• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sn and Y co-doped BaCo0.6Fe0.4O3-δ cathodes with enhanced oxygen reduction activity and CO2 tolerance for solid oxide fuel cells

    2022-06-20 08:00:28NanHanRongzhengRenMinjianMaChunmingXuJinshuoQiaoWangSunKeningSunZhenhuaWang
    Chinese Chemical Letters 2022年5期

    Nan Han, Rongzheng Ren, Minjian Ma, Chunming Xu, Jinshuo Qiao, Wang Sun,Kening Sun, Zhenhua Wang

    Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology,Beijing 100081, China

    Keywords:Solid oxide fuel cells Cathode Heterovalent co-doping Oxygen ion conduction Oxygen vacancy formation

    ABSTRACT Applying mixed oxygen ionic and electronic conducting (MIEC) oxides as the cathode offers a promising solution to enhance the performance of solid oxide fuel cells (SOFCs).However, the phase instability in CO2-containing air and sluggish oxygen reduction activity of MIEC cathodes remain a long-term challenge for optimizing the electrochemical performance of SOFCs.Herein, a heterovalent co-doping strategy is proposed to enhance the oxygen reduction activity and CO2 tolerance of SOFCs cathodes, which can be demonstrated by developing a novel BaCo0.6Fe0.4O3-δ (BCF)-based MIEC oxide, BaCo0.6Fe0.2Sn0.1Y0.1O3-δ(BCFSY).In addition to improving the stability of BCF-based perovskites, this strategy achieves an optimized balance of ionic mobility and oxygen vacancies due to the synergies between the effects of the co-dopants.Compared with single-doped materials, BCFSY exhibits improved CO2 tolerance and considerably higher ORR activity, which is reflected in a significantly lower polarization resistance of 0.15 Ω cm2 at 600 °C.The results of this work provide an efficient tactic for designing electrode materials for SOFCs.

    Solid oxide fuel cells (SOFCs), which can convert the chemical energy of fuels into electrical energy directly, have been deemed as promising power technology owing to their high chemical-toelectrical conversion efficiency, low environmental pollution, and the variety of potential fuels [1,2].However, the high operating temperature of SOFCs hinders their practical application which not only rapidly degrades the electrochemical performance but also challenges the compatibility between cell components.The key to reducing the operating temperature is to develop robust and stable cathodes because the sluggish oxygen reduction reaction (ORR)at low temperature (LT) (500–650 °C) and the poisoning by pollutants widely occurred in ambient air such as CO2are the major challenges for achieving high electrochemical performance of SOFCs [3,4].Therefore, there is a pressing need to develop suitable cathode materials with high ORR activity and extraordinary CO2tolerance.

    The mixed ionic and electronic conductors (MIECs) that can broaden the fuel reactivity region from the three-phase boundary (TPB) to the entire cathode surface have gained extensive attention as cathode materials in which BaCo1–xFexO3-δ(BCF) perovskite oxides are the most popular materials.These MIECs have attracted extensive research attention as cathode materials and are often used as attractive parent constituents for numerous cobaltcontaining perovskite oxides [5,6].Because of the large size and low divalent state of Ba2+, these materials can offer adequate oxygen vacancies and lattice free volume to promote the migration of oxygen ions in the lattices of the perovskites [7].Moreover, because of the inclusion of the transition metals cobalt and iron,which possess alterable valence states, BCFs demonstrate excellent catalytic activity.However, the phase structure of BCF is unstable.Owing to the large mismatch in ionic size between Ba and Co/Fe,these BCF-based perovskites change from a cubic phase to a hexagonal phase at low temperature.The resulting poor stability hinders the development of BCF-based cathode materials [8].Consequently,stabilizing the phase structure of BCF-based materials is essential to fulfill the requirements of efficient cathodes for LT-SOFCs.

    A mono-doping approach is often adopted to stabilize the cubic phase structure of BCFs.Cations with high or low valence have been doped into the partial B site to maintain the cubic phase structure of BCFs, such as Ta5+, Y3+, Sn4+, Nb5+[9–12].Doping with cations at the B site increases the electrostatic repulsion between BO6octahedrons, and thereby promoting the formation of the cubic structure [13].Unfortunately, although this mono-doping strategy demonstrates an effective approach to stabilize the structure of BCFs, it also leads to a high formation energy of oxygen vacancies and sluggish oxygen ion migration.The stable valence ions occupying the Co position will destroy the continuity of the Co–O–Co (Fe) bond, and inevitably reduce its oxygen electron–ion conductivity, which decrease the catalytic activity of the cathodes to ORR [9].The increase in the number of single dopants can improve the CO2tolerance at the expense of losing ORR activity.

    Herein, we propose a new doping philosophy to enhance the ORR catalytic activity and the phase stability of BCF-based perovskite in CO2-containing air, which is demonstrated by doping heterovalent metal ions (Sn4+and Y3+) into the B site of BaCoFeO3materials [BaCo0.6Fe0.2Sn0.1Y0.1O3-δ(BCFSY)].The doping of Y can change the electronic affinity and promote the generation of intrinsic oxygen vacancies.Moreover, doping Sn at the B sites of BCFs effectively activates the M–O bonds and improves the migration of oxygen ions.The synergetic effect of heterovalent co-doping can generate an optimized equilibrium of ion mobility and the generation of oxygen vacancies and thus yield excellent ORR catalytic activity.Compared to doping with a single metal element, the strategy of heterovalent co-doping can not only achieve excellent durability in air containing CO2, but also provide superior oxygen ion conductivity, and thus embodies an advanced concept in the development of highly efficient cathodes for SOFCs.

    To prove the successful incorporation of Sn and Y, X-ray diffraction (XRD) in air was first used to analyze the phase structure of the powders.All materials possess the perovskite crystal structure without any obvious impurity phases (Fig.1a).The (110) diffraction peak in BCFY, BCFSY, and BCFS is found to gradually shift toward higher angles, indicating a decrease in the lattice volume,which can be ascribed to the slight difference in ionic radii of Sn and Y (Sn4+= 0.069 nm, Y3+= 0.090 nm).To obtain more information on the crystal structures of these materials, the acquired XRD information of BCFY, BCFSY, and BCFS in air were analysed via the Rietveld method (Fig.1b, Figs.S1 and S2 in Supporting information).The low converged reliability factors (e.g.,Rp= 4.07%,χ2= 0.4206) illustrate that BCFSY can be divided into cubic perovskite structures (Fig.1c) based on the space group Pm-3 m [14],and the lattice constanta=b=c= 4.097 ? (Table S1 in Supporting information).The lattice volume increases in the trend BCFS<BCFSY<BCFY.Moreover, High-resolution transmission electron microscope (HRTEM) and their corresponding SAED patterns were used to further observe structural features (Figs.1d and e).The crystalline fringes possess a lattice spacing of 2.89 ?, corresponding to the (110) and (101) crystal plane of the cubic phase structure.As seen in Fig.1e, the SAED patterns near the center spot can be indexed to the (101), (211) and (110) planes in the view of the cubic unit cell, which further offer the evidence of the cubic structure of BCFSY.The results of the TEM and SAED show that the co-doping of Sn and Y can indeed stabilize the cubic phase structure of BCF.

    Fig.1.Powder X-ray diffraction patterns and crystal structure.(a) XRD patterns of BCFS, BCFY and BCFSY samples.(b) Rietveld refinement of BCFSY XRD data.(c) Crystal structure of optimized BCFSY.(d) HRTEM image of BCFSY.(e) Corresponding SAED pattern.(f) XRD patterns of BCFSY after sintering at 700 °C in 20% CO2 and N2 for 24 h.

    The stability of the crystal structure, especially under low oxygen partial pressure and CO2atmosphere, is one of the important criteria for selecting suitable cathode materials [15,16].To check the stability of BCFSY, the XRD pattern of three samples obtained at 700 °C under N2/CO2for 24 h was compared.BCFSY still maintains its cubic perovskite structure when exposing in N2/CO2atmosphere, without other obvious impure phases (Fig.1f, Figs.S6 and S7 in Supporting information), confirming the phase stability of the BCFSY perovskite cathode.

    The thermal expansion behavior is a crucial requirement for a stable performance of SOFCs.There should be a good match of the electrodes and the electrolyte in thermal expansion coefficient(TEC), otherwise the large difference in TECs between the SOFCs components may lead to internal stresses, which cause in performance degradation of the cathode.The TECs of BCFS, BCFY, BCFSY and SDC were measured (Fig.S9 in Supporting information).It can be seen that the TEC of BCFSY is 14.78 × 10-6K-1in the range of temperatures 150–1000 °C, which is lower than BCFS and BCFY.Besides, TEC of BCFSY is close to that of SDC (~12.6 × 10-6K-1)electrolyte, which is beneficial to the thermal stability of cathodes.

    To investigate the electrochemical performance of BCFSY as an oxygen reduction electrode, symmetric cell configurations,i.e.,BCFSY|SDC|BCFSY, were constructed and tested in the temperature range of 500–650 °C (Fig.2a and Table S2 in Supporting information).It displays the typical electrochemical impedance spectroscopy (EIS) plots of BCFS, BCFY and BCFSY electrodes.The polarization resistances of BCFS, BCFY, and BCFSY at 600 °C is 0.21,0.29 and 0.15Ωcm2, respectively.It is clear that the polarization impedance (Rp) value of BCFSY is drastically decreased compared with those of BCFS and BCFY, revealing the outstanding ORR activity at low temperature.Moreover, the Arrhenius diagrams of the total polarization resistances of diverse samples (Fig.2b) shows that the activation energies (Ea) of BCFY, BCFS, and BCFSY are 1.17,1.15 and 1.10 eV, respectively.This strongly suggests that heterovalent co-doping can indeed significantly reduce the cathode polarization resistance, which is beneficial to the cathode ORR activity.

    Fig.2.(a) Impedance spectra of three samples at 600 °C.(b) The Arrhenius plot of the total polarization resistance of different cathode materials.(c) A typical SEM image of an anode-supported single cell with a Ni-SDC anode, SDC electrolyte and BCFSY cathode.(d) Typical I-V-P curves of BCFSY-based single cells.(e) Comparison of the electrochemical performance of single cells based on BCFS, BCFY and BCFSY at different temperatures.(f) Full cell durability test for the BCFSY-based single cell operated at 600 °C.

    In addition, a Ni-SDC-based anode-supported single cell employing an SDC electrolyte has been fabricated to estimate the output performance of the BCFSY cathode [17].The SDC electrolyte with a thickness of ~5 μm has a compact structure without connecting holes, ensuring a sealed operating environment (Fig.2c).The cell with the BCFSY cathode attains a maximum power density of 736 mW/cm2at 650 °C (Fig.2d), which is significantly greater than the power density obtained using the mono-doped cathodes(Fig.2e).In addition, the power density is also significantly better than the BCFT (120 mW/cm2) and BCFN (350 mW/cm2) reported in the literature (Table S3 in Supporting information).The single cell also shows low EIS values (Fig.S10 in Supporting information),thus increasing the power density and resulting in the excellent performance of the BCFSY.Notably, the single cell retains an extremely durable voltage output for 240 h under a steady polarization current density of 450 mA/cm2at 600 °C (Fig.2f), confirming that the BCFSY cathode can maintain outstanding ORR stability.

    The performance of SOFC cathode mainly depends on the migration activity of O2-[18].In order to obtain a deep understanding of the superior ORR activity of BCFSY, the formation of oxygen vacancy and the activity of oxygen ion migration in the lattice of the materials were further studied.To analyze the formation mechanism of oxygen vacancy in BCFSY at room temperature,X-ray photoelectron spectroscopy (XPS) was initially carried out to acquire the information of O 1s in the three samples [19].As shown in Fig.3a, the peak at 528.3 eV is associated with the lattice oxygen (Olat), while the peak at 530.7 eV can be assigned to the adsorbed oxygen species (Oads) (Table S4 in Supporting information).The peak area of Oadsin the BCFY sample increases relative to BCFS and BCFSY.The increased proportion of Oadsindicates that the concentration of the adsorbed oxygen in BCFY increases,implying more oxygen vacancies are formed in BCFY [20,21].The reduction of lattice oxygen in ABO3materials at high temperatures is another way for the formation of oxygen vacancies.The formation of oxygen vacancy can be represented according to Eq.1:

    Fig.3.(a) O 1s XPS spectra of the samples.(b) TG patterns and oxygen nonstoichiometry in the temperature range of 300–900 °C in air.(c) Oxygen vacancy formation energy for different types by DFT computations.(d) The charge density distribution map in BCFY.(e) The charge density distribution map in BCFS.

    To understand the Y3+-doping on the formation of oxygen vacancies from an atomic point of view, first principles computations were implemented in BaCo0.6Fe0.2Sn0.1Y0.1O3-δ,BaCo0.6Fe0.2Sn0.2O3-δand BaCo0.6Fe0.2Y0.2O3-δ.The results ofEformare depicted in Fig.3c and Table S6 (Supporting information).It is obvious that the formation energy of oxygen vacancy is the lowest in BCFY regardless of at Co-O-Co or Co-O-Fe, implying that the formation ofis easiest in BCFY.We can explicate the cause of this trend by analyzing the changes in the electronic structure during the formation of[22].As one oxygen vacancy is formed, two electrons are left behind in the perovskite and the two electrons related to oxygen ions are rearranged.Accordingly, the formation of oxygen vacancies depends on the electron affinity of the metal ions involved.To visualize the electron rearrangement in BCFS and BCFY, the charge density difference based on the ground state of DFT was computed (Figs.3d and e).It is clear that the electronic density of the adjacent Co and Fe is changed by the leftover electrons from the oxygen vacancy.Hence, compared with BCFS, accepting electrons from the adjacent Co and Fe is easier owing to the presence of Y, which can explain why the oxygen vacancy formation energy of BCFY is the smallest.Combining the experimental results and theoretical calculations, we find that Y3+excites the formation of oxygen vacancies by adjusting valence and electron affinity.

    Fig.4.(a) Temperature dependence of fitted Dchem from 500 °C to 700 °C.(b) Temperature dependence of fitted kchem from 500 °C to 700 °C.(c) Calculated oxygen ion migration energy by DFT:migration barrier.(d) The migration path of the oxygen ion in BCFSY.

    Identifying the oxygen-ion bulk diffusion coefficient (Dchem) and oxygen surface exchange coefficient (kchem), which are determined through the electrical conductivity relaxation (ECR) method, is essential for evaluating the MIEC behavior of layered perovskites and can be helpful in assessing both the migration rate of oxygen ions and the electrochemical activity of cathode materials[23].To illustrate the impact of Sn and Y heterovalent co-doping on MIEC performance,Dchemandkchemare assessed through the ECR method (Fig.S13 in Supporting information) and the data are shown in Figs.4a and b.In comparison, at 600 °C, theDchem(1.03 × 10-4cm2/s) andkchem(1.22 × 10-3cm/s) values of BCFSY are much higher than BCFS and BCFY, and are superior to the BCFS reported in the literature (Dchem:3.65 × 10-5cm2/s,kchem:2.23 × 10-4cm/s).Although the oxygen vacancy formation energy and oxygen vacancy concentration of the co-doped material BCFSY are not the lowest, we find that this sample shows the highestDchemandkchem, which indicates that the oxygen vacancy concentration is not the only factor that determines the mobility of oxygen ions.

    Apart from electron affinity, M–O bond strength is another contributor to the migration energy of O2-.In order to explain how these factors synergistically effect the O2-migration in Sn and Y co-doped system, the oxygen ion migration barriers were calculated (Figs.4c and d, Table S7 in Supporting information) [24].It can be found that the energy barrier of BCFS is lower than that of BCFY, even though the formation energy of oxygen vacancy is higher than that of BCFY.These results suggest that the lower bond strength of Sn-O than that of Y-O bond is the main reason for the low energy barrier of BCFS.The lower bond strength of Sn-O can be explained by the higher d occupancy rate of Sn4+than Y3+, which is good to the formation of a weaker polar covalent,donor–acceptor Sn-O bond with lower bond strength.Due to the coexistence of Sn4+and Y3+in BCFSY sample, it can synergistically tune both the electron affinity and M–O bond strength, thus endowing BCFSY with the lowest oxygen ion migration barrier (Table S7) and most remarkable electrochemical performance (Fig.2b)among these three samples.

    The high resistance to CO2poisoning of the SOFC cathodes matters a lot to the stable electrochemical output [25,26].To demonstrate the durability of the BCFSY cathode in the presence of CO2, the long-term stability of symmetrical cell configurations was tested in CO2-containing air at an operating temperature of 600 °C.As can be observed in Fig.5a, theRpvalues of BCFSY, BCFS, and BCFY electrodes remain steady at a CO2concentration of 1%–5%.Nonetheless, when the CO2concentration is increased to 10%, theRpof BCFS increases from 0.211Ωcm2to 0.253Ωcm2, and theRpof BCFY increases from 0.274Ωcm2to 0.329Ωcm2, whereas theRpof BCFSY only changes from 0.144Ωcm2to 0.147Ωcm2, which demonstrates the excellent stability of the BCSFY electrode.Moreover, when the CO2concentration is changed to 0, theRpof all the electrodes returns to their original values after a period of time,implying that CO2does not render an irreversible impact on the electrode structure under the working conditions of the fuel cell.Besides, the short-term stability test of the BCFSY electrode under CO2-containing air was further evaluated.As exhibited in Fig.5b, a symmetric cell with the configuration of BCFSY|SDC|BCFSY demonstrates a stableRpof around 0.147 after a 200 h operating period,clearly indicating that the BCFSY cathode has superior ORR activity and admirable CO2tolerance in 10% CO2-containing air at 600 °C.In conclusion, heterovalent co-doping perovskite BCFSY with stable phase structure was synthesized at low temperature.Comparing to BCFS and BCFY, BCFSY provides a favorable balance of oxygen vacancy content and ion mobility, which significantly improves the ORR activity.Accordingly, the highest power density, the distinguished durability in CO2-containing air, and the lowest Ea values were observed with the BCFSY cathode.Consequently, the cathode with high ORR activity and excellent durability in air with CO2of BCFSY holds great potential for application in SOFCs.This doping philosophy also provides new possibilities for the application of clean and efficient energy conversion technologies.

    Fig.5.(a) Time-dependent Rp values of BCFSY, BCFY, and BCFS cathodes treated in different CO2 concentrations in air at 600 °C.(b) Durability test of a symmetric cell with the BCFSY cathode at CO2 concentrations in air at 600 °C for 200 h.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China (No.22078022) and China Postdoctoral Science Foundation (No.2021M690379).We also thank Analysis & Testing Center, Beijing Institute of Technology for providing XRD equipment.

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.09.100.

    纵有疾风起免费观看全集完整版| 日本欧美国产在线视频| 久久热在线av| 黄色视频在线播放观看不卡| 在线观看国产h片| 久久99热这里只频精品6学生| 一级毛片我不卡| 啦啦啦啦在线视频资源| 咕卡用的链子| 色播在线永久视频| 狂野欧美激情性bbbbbb| 午夜日韩欧美国产| 黑人欧美特级aaaaaa片| www.熟女人妻精品国产| 男人爽女人下面视频在线观看| 精品少妇一区二区三区视频日本电影 | 亚洲国产精品一区三区| 亚洲综合精品二区| 亚洲精品中文字幕在线视频| 尾随美女入室| 美女大奶头黄色视频| 亚洲色图 男人天堂 中文字幕| 亚洲伊人久久精品综合| 国产激情久久老熟女| av在线播放精品| 日韩伦理黄色片| 日本av免费视频播放| 人成视频在线观看免费观看| 最新中文字幕久久久久| 国产免费视频播放在线视频| 日韩一区二区三区影片| 精品人妻一区二区三区麻豆| 一级毛片黄色毛片免费观看视频| 国产熟女欧美一区二区| 赤兔流量卡办理| 日韩视频在线欧美| 欧美成人精品欧美一级黄| 国产不卡av网站在线观看| 免费女性裸体啪啪无遮挡网站| 国产精品偷伦视频观看了| 精品一区二区三区四区五区乱码 | 精品一区二区三卡| 亚洲久久久国产精品| 永久免费av网站大全| 日韩一卡2卡3卡4卡2021年| 综合色丁香网| 亚洲国产欧美日韩在线播放| 18+在线观看网站| 中文字幕人妻丝袜制服| 亚洲国产精品一区二区三区在线| 成人国产av品久久久| 亚洲欧美清纯卡通| 国产野战对白在线观看| 久久精品国产亚洲av涩爱| 精品少妇黑人巨大在线播放| 日本欧美视频一区| 一级爰片在线观看| 中文字幕人妻丝袜制服| 亚洲av福利一区| 久久午夜福利片| 在线亚洲精品国产二区图片欧美| av有码第一页| 免费播放大片免费观看视频在线观看| 成年女人毛片免费观看观看9 | 日韩一区二区视频免费看| 一二三四在线观看免费中文在| 亚洲五月色婷婷综合| 波多野结衣av一区二区av| 亚洲av电影在线进入| 男女免费视频国产| 亚洲成人av在线免费| 亚洲男人天堂网一区| 久久精品久久久久久久性| 亚洲欧美色中文字幕在线| 人妻系列 视频| 久久这里有精品视频免费| 你懂的网址亚洲精品在线观看| 亚洲美女黄色视频免费看| 激情五月婷婷亚洲| 日韩中文字幕欧美一区二区 | 国产成人aa在线观看| 国产精品久久久久久精品古装| 成年女人在线观看亚洲视频| 国产一区二区激情短视频 | 亚洲综合精品二区| 国产1区2区3区精品| 精品国产超薄肉色丝袜足j| 人妻 亚洲 视频| 伦理电影大哥的女人| 国产 一区精品| 国产高清国产精品国产三级| 黄网站色视频无遮挡免费观看| 赤兔流量卡办理| 日韩一本色道免费dvd| 亚洲欧洲日产国产| 丰满饥渴人妻一区二区三| 亚洲欧美成人精品一区二区| 亚洲精品久久久久久婷婷小说| 熟女少妇亚洲综合色aaa.| 又黄又粗又硬又大视频| 成年女人在线观看亚洲视频| 免费人妻精品一区二区三区视频| 免费观看性生交大片5| 国产无遮挡羞羞视频在线观看| kizo精华| 汤姆久久久久久久影院中文字幕| 国产精品女同一区二区软件| 伊人久久大香线蕉亚洲五| 黄色一级大片看看| 日韩大片免费观看网站| 亚洲国产精品成人久久小说| 一区福利在线观看| 国产黄色免费在线视频| 人人妻人人添人人爽欧美一区卜| 亚洲精品乱久久久久久| 在现免费观看毛片| 日韩电影二区| 亚洲精品久久久久久婷婷小说| www.熟女人妻精品国产| 韩国高清视频一区二区三区| 色94色欧美一区二区| 日韩一卡2卡3卡4卡2021年| 一级毛片我不卡| 亚洲欧美色中文字幕在线| 亚洲欧美一区二区三区黑人 | 热99久久久久精品小说推荐| 久久久亚洲精品成人影院| 国产人伦9x9x在线观看 | 亚洲av男天堂| 欧美日韩av久久| 一区二区日韩欧美中文字幕| 麻豆av在线久日| 久久影院123| 天堂俺去俺来也www色官网| 久久久久久久亚洲中文字幕| 电影成人av| 国产精品 欧美亚洲| 最近的中文字幕免费完整| 午夜免费男女啪啪视频观看| 99香蕉大伊视频| 91精品国产国语对白视频| 精品99又大又爽又粗少妇毛片| 亚洲中文av在线| 久久这里只有精品19| 高清欧美精品videossex| 国产成人精品一,二区| 高清黄色对白视频在线免费看| 中文字幕色久视频| 黄网站色视频无遮挡免费观看| 亚洲一码二码三码区别大吗| 欧美中文综合在线视频| 成人二区视频| 丝袜美腿诱惑在线| av一本久久久久| 国产乱来视频区| 亚洲精品美女久久av网站| 国产极品粉嫩免费观看在线| 免费日韩欧美在线观看| 黄片小视频在线播放| 亚洲色图 男人天堂 中文字幕| 啦啦啦视频在线资源免费观看| 亚洲图色成人| 亚洲第一区二区三区不卡| 国产精品三级大全| 久久久久久久国产电影| 久久人妻熟女aⅴ| 有码 亚洲区| 亚洲精品成人av观看孕妇| 99国产精品免费福利视频| 看非洲黑人一级黄片| 好男人视频免费观看在线| 国产一区有黄有色的免费视频| 精品人妻偷拍中文字幕| 久久99热这里只频精品6学生| 久久久久久人妻| 叶爱在线成人免费视频播放| 亚洲欧洲精品一区二区精品久久久 | 一级毛片我不卡| 日韩电影二区| 免费播放大片免费观看视频在线观看| 中文字幕av电影在线播放| 91精品国产国语对白视频| 国产毛片在线视频| 欧美人与善性xxx| 免费大片黄手机在线观看| 最新的欧美精品一区二区| 国产精品 欧美亚洲| 久久精品夜色国产| av在线老鸭窝| www.av在线官网国产| 亚洲精品自拍成人| 国产一区二区三区av在线| 国产成人免费观看mmmm| 亚洲精品久久午夜乱码| 日韩一区二区三区影片| 亚洲人成网站在线观看播放| av网站免费在线观看视频| 亚洲国产av影院在线观看| xxxhd国产人妻xxx| av有码第一页| av在线观看视频网站免费| 国产一区亚洲一区在线观看| 午夜91福利影院| 亚洲av在线观看美女高潮| 在线天堂中文资源库| 亚洲熟女精品中文字幕| 亚洲av电影在线观看一区二区三区| 亚洲欧美中文字幕日韩二区| 国产一区有黄有色的免费视频| 久久国产精品大桥未久av| 男人操女人黄网站| 丰满迷人的少妇在线观看| 国产精品免费视频内射| 美女中出高潮动态图| 成人亚洲欧美一区二区av| 中文字幕人妻熟女乱码| xxxhd国产人妻xxx| 国产精品久久久久久久久免| 亚洲成av片中文字幕在线观看 | 美女国产视频在线观看| 黄色毛片三级朝国网站| 欧美 日韩 精品 国产| 国产在线视频一区二区| av在线观看视频网站免费| 免费久久久久久久精品成人欧美视频| 精品卡一卡二卡四卡免费| 精品99又大又爽又粗少妇毛片| 女人久久www免费人成看片| 哪个播放器可以免费观看大片| 日本猛色少妇xxxxx猛交久久| 黄色怎么调成土黄色| 又黄又粗又硬又大视频| 欧美国产精品va在线观看不卡| 久久久精品区二区三区| 国产白丝娇喘喷水9色精品| 亚洲av男天堂| 最近的中文字幕免费完整| 精品人妻熟女毛片av久久网站| 性少妇av在线| 亚洲三区欧美一区| 高清黄色对白视频在线免费看| 色视频在线一区二区三区| 女人高潮潮喷娇喘18禁视频| 久久99蜜桃精品久久| av国产久精品久网站免费入址| 成年女人在线观看亚洲视频| 日韩制服骚丝袜av| 久久精品久久久久久久性| 丝袜美腿诱惑在线| 在线观看美女被高潮喷水网站| 日日啪夜夜爽| 亚洲激情五月婷婷啪啪| 免费在线观看视频国产中文字幕亚洲 | 最黄视频免费看| 国产精品久久久久成人av| 在线观看人妻少妇| 欧美bdsm另类| 九色亚洲精品在线播放| 亚洲成色77777| 欧美中文综合在线视频| 丁香六月天网| 男人添女人高潮全过程视频| 亚洲人成77777在线视频| 大片电影免费在线观看免费| 日韩制服丝袜自拍偷拍| av在线观看视频网站免费| 国语对白做爰xxxⅹ性视频网站| 亚洲视频免费观看视频| 各种免费的搞黄视频| 一二三四在线观看免费中文在| 色94色欧美一区二区| 91久久精品国产一区二区三区| 国产深夜福利视频在线观看| 国产一区二区三区av在线| 欧美国产精品va在线观看不卡| 亚洲,欧美,日韩| 免费不卡的大黄色大毛片视频在线观看| 日韩中文字幕欧美一区二区 | 精品酒店卫生间| 久久久国产一区二区| 久久久久久久国产电影| 亚洲av中文av极速乱| 好男人视频免费观看在线| 欧美老熟妇乱子伦牲交| 国产男人的电影天堂91| 欧美日韩亚洲高清精品| 在线观看免费日韩欧美大片| 水蜜桃什么品种好| 日本免费在线观看一区| 亚洲精品久久午夜乱码| 国产精品不卡视频一区二区| 日韩中字成人| 久久精品久久精品一区二区三区| 满18在线观看网站| 91国产中文字幕| 97在线视频观看| 午夜福利影视在线免费观看| 天堂俺去俺来也www色官网| videos熟女内射| 国产成人精品福利久久| 亚洲av日韩在线播放| 精品一区二区免费观看| 美女xxoo啪啪120秒动态图| 国产黄色视频一区二区在线观看| 高清在线视频一区二区三区| 国产又色又爽无遮挡免| 18禁国产床啪视频网站| 久久久久久久久久人人人人人人| 91国产中文字幕| 国产国语露脸激情在线看| 国产片内射在线| 国产成人aa在线观看| 黄色一级大片看看| 精品少妇久久久久久888优播| 国产又爽黄色视频| 国产麻豆69| 在线观看www视频免费| 纵有疾风起免费观看全集完整版| 免费播放大片免费观看视频在线观看| 免费不卡的大黄色大毛片视频在线观看| av网站在线播放免费| 一级a爱视频在线免费观看| 老司机影院毛片| 观看美女的网站| 日韩精品免费视频一区二区三区| 日韩中文字幕视频在线看片| 欧美日韩亚洲高清精品| 国产一区二区三区av在线| 午夜激情av网站| 国产熟女欧美一区二区| 99九九在线精品视频| 国产精品二区激情视频| 国产一区二区 视频在线| 成年女人在线观看亚洲视频| 国产男人的电影天堂91| 国产深夜福利视频在线观看| 观看av在线不卡| 国产精品久久久久久精品电影小说| 国产一区二区激情短视频 | 国产免费又黄又爽又色| 免费在线观看黄色视频的| 黄色视频在线播放观看不卡| 九草在线视频观看| 人人妻人人澡人人看| 国产免费现黄频在线看| 性高湖久久久久久久久免费观看| 国产精品无大码| 在线观看三级黄色| 久久国产亚洲av麻豆专区| 亚洲欧美日韩另类电影网站| 久久久国产欧美日韩av| 不卡视频在线观看欧美| 男女啪啪激烈高潮av片| 大码成人一级视频| 99久久综合免费| 久久久久国产精品人妻一区二区| 高清在线视频一区二区三区| 欧美激情极品国产一区二区三区| 国产精品一国产av| 97精品久久久久久久久久精品| 国产精品av久久久久免费| 亚洲色图综合在线观看| 日本黄色日本黄色录像| av国产精品久久久久影院| 欧美黄色片欧美黄色片| 国产精品女同一区二区软件| 欧美在线黄色| 大码成人一级视频| 日韩视频在线欧美| 久久久久国产一级毛片高清牌| 高清在线视频一区二区三区| 日韩一卡2卡3卡4卡2021年| 狠狠精品人妻久久久久久综合| 超色免费av| 亚洲欧美精品综合一区二区三区 | 国产激情久久老熟女| 午夜影院在线不卡| 亚洲av福利一区| videos熟女内射| 日韩中字成人| 久久久久久人人人人人| 日本午夜av视频| 国产亚洲一区二区精品| 国产精品偷伦视频观看了| 精品少妇一区二区三区视频日本电影 | 日本黄色日本黄色录像| av国产精品久久久久影院| 在线精品无人区一区二区三| 日本爱情动作片www.在线观看| 免费女性裸体啪啪无遮挡网站| 精品少妇久久久久久888优播| 亚洲视频免费观看视频| 男女边吃奶边做爰视频| 少妇被粗大的猛进出69影院| 欧美国产精品一级二级三级| 人妻 亚洲 视频| 有码 亚洲区| 男人添女人高潮全过程视频| 日本猛色少妇xxxxx猛交久久| 精品一区二区三卡| 国产男女内射视频| 亚洲人成网站在线观看播放| 久久午夜综合久久蜜桃| 秋霞伦理黄片| 成人国语在线视频| 国产精品免费视频内射| 精品一区二区三卡| 久久久亚洲精品成人影院| 久久久久人妻精品一区果冻| 亚洲精品在线美女| 亚洲在久久综合| 国产97色在线日韩免费| 久久久久国产精品人妻一区二区| 国产高清不卡午夜福利| 可以免费在线观看a视频的电影网站 | 免费播放大片免费观看视频在线观看| 国产成人a∨麻豆精品| 亚洲图色成人| 中文字幕另类日韩欧美亚洲嫩草| 国产国语露脸激情在线看| 久久久久久久久免费视频了| 妹子高潮喷水视频| 人体艺术视频欧美日本| 可以免费在线观看a视频的电影网站 | 国产麻豆69| 亚洲欧美清纯卡通| 国产精品不卡视频一区二区| 波多野结衣一区麻豆| 只有这里有精品99| 制服丝袜香蕉在线| 日本欧美国产在线视频| 寂寞人妻少妇视频99o| 欧美 亚洲 国产 日韩一| 国产精品.久久久| 99久久综合免费| 国产白丝娇喘喷水9色精品| 国产精品 欧美亚洲| www.自偷自拍.com| 日韩一本色道免费dvd| 26uuu在线亚洲综合色| 女人久久www免费人成看片| 精品久久久久久电影网| 777久久人妻少妇嫩草av网站| 久久精品人人爽人人爽视色| 王馨瑶露胸无遮挡在线观看| 美女脱内裤让男人舔精品视频| 亚洲精品国产av成人精品| 男女免费视频国产| 久久久久国产精品人妻一区二区| 超色免费av| 蜜桃国产av成人99| 亚洲美女视频黄频| 国产精品久久久av美女十八| 国产精品 欧美亚洲| 国产精品不卡视频一区二区| 亚洲 欧美一区二区三区| 久久精品人人爽人人爽视色| 欧美日韩视频高清一区二区三区二| 久久狼人影院| 久久久久人妻精品一区果冻| 日韩,欧美,国产一区二区三区| 高清不卡的av网站| 美女脱内裤让男人舔精品视频| 亚洲四区av| 免费观看在线日韩| 精品卡一卡二卡四卡免费| 亚洲国产日韩一区二区| 91精品伊人久久大香线蕉| 国产男女超爽视频在线观看| 国产精品嫩草影院av在线观看| 人成视频在线观看免费观看| 一区二区三区激情视频| 精品国产乱码久久久久久小说| 国产乱人偷精品视频| 99热网站在线观看| 亚洲精品一区蜜桃| 日韩三级伦理在线观看| 人妻 亚洲 视频| 国产一区二区在线观看av| 日韩制服丝袜自拍偷拍| 精品午夜福利在线看| 成年动漫av网址| 各种免费的搞黄视频| 九九爱精品视频在线观看| 18禁观看日本| 男女下面插进去视频免费观看| 99久久综合免费| 亚洲国产毛片av蜜桃av| 国产极品粉嫩免费观看在线| 久久人人爽人人片av| 成人毛片60女人毛片免费| 黄色毛片三级朝国网站| 热99久久久久精品小说推荐| 亚洲综合色网址| 久久国产精品男人的天堂亚洲| 亚洲欧洲日产国产| 老汉色av国产亚洲站长工具| 性色avwww在线观看| 国产免费福利视频在线观看| 久久人人爽人人片av| 69精品国产乱码久久久| 亚洲少妇的诱惑av| 欧美国产精品一级二级三级| 国产探花极品一区二区| 亚洲综合精品二区| 麻豆av在线久日| 女人被躁到高潮嗷嗷叫费观| 十分钟在线观看高清视频www| 秋霞伦理黄片| 久久99热这里只频精品6学生| 成人亚洲欧美一区二区av| 日本欧美国产在线视频| 午夜日本视频在线| 女人被躁到高潮嗷嗷叫费观| 日韩三级伦理在线观看| 国产精品不卡视频一区二区| 国产一区二区 视频在线| 尾随美女入室| 免费观看a级毛片全部| 精品亚洲成a人片在线观看| 国产亚洲午夜精品一区二区久久| 国产在线视频一区二区| 美女xxoo啪啪120秒动态图| 午夜福利一区二区在线看| 爱豆传媒免费全集在线观看| 亚洲av在线观看美女高潮| 欧美日韩一级在线毛片| 波多野结衣av一区二区av| 伦理电影免费视频| 免费大片黄手机在线观看| 国产精品久久久久成人av| 婷婷色麻豆天堂久久| 天天躁夜夜躁狠狠躁躁| av又黄又爽大尺度在线免费看| 宅男免费午夜| 9191精品国产免费久久| 久久久久久久久久久久大奶| 欧美亚洲日本最大视频资源| 国产成人免费观看mmmm| 亚洲视频免费观看视频| 日韩制服丝袜自拍偷拍| 亚洲欧洲日产国产| 国产在线免费精品| 老司机影院成人| 久久99精品国语久久久| 久久精品国产a三级三级三级| 777米奇影视久久| 欧美人与善性xxx| 午夜福利影视在线免费观看| 日产精品乱码卡一卡2卡三| 女人被躁到高潮嗷嗷叫费观| 精品久久蜜臀av无| 欧美+日韩+精品| 天天躁日日躁夜夜躁夜夜| 1024视频免费在线观看| www.自偷自拍.com| 黑人猛操日本美女一级片| 国产一区二区激情短视频 | 伦理电影大哥的女人| 在线 av 中文字幕| 国产精品国产三级专区第一集| 久久人人97超碰香蕉20202| 又粗又硬又长又爽又黄的视频| 亚洲,欧美,日韩| 中文字幕精品免费在线观看视频| 日韩一本色道免费dvd| 熟妇人妻不卡中文字幕| 国产精品欧美亚洲77777| 国产精品.久久久| 97人妻天天添夜夜摸| 日韩精品有码人妻一区| 老女人水多毛片| 成人影院久久| 亚洲人成77777在线视频| 少妇人妻精品综合一区二区| 精品久久久久久电影网| 国产午夜精品一二区理论片| 91精品国产国语对白视频| 老鸭窝网址在线观看| 女的被弄到高潮叫床怎么办| 亚洲国产欧美在线一区| 亚洲,欧美,日韩| 99久国产av精品国产电影| 国产一区二区三区av在线| 一级爰片在线观看| 成人影院久久| 夫妻性生交免费视频一级片| 日韩一区二区三区影片| 成人国产av品久久久| 亚洲第一区二区三区不卡| 久久久久精品性色| 男女边摸边吃奶| 麻豆乱淫一区二区| 免费人妻精品一区二区三区视频| 欧美成人午夜精品| 中文欧美无线码| 国产一级毛片在线| 国产极品粉嫩免费观看在线| 亚洲精品国产av蜜桃| 精品国产乱码久久久久久小说| 日韩制服丝袜自拍偷拍| 亚洲av.av天堂| 极品少妇高潮喷水抽搐| 日韩大片免费观看网站| 精品一区二区三卡| av一本久久久久| 免费在线观看完整版高清| 亚洲av电影在线观看一区二区三区| 午夜福利,免费看| 高清不卡的av网站| 亚洲中文av在线| 91精品伊人久久大香线蕉| 久久女婷五月综合色啪小说| 精品少妇内射三级| 亚洲成色77777|