久精品国产a三级三级三级| 久久久国产欧美日韩av| 99re6热这里在线精品视频| 交换朋友夫妻互换小说| 菩萨蛮人人尽说江南好唐韦庄| 丰满乱子伦码专区| 天天躁日日躁夜夜躁夜夜| 麻豆精品久久久久久蜜桃| 一区福利在线观看| 精品国产乱码久久久久久男人| 极品人妻少妇av视频| 嫩草影院入口| 丝瓜视频免费看黄片| 精品少妇黑人巨大在线播放| 精品一区二区免费观看| 美女国产高潮福利片在线看| 亚洲三级黄色毛片| 最近最新中文字幕大全免费视频 | 中文字幕人妻熟女乱码| 最近手机中文字幕大全| 在线观看人妻少妇| 成年人免费黄色播放视频| 免费高清在线观看视频在线观看| 大片免费播放器 马上看| 久久久精品免费免费高清| 国产极品粉嫩免费观看在线| 人妻系列 视频| 国产免费现黄频在线看| av免费在线看不卡| 国产黄色视频一区二区在线观看| 99精国产麻豆久久婷婷| 日本爱情动作片www.在线观看| 免费黄频网站在线观看国产| 婷婷色综合大香蕉| 人妻人人澡人人爽人人| 亚洲第一av免费看| 久久精品国产亚洲av高清一级| 亚洲欧洲日产国产| 精品亚洲成a人片在线观看| 亚洲精品日韩在线中文字幕| 美女福利国产在线| 国产不卡av网站在线观看| 国产精品成人在线| 久久国产亚洲av麻豆专区| 欧美av亚洲av综合av国产av | 亚洲av电影在线观看一区二区三区| a 毛片基地| 欧美老熟妇乱子伦牲交| 中文欧美无线码| 制服人妻中文乱码| 午夜老司机福利剧场| 美女视频免费永久观看网站| 五月开心婷婷网| 搡女人真爽免费视频火全软件| 99九九在线精品视频| 丝袜在线中文字幕| 丝袜美腿诱惑在线| 色视频在线一区二区三区| 国产xxxxx性猛交| 午夜av观看不卡| 国语对白做爰xxxⅹ性视频网站| av在线app专区| 男的添女的下面高潮视频| 中文字幕色久视频| 亚洲国产欧美网| 国产精品久久久久久精品古装| 十八禁网站网址无遮挡| 一级,二级,三级黄色视频| 亚洲精品乱久久久久久| 精品少妇内射三级| 国产亚洲一区二区精品| 精品人妻在线不人妻| 国产精品 国内视频| 色婷婷av一区二区三区视频| 久久国产亚洲av麻豆专区| 丰满饥渴人妻一区二区三| 亚洲,欧美精品.| 亚洲精品,欧美精品| 最近手机中文字幕大全| 成人亚洲精品一区在线观看| 日本av手机在线免费观看| 免费黄频网站在线观看国产| 精品人妻偷拍中文字幕| 久久ye,这里只有精品| 亚洲少妇的诱惑av| 观看av在线不卡| 热99国产精品久久久久久7| 国产在线一区二区三区精| 国产av码专区亚洲av| 亚洲国产欧美在线一区| 精品少妇一区二区三区视频日本电影 | 日韩制服丝袜自拍偷拍| 男人操女人黄网站| 麻豆精品久久久久久蜜桃| 寂寞人妻少妇视频99o| 看免费av毛片| 日韩精品免费视频一区二区三区| 一区二区三区精品91| 一区二区三区四区激情视频| av线在线观看网站| 欧美日本中文国产一区发布| 欧美精品一区二区免费开放| 色播在线永久视频| 欧美+日韩+精品| 日本猛色少妇xxxxx猛交久久| 纯流量卡能插随身wifi吗| 欧美xxⅹ黑人| 国产片内射在线| 狠狠精品人妻久久久久久综合| 交换朋友夫妻互换小说| 亚洲av免费高清在线观看| 国产精品一区二区在线观看99| 两个人看的免费小视频| 少妇被粗大的猛进出69影院| www.精华液| 少妇精品久久久久久久| 又大又黄又爽视频免费| 激情视频va一区二区三区| 久久久久久久久久久久大奶| 亚洲一区中文字幕在线| 亚洲欧美精品自产自拍| 春色校园在线视频观看| 老司机影院毛片| av在线播放精品| 一区二区日韩欧美中文字幕| 亚洲色图 男人天堂 中文字幕| 国精品久久久久久国模美| 国产精品不卡视频一区二区| 欧美bdsm另类| 欧美国产精品va在线观看不卡| 久久av网站| 欧美国产精品一级二级三级| 一区福利在线观看| 高清av免费在线| 一个人免费看片子| 免费在线观看黄色视频的| a级毛片黄视频| 精品国产乱码久久久久久男人| 国产成人av激情在线播放| 久久久久久久亚洲中文字幕| 色婷婷av一区二区三区视频| 国产爽快片一区二区三区| 制服诱惑二区| 国产精品一二三区在线看| 久久免费观看电影| 一二三四在线观看免费中文在| 免费观看在线日韩| 一本久久精品| 人体艺术视频欧美日本| 亚洲av电影在线观看一区二区三区| 新久久久久国产一级毛片| 欧美日韩视频精品一区| 亚洲精品日本国产第一区| 久久国产精品大桥未久av| 在线观看免费高清a一片| 国产在线视频一区二区| av国产精品久久久久影院| 亚洲,欧美精品.| 国产人伦9x9x在线观看 | 精品久久蜜臀av无| 免费黄网站久久成人精品| 国产熟女午夜一区二区三区| 香蕉精品网在线| 日韩人妻精品一区2区三区| av国产久精品久网站免费入址| 国产一区有黄有色的免费视频| 男人操女人黄网站| 黄网站色视频无遮挡免费观看| 久久久亚洲精品成人影院| 男人爽女人下面视频在线观看| 亚洲第一区二区三区不卡| 99九九在线精品视频| 亚洲成色77777| 日韩成人av中文字幕在线观看| 老女人水多毛片| 免费高清在线观看视频在线观看| 亚洲国产最新在线播放| 伦理电影大哥的女人| 久久99热这里只频精品6学生| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久人人97超碰香蕉20202| 日韩中字成人| 纯流量卡能插随身wifi吗| 看非洲黑人一级黄片| 黄色 视频免费看| 黄片无遮挡物在线观看| 美女视频免费永久观看网站| 久久精品国产自在天天线| 激情视频va一区二区三区| 在线观看免费日韩欧美大片| 国产亚洲一区二区精品| 国产 一区精品| 性色av一级| 欧美精品一区二区免费开放| 2021少妇久久久久久久久久久| 国产白丝娇喘喷水9色精品| 久久 成人 亚洲| 黄色配什么色好看| 亚洲成人手机| 亚洲成人av在线免费| 丝袜美足系列| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品国产av成人精品| 久久鲁丝午夜福利片| 久久ye,这里只有精品| kizo精华| 天美传媒精品一区二区| 国产一区二区三区综合在线观看| 日日摸夜夜添夜夜爱| 九草在线视频观看| 午夜免费鲁丝| 80岁老熟妇乱子伦牲交| 亚洲av福利一区| 国产日韩欧美在线精品| 亚洲内射少妇av| 两个人免费观看高清视频| 国产片内射在线| 亚洲国产av影院在线观看| 9热在线视频观看99| 伊人亚洲综合成人网| 久久精品夜色国产| 一级片免费观看大全| 最近手机中文字幕大全| 国产白丝娇喘喷水9色精品| 久久影院123| 久久精品aⅴ一区二区三区四区 | 看免费av毛片| 午夜福利一区二区在线看| 人人妻人人澡人人看| 黄色视频在线播放观看不卡| 色网站视频免费| 黄色怎么调成土黄色| 成年女人在线观看亚洲视频| 免费在线观看黄色视频的| 午夜激情av网站| 99精国产麻豆久久婷婷| 久久久久久久精品精品| 高清视频免费观看一区二区| 久久青草综合色| 美女高潮到喷水免费观看| 男男h啪啪无遮挡| 美女脱内裤让男人舔精品视频| 日日摸夜夜添夜夜爱| 中文字幕人妻丝袜一区二区 | 亚洲欧美精品综合一区二区三区 | 国产精品一区二区在线不卡| 精品人妻熟女毛片av久久网站| av在线播放精品| 国产伦理片在线播放av一区| 国产成人精品婷婷| 国产色婷婷99| 亚洲精品乱久久久久久| 99久久人妻综合| 99热国产这里只有精品6| 伊人久久大香线蕉亚洲五| 欧美亚洲 丝袜 人妻 在线| 国产老妇伦熟女老妇高清| 一级片免费观看大全| 一级黄片播放器| 人人妻人人爽人人添夜夜欢视频| 亚洲av.av天堂| 天天影视国产精品| 男女国产视频网站| 久久精品国产亚洲av涩爱| 91精品伊人久久大香线蕉| 一级毛片黄色毛片免费观看视频| 少妇猛男粗大的猛烈进出视频| 中文字幕人妻丝袜一区二区 | 国产精品久久久久久精品古装| 久久精品久久久久久噜噜老黄| 高清在线视频一区二区三区| 日韩av免费高清视频| 18禁国产床啪视频网站| 中文字幕av电影在线播放| 午夜福利在线免费观看网站| 欧美国产精品va在线观看不卡| 日韩av在线免费看完整版不卡| 精品国产超薄肉色丝袜足j| 久久久久精品久久久久真实原创| 亚洲国产毛片av蜜桃av| 激情五月婷婷亚洲| 久久久久精品人妻al黑| 欧美日韩国产mv在线观看视频| 欧美xxⅹ黑人| 国产乱来视频区| 美女主播在线视频| 午夜福利视频在线观看免费| 久久久精品94久久精品| 国产探花极品一区二区| 美国免费a级毛片| 精品福利永久在线观看| 超碰97精品在线观看| 亚洲欧美成人综合另类久久久| 在线观看人妻少妇| 激情五月婷婷亚洲| 国产在线免费精品| 日本欧美国产在线视频| 亚洲人成电影观看| 日韩制服丝袜自拍偷拍| 久久久国产一区二区| 国产精品久久久av美女十八| 亚洲精品乱久久久久久| 国产成人午夜福利电影在线观看| 啦啦啦中文免费视频观看日本| 国产av码专区亚洲av| 欧美日韩国产mv在线观看视频| 色94色欧美一区二区| 不卡av一区二区三区| 免费高清在线观看视频在线观看| 自线自在国产av| 又粗又硬又长又爽又黄的视频| 久久精品熟女亚洲av麻豆精品| 国产成人精品婷婷| 精品国产一区二区三区四区第35| 午夜激情久久久久久久| 国产精品香港三级国产av潘金莲 | 久久女婷五月综合色啪小说| 91精品伊人久久大香线蕉| 女性生殖器流出的白浆| 久久 成人 亚洲| 欧美激情高清一区二区三区 | 黄色 视频免费看| 十分钟在线观看高清视频www| 少妇的逼水好多| 91精品国产国语对白视频| 成人亚洲欧美一区二区av| 91精品国产国语对白视频| 久久久国产精品麻豆| 又黄又粗又硬又大视频| 久久99精品国语久久久| 国产乱人偷精品视频| 亚洲欧洲日产国产| 成年人免费黄色播放视频| 亚洲四区av| 青草久久国产| 午夜福利视频在线观看免费| 国产精品一区二区在线不卡| 夫妻性生交免费视频一级片| 9热在线视频观看99| 最黄视频免费看| 国产免费又黄又爽又色| 午夜免费鲁丝| 天堂中文最新版在线下载| 久久精品久久久久久久性| 久久这里只有精品19| 成人午夜精彩视频在线观看| 国产成人免费无遮挡视频| 成人免费观看视频高清| 9191精品国产免费久久| 日韩av不卡免费在线播放| 亚洲精品国产av蜜桃| 国产男女内射视频| 考比视频在线观看| 久久久久人妻精品一区果冻| 午夜免费男女啪啪视频观看| 国产视频首页在线观看| 老汉色av国产亚洲站长工具| 久久国内精品自在自线图片| 亚洲美女黄色视频免费看| 少妇精品久久久久久久| 久久久久久久久免费视频了| 肉色欧美久久久久久久蜜桃| 激情视频va一区二区三区| 一本色道久久久久久精品综合| 熟女av电影| 亚洲综合精品二区| 一区二区三区精品91| 伊人久久大香线蕉亚洲五| 国产成人免费观看mmmm| 日本欧美视频一区|