• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    In-situ polymerization for mechanical strong composite actuators based on anisotropic wood and thermoresponsive polymer

    2022-06-20 08:00:22LinChenXinshuoWeiFengWngShojuJinWeisenYngChunxinGigiDunShohuJing
    Chinese Chemical Letters 2022年5期

    Lin Chen, Xinshuo Wei, Feng Wng, Shoju Jin, Weisen Yng, Chunxin M,Gigi Dun, Shohu Jing,c,*

    a Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials,College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China

    b Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China

    c Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

    dState Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China

    Keywords:Actuator Anisotropic structure Thermoresponsive Wood

    ABSTRACT Stimuli-responsive hydrogels hold an irreplaceable statue in intelligent actuation materials because of their reversible stretchability and excellent biocompatibility.However, the poor mechanical performance and complicated fabrication process of anisotropic structures severely limit their further applications.Herein, we report a high-strength thermoresponsive wood-PNIPAM composite hydrogel actuator with complex deformations, through a simple in-situ polymerization.In this composite hydrogel actuator,the anisotropic wood and the thermoresponsive PNIPAM hydrogel hydroel can work together to provide bending and even other complex deformations.Owing to strong interfacial interaction, this actuator perfectly realized the combination of good mechanical properties (~1.1 MPa) and fast actuation speed(~0.9 s).In addition, by adjusting the orientation direction of wood, this actuator can achieve various complex deformations.Such composite hydrogel actuator could be a good candidate for intelligent applications, such as intelligent actuators, smart valves, manipulators and even soft robots.

    Hydrogel actuators have attracted great attentions because of the large-scale shape deformation, excellent biocompatibility, and unique soft/wet performance [1–3].They can convert multitudinous external stimuli (light [4,5], heat [6], electricity [7,8], pH [9],etc.) into mechanical energy to exhibit reversible self-deformations.Therefore, hydrogel actuators have been widely applied in smart grippers, controlled drug delivery, soft robots, and other promising fields [10–15].In general, traditional hydrogel actuators usually possess isotropic structure so that they only provide simple volume shrinkage/expansion, which seriously limits their applications.To solve these problems, some anisotropic hydrogel actuators with complex deformations have been developed [16,17].For example,Li reported a bilayer smart hydrogel actuator based on a chitosan-PAAm semi-interpenetrating network that enables shape memory and reversible luminescence on/off switch [18].As the most common and simplest structure of anisotropic hydrogel actuators, the interface of bilayer hydrogel actuator is easy to peel off.Thence,gradient structure has become another mainstream research direction of hydrogel actuators.Liuet al.applied different magnetic fields to realize the gradient of magnetic nanoparticles, thus achieving various programmed shape changes [19].In addition,orientation and patterning are also important structure types of anisotropic hydrogel actuators, usually accompanied by 3D printing [20], electrospinning [21,22], photolithography [23], embedding aligned materials [24],etc.These preparation processes can fabricate many hydrogel actuators with anisotropic structure and subsequent complex stimuli-responsive self-deformations.However,their mechanical property is natural relatively week and the fabrication process are relatively complicated, which is still a bottleneck need to be broken.Therefore, simple and convenient fabrication method of hydrogels is greatly required to design high-strength actuators with complex self-deformations.

    Inspired from nature, wood with biocompatibility, high strength, and anisotropic structures [25–27], would be an ideal option for the fabrication of anisotropic and strong composite actuators [28].In addition, as an important thermoresponsive polymer, PNIPAM has been widely concerned by researchers.The lower critical solution temperature (LCST) of PNIPAM is approximate 32 °C, around which the hydrophilic/hydrophobic state of PNIPAM change [29–31].Since thermoresponsive PNIPAM microgel was reported in 1986, more and more PNIPAM hydrogel actuators have been studied [32].Wuet al.fabricated an intelligent hydrogel sheet based on PNIPAM/PAMPS that enable different 3D shape conversion [33].Subsequently, PNIPAM based hydrogel actuators with new functions were developed.Chenet al.constructed a fluorescent PNIPAM hydrogel actuator and achieved the synergistic performance of driving and coloration [34].In all cases aforementioned, PNIPAM performed so well that it is the optimal material for the preparation of thermoresponsive hydrogel actuator.

    Herein, we present a composite hydrogel actuator that consists of thermoresponsive poly(N-isopropylacrylamid) (PNIPAM)and anisotropic wood, owning excellent high strength property,fast thermo-responsiveness, and complex deformations.In this wood-PNIPAM composite hydrogel actuator, the active PNIPAM hydrogel layer byin-situpolymerization dominates the fast thermoresponsiveness, while the anisotropic wood sheet determines the complex deformations (Scheme 1).The combination of these two materials is advantageous and novel, which not only realizes the complex deformations of hydrogel actuator, but also provides higher mechanical properties.The success of wood-PNIPAM composite hydrogel actuator points out a new direction for the preparation and material selection of intelligent actuators.

    Scheme 1.Schematic illustration of preparation of wood-PNIPAM composite hydrogel actuator.

    As a kind of natural organic composite materials, basswood possesses the characteristics of fine texture, anisotropic hierarchical porous structure and excellent high mechanical performance.Due to the anisotropy of basswood, three different sections can be obtained by different sawing methods, namely cross section,radial section and tangential section, and each section has diverse properties.As shown in Fig.S1 (Supporting information),the morphologies of three sections of basswood were observed.In Fig.S1a, a large number of parenchyma cells and vessels are distributed on the cross section of basswood, resulting in no obvious anisotropy of the section, which is not suitable for the preparation of anisotropic composite hydrogel actuator.However, Figs.S1b and c show the texture directions on the tangential and radial sections of wood.Furthermore, it can be seen from the figure that the textures on the tangential section are unevenly arranged in V-shapes,whereas the textures on the radial section are parallel arranged.Therefore, in theory, the radial section of the basswood is an admirable section for the construction of wood-PNIPAM composite hydrogel actuator.In addition, cellulose, hemicellulose, and lignin in wood not only constitute the fine microstructure of wood, but also provide many functional groups, which lay a well foundation for the combination of wood and other functional materials [35].Figs.S2a and b (Supporting information) are the comparison of physical photos for natural wood and wood-PNIPAM composite hydrogel.Obviously, the wood layer and the PNIPAM layer have been combined satisfactorily throughin-situpolymerization to form the composite hydrogel.

    Fig.1a exhibits the structure characterization of wood-PNIPAM composite hydrogel.As revealed in Fig.1a, the wood-PNIPAM composite hydrogel emerges an obvious three-layer structure, with wood in the middle and hydrogel layers on both sides.In addition,the existence of hydrogen bonds between the hydrogel and wood results in strong interfacial bonding between them [35].Most notably, unlike the natural wood, the wood channels of the wood-PNIPAM composite hydrogel are filled with hydrogel, forming a structure like interpenetrating network that further promoted the binding of wood and hydrogel (Fig.1b and Fig.S3a in Supporting information).Fig.1c and Fig.S3b (Supporting information) display the microscopic morphology of PNIPAM layer with an isotropic structure.

    As things stand at present, natural weak mechanical strength of common hydrogel actuators seriously restricts their further development.Therefore, it is a good method to combinate anisotropic basswood with high-strength to improve the mechanical performance of the hydrogel.Fig.1d and Fig.S4a (Supporting information) demonstrates the tensile strength of the wood-PNIPAM composite hydrogel actuator and pure PNIPAM hydrogel.It is found that the maximum strength of pure PNIPAM hydrogel and wood-PNIPAM composite hydrogel actuator is 21.5 ± 2 kPa and 1.1 ± 0.2 MPa, respectively.The strength of the wood-PNIPAM composite hydrogel actuator is much higher than that of pure PNIPAM hydrogel, which can significantly prove that the combination of wood does enhance the mechanical strength of the hydrogel.As a result, the experiment that an object weighing 52 g was easily lifted by the wood-PNIPAM composite hydrogel further confirmed the above conclusion (Fig.S4b in Supporting information).Even compared with previous reports, such as Alalginate/PNIPAM hydrogel [36], clay-PNIPAM hydrogel [37], PNIPAM/clay/CMCTs/GP NC DN hydrogel [38], GO–Clay-PNIPAM hydrogel [39], NCDN [40], PPU@PS-co-PNIPAM hydrogel (Fig.1e) [41],the wood-PNIPAM composite hydrogel actuator take great advantages.

    The LCST of PNIPAM is generally 32 °C, which can be increased or decreased by combining with hydrophilic or hydrophobic polymers [42].As illustrated in Fig.1f, the presence of PVA enhanced the hydrophilicity of PNIPAM, resulting in the LCST increased to 34 °C.In order to explore the shape deformations of PNIPAM hydrogel, the equilibrium swelling rate (SR) was tested(the size of hydrogel strip is 0.5 × 20 × 20 mm3).From Fig.1g,it is known that the equilibrium swelling rate of PNIPAM hydrogel is 13 at 20 °C, and gradually decreases with the increase of temperature until the SR drops to 1.2 at 50 °C, indicating that the degree of shape change for PNIPAM hydrogel is large.The equilibrium swelling rate decreases sharply at 34 °C,which is consistent with the previous LCST test results.Meanwhile,the size change of PNIPAM hydrogel was recorded during the process (Fig.1g).

    Fig.1.Structure and basic performance of wood-PNIPAM composite hydrogel actuator.(a) Cross-sectional SEM image of the wood-PNIPAM composite hydrogel.(b) SEM image of wood channels in wood-PNIPAM composite hydrogel.(c) Magnification SEM image of pure PNIPAM hydrogel.(d) Stress-strain curve of wood-PNIPAM composite hydrogel actuator.(e) Comparison of mechanical strength of previously reported composite PNIPAM hydrogels:(i) Al-alginate/PNIPAM [36], (ii) Clay-PNIPAM hydrogel [37],(iii) PNIPAM/clay/CMCTs/GP NC DN [38], (iv) GO-clay-PNIPAM [39], (v) NCDN [40], (vi) PPU@PS-co-PNIPAM [41].(f) DSC curve of PNIPAM hydrogel.(g) The equilibrium swelling rate and length size of PNIPAM hydrogel at different temperatures.(h) The bending equilibrium angle of the wood-PNIPAM composite hydrogel actuator at different temperatures.(i) Curve of bending angle over time of the wood-PNIPAM composite hydrogel actuator in 40 °C warm water.Scare bars in (h, i):5 mm.

    Pure PNIPAM hydrogel is isotropic and can only produce simple volume shrinkage/expansion upon the trigger of heat.Owing to the anisotropic structure of the wood-PNIPAM composite hydrogel, this actuator can provide various complex self-deformations in response to the external temperature changes.The complex deformations of this actuator are mainly caused by the differentiation of volume expansion coefficient between pure PNIPAM part and wood part in this composite hydrogel actuator.Fig.1h shows the deformations of the wood-PNIPAM composite hydrogel actuator (0.5 × 3 × 10 mm3) at different water temperatures.It is observed from the figure that the wood-PNIPAM composite hydrogel actuator bends to the right when the water temperature is below 20 °C, otherwise the hydrogel actuator bends to the left.This is attributed to the expansion of PNIPAM hydrogel in cold water and the contraction of PNIPAM hydrogel in warm water, respectively.Beyond that, we also characterized the deformation and recovery rate of the wood-PNIPAM composite hydrogel actuator in 40 °C warm water and 20 °C cold water, respectively.To our delight, the wood-PNIPAM composite hydrogel actuator shows excellent shape deformation and recovery performance (Fig.1i and Fig.S5, Movie S1 in Supporting information).Firstly, the wood-PNIPAM composite hydrogel strip (0.5 × 3 × 10 mm3) was placed in 40 °C warm water and the bending deformation was observed.The results showed that the composite hydrogel strip could bend from 0° to 360° within 0.9 s, and the deformation speed was fast.It boils down to the thickness of the composite hydrogel strip, as the thinner hydrogel strip makes it possible for water to move in and out quickly.Afterwards, the curved composite hydrogel strip was quickly placed back in cold water at 20 °C to explore the shape recovery.The whole recovery process was completed within 4 min, and the whole composite hydrogel strip was basically restored to its original shape without damage.It is noteworthy that the entire shape deformation/recovery actuation process could be repeated 40 times without any fatigue (Fig.S6a in Supporting information).The wood-PNIPAM composite hydrogel actuator also possesses durability, and no clear change in bending angle was discovered after exposure to warm water for 360 s (Fig.S6b in Supporting information).

    The regular arrangement of wood texture endows the wood-PNIPAM composite hydrogel actuator with the characteristics of anisotropy.Therefore, it is speculated that the complex deformations of wood-PNIPAM composite hydrogel actuator can be determined by the direction of wood texture.The wood-PNIPAM composite hydrogel was cut into strips (9 × 3 × 0.5 mm3) to test its complex deformations in 40 °C warm water (Fig.2a).When the wood texture is perpendicular to the long side of the hydrogel strip, the composite hydrogel was bent into a 360° ring.Then the wood-PNIPAM composite hydrogel was cut at different angles (the wood texture aligned at the angle of 30°, 45°, 60° with respect to the long side of the hydrogel strip) to observe the control of the wood texture on the complex deformations.It can be discovered from the physical photos that the wood-PNIPAM composite hydrogel strips of these three angles present a helical structure in warm water, and the pitch becomes shorter with the larger of the angle.This is related to the effect of wood texture orientation on the elastic modulus [43].Due to the anisotropy of wood chips, the elastic modulus parallel to the texture direction are much higher than those perpendicular to the texture direction, which leads to the controllable deformation of the actuator.Wood not only entrusts the wood-PNIPAM composite hydrogel actuator with anisotropy,but also endows it high mechanical performance.Inspired by the eagle catching prey, we designed a micro gripper to catch heavy object (Fig.2b, Movies S2 and S3 in Supporting information).When the gripper was in 20 °C cold water, the micro gripper was in a stretch state.With the gradual increase of temperature, the hydrogel changed from hydrophilic state to hydrophobic state.Moreover,as the temperature gradually increased, the gripper began to bend to grab heavy object owing to the anisotropy of the wood-PNIPAM composite hydrogel actuator.The weight of the heavy object can reach 30 times of the gripper itself.Shortly afterwards, the gripper gradually released the object when the water temperature slowly dropped to 20 °C.

    Fig.2.The actuation deformations and application of the wood-PNIPAM composite hydrogel actuator.(a) Complex deformations of the wood-PNIPAM composite hydrogel actuator.(b) Micro gripper grabs and releases heavy object (scale bars:3 mm).

    In conclusion, we have successfully fabricated a high-strength anisotropic wood-PNIPAM composite hydrogel actuator byin-situpolymerization.This actuator possesses fast and powerful selfdeformations under external temperature stimulation.By cutting the wood-PNIPAM composite hydrogel at different angles along the direction of wood texture, the 2D sheet actuator can realize various complex stimuli-responsive deformations including helix and short tube 3D shapes.More importantly, the wood-PNIPAM composite hydrogel has high mechanical properties with 1.1 MPa of tensile strength, which can provide superior holding power.Therefore, we believe that this wood-PNIPAM composite hydrogel actuator can broaden the application of hydrogel actuators to a certain extent, and provide new ideas for the selection of composite hydrogel materials.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China (Nos.51803093, 51903123), Natural Science Foundation of Jiangsu Province (No.BK20190760),Open Project of Chemistry Department of Qingdao University of Science and Technology (No.QUSTHX201921), and Open Fund of Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, China (Nos.WYKF-EIGT2020–3, WYKFGC2021–1).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.09.075.

    夜夜躁狠狠躁天天躁| 久久亚洲精品不卡| 我要看日韩黄色一级片| 能在线免费观看的黄片| 亚洲欧美日韩高清在线视频| 日本黄色视频三级网站网址| 草草在线视频免费看| 制服丝袜大香蕉在线| 国产成人av教育| 免费在线观看日本一区| 亚洲成人久久性| 丰满人妻一区二区三区视频av| 日日干狠狠操夜夜爽| 国产淫片久久久久久久久 | 特级一级黄色大片| 色在线成人网| 超碰av人人做人人爽久久| 麻豆成人午夜福利视频| 精华霜和精华液先用哪个| 床上黄色一级片| 欧美乱妇无乱码| 精品99又大又爽又粗少妇毛片 | 亚洲美女黄片视频| 亚洲性夜色夜夜综合| 成人性生交大片免费视频hd| 可以在线观看毛片的网站| 夜夜看夜夜爽夜夜摸| 久久99热这里只有精品18| 欧美成人性av电影在线观看| 人妻久久中文字幕网| 搞女人的毛片| 日韩中字成人| 日本 欧美在线| 美女高潮的动态| netflix在线观看网站| 成人国产一区最新在线观看| 国产一区二区三区在线臀色熟女| 日本撒尿小便嘘嘘汇集6| 少妇的逼水好多| 国内精品美女久久久久久| 亚洲精品色激情综合| 性色avwww在线观看| 黄色丝袜av网址大全| 国语自产精品视频在线第100页| www日本黄色视频网| 午夜亚洲福利在线播放| 一卡2卡三卡四卡精品乱码亚洲| 欧美+日韩+精品| 亚洲成人精品中文字幕电影| 国产伦人伦偷精品视频| 校园春色视频在线观看| .国产精品久久| 搡女人真爽免费视频火全软件 | 黄色女人牲交| 午夜老司机福利剧场| 国产精品永久免费网站| 精品国产亚洲在线| АⅤ资源中文在线天堂| 1024手机看黄色片| 国产精品电影一区二区三区| 婷婷精品国产亚洲av在线| 亚洲av电影在线进入| 久久久久性生活片| 日本熟妇午夜| 少妇人妻一区二区三区视频| 91久久精品国产一区二区成人| 欧洲精品卡2卡3卡4卡5卡区| 国产老妇女一区| 国产精品av视频在线免费观看| 岛国在线免费视频观看| 亚洲av不卡在线观看| 欧美日韩瑟瑟在线播放| 日本 av在线| 性插视频无遮挡在线免费观看| 中文字幕免费在线视频6| 又黄又爽又免费观看的视频| 国产私拍福利视频在线观看| 成人av在线播放网站| 丁香六月欧美| 无遮挡黄片免费观看| 九九热线精品视视频播放| 免费在线观看亚洲国产| 国产免费男女视频| 久久这里只有精品中国| 亚洲最大成人手机在线| 国产在线男女| av天堂在线播放| 欧美一区二区亚洲| 蜜桃久久精品国产亚洲av| h日本视频在线播放| 久久99热这里只有精品18| 日韩高清综合在线| 亚洲三级黄色毛片| 免费看a级黄色片| 嫩草影院新地址| 亚洲avbb在线观看| 亚洲第一区二区三区不卡| 免费高清视频大片| 美女高潮的动态| 757午夜福利合集在线观看| 色噜噜av男人的天堂激情| 性插视频无遮挡在线免费观看| 中文字幕人妻熟人妻熟丝袜美| 久久精品91蜜桃| 免费高清视频大片| 久久草成人影院| 老熟妇乱子伦视频在线观看| 美女高潮喷水抽搐中文字幕| 99精品久久久久人妻精品| 小蜜桃在线观看免费完整版高清| 搡老岳熟女国产| 免费人成视频x8x8入口观看| 国产高清三级在线| 国产三级中文精品| 成人午夜高清在线视频| 国产在线精品亚洲第一网站| 欧美又色又爽又黄视频| 丝袜美腿在线中文| 国内精品久久久久精免费| 中文字幕av成人在线电影| 99国产综合亚洲精品| 国产精品久久久久久久久免 | 天美传媒精品一区二区| 国产高清三级在线| 国产爱豆传媒在线观看| 天美传媒精品一区二区| 久久久久久久亚洲中文字幕 | 成熟少妇高潮喷水视频| 亚洲 欧美 日韩 在线 免费| 欧美一区二区国产精品久久精品| 精品99又大又爽又粗少妇毛片 | www.999成人在线观看| 99精品久久久久人妻精品| 国产亚洲精品av在线| av国产免费在线观看| 一边摸一边抽搐一进一小说| 波多野结衣巨乳人妻| 亚洲国产精品sss在线观看| 亚洲精品影视一区二区三区av| 十八禁国产超污无遮挡网站| 人人妻人人澡欧美一区二区| 久久天躁狠狠躁夜夜2o2o| 国产精品一区二区免费欧美| 自拍偷自拍亚洲精品老妇| 啪啪无遮挡十八禁网站| 高潮久久久久久久久久久不卡| 欧美又色又爽又黄视频| 国模一区二区三区四区视频| 欧美高清成人免费视频www| 亚洲国产精品999在线| 中国美女看黄片| 国产欧美日韩精品一区二区| 午夜a级毛片| 国产亚洲精品久久久com| 午夜免费男女啪啪视频观看 | 搡女人真爽免费视频火全软件 | 久久精品影院6| 国产中年淑女户外野战色| 欧美乱色亚洲激情| 欧美精品国产亚洲| 内地一区二区视频在线| 亚洲精品在线美女| 欧美zozozo另类| 国产精品一区二区免费欧美| 亚洲精品日韩av片在线观看| 亚洲欧美清纯卡通| 国产午夜精品论理片| 久久精品国产亚洲av香蕉五月| 麻豆国产av国片精品| 91在线观看av| 亚州av有码| 国内精品久久久久久久电影| 亚洲人成网站在线播放欧美日韩| 亚洲最大成人av| 久久草成人影院| 成人特级黄色片久久久久久久| 亚洲精品粉嫩美女一区| 成年女人毛片免费观看观看9| 亚洲成人免费电影在线观看| 搡老妇女老女人老熟妇| 成人欧美大片| 久久精品国产亚洲av香蕉五月| 午夜精品久久久久久毛片777| 久久久久久久久久成人| 国产av不卡久久| 欧美丝袜亚洲另类 | 高清日韩中文字幕在线| 成人鲁丝片一二三区免费| 午夜两性在线视频| 99国产综合亚洲精品| 国产在视频线在精品| 97碰自拍视频| 国产精华一区二区三区| 国产毛片a区久久久久| 日本精品一区二区三区蜜桃| 亚洲av电影不卡..在线观看| av天堂在线播放| 欧美成人一区二区免费高清观看| 久久久久免费精品人妻一区二区| 男女床上黄色一级片免费看| 亚洲一区高清亚洲精品| 两个人的视频大全免费| 性插视频无遮挡在线免费观看| 99久久精品一区二区三区| 少妇丰满av| 午夜精品久久久久久毛片777| 国内精品一区二区在线观看| or卡值多少钱| 国内精品久久久久精免费| 亚洲成人中文字幕在线播放| 在线免费观看不下载黄p国产 | 色综合亚洲欧美另类图片| 在线免费观看不下载黄p国产 | 美女黄网站色视频| 如何舔出高潮| 国产精品综合久久久久久久免费| 欧美xxxx黑人xx丫x性爽| 人人妻人人看人人澡| 亚洲综合色惰| 国产精品亚洲av一区麻豆| 精品一区二区三区视频在线观看免费| 国产黄色小视频在线观看| 国产成人a区在线观看| 精品人妻视频免费看| 国产亚洲av嫩草精品影院| 一个人看视频在线观看www免费| 精品午夜福利在线看| 一级av片app| 成人av一区二区三区在线看| 18禁裸乳无遮挡免费网站照片| 91在线观看av| 国产三级黄色录像| 最近最新中文字幕大全电影3| 色在线成人网| 亚洲人成电影免费在线| 成人特级黄色片久久久久久久| 欧美日韩乱码在线| 亚洲久久久久久中文字幕| 99国产精品一区二区三区| 欧美在线黄色| 欧美成人a在线观看| 精品人妻一区二区三区麻豆 | 午夜老司机福利剧场| 亚洲国产精品久久男人天堂| 久久精品国产亚洲av天美| 三级毛片av免费| 日韩精品中文字幕看吧| 动漫黄色视频在线观看| 日韩欧美 国产精品| 精品人妻视频免费看| 夜夜爽天天搞| 高清在线国产一区| 精品不卡国产一区二区三区| 亚洲精品在线观看二区| 俄罗斯特黄特色一大片| 久久久久性生活片| 在线十欧美十亚洲十日本专区| 丁香欧美五月| 成年人黄色毛片网站| 免费人成在线观看视频色| 大型黄色视频在线免费观看| 国产亚洲欧美在线一区二区| 亚洲欧美激情综合另类| 国产老妇女一区| 日韩欧美三级三区| 非洲黑人性xxxx精品又粗又长| 又黄又爽又免费观看的视频| 免费电影在线观看免费观看| 99在线视频只有这里精品首页| 国产在线精品亚洲第一网站| 嫩草影视91久久| 日日干狠狠操夜夜爽| 久久精品国产99精品国产亚洲性色| 欧美+日韩+精品| 国产主播在线观看一区二区| 女人十人毛片免费观看3o分钟| 国产aⅴ精品一区二区三区波| 变态另类成人亚洲欧美熟女| 97超视频在线观看视频| 简卡轻食公司| 国产亚洲精品综合一区在线观看| 日本五十路高清| 国产伦人伦偷精品视频| 国产精品一区二区免费欧美| 午夜福利在线在线| 久久久久久久精品吃奶| www.熟女人妻精品国产| 身体一侧抽搐| 久久国产精品影院| 热99在线观看视频| 免费在线观看亚洲国产| 精品福利观看| 哪里可以看免费的av片| 欧美3d第一页| 757午夜福利合集在线观看| 天堂动漫精品| 桃色一区二区三区在线观看| 亚洲 欧美 日韩 在线 免费| 日韩欧美三级三区| 熟女人妻精品中文字幕| 韩国av一区二区三区四区| 亚洲国产精品999在线| 嫩草影院新地址| 级片在线观看| 精品人妻偷拍中文字幕| 观看美女的网站| 级片在线观看| 国产乱人视频| 69av精品久久久久久| 国产色爽女视频免费观看| 日韩欧美国产一区二区入口| 两个人视频免费观看高清| 国产综合懂色| 中文字幕av成人在线电影| 精品免费久久久久久久清纯| 久久久久精品国产欧美久久久| 亚洲成人久久性| 亚洲av第一区精品v没综合| 色综合婷婷激情| 亚洲内射少妇av| 99热这里只有是精品50| 国产高清视频在线观看网站| 天堂网av新在线| 久久中文看片网| 丰满人妻熟妇乱又伦精品不卡| 色噜噜av男人的天堂激情| 男人狂女人下面高潮的视频| 97人妻精品一区二区三区麻豆| 国产中年淑女户外野战色| 一区二区三区高清视频在线| 国产欧美日韩一区二区精品| 国产高潮美女av| 欧美成狂野欧美在线观看| av天堂中文字幕网| 久久天躁狠狠躁夜夜2o2o| 老熟妇乱子伦视频在线观看| 一区二区三区四区激情视频 | 淫秽高清视频在线观看| 人妻丰满熟妇av一区二区三区| 精品乱码久久久久久99久播| 真实男女啪啪啪动态图| 精品午夜福利在线看| 国产色爽女视频免费观看| 久久久久久久久大av| 国内久久婷婷六月综合欲色啪| 久久精品夜夜夜夜夜久久蜜豆| 精品日产1卡2卡| 午夜福利18| 亚洲人成伊人成综合网2020| 2021天堂中文幕一二区在线观| 国内精品久久久久久久电影| 国产野战对白在线观看| 色视频www国产| av在线观看视频网站免费| 国内精品久久久久久久电影| 2021天堂中文幕一二区在线观| 国产日本99.免费观看| 此物有八面人人有两片| 99热这里只有是精品在线观看 | 尤物成人国产欧美一区二区三区| www.色视频.com| 亚洲国产精品久久男人天堂| 香蕉av资源在线| 别揉我奶头 嗯啊视频| 精品国产三级普通话版| 级片在线观看| 亚洲18禁久久av| 精品久久久久久久久久免费视频| 长腿黑丝高跟| 国产伦精品一区二区三区四那| 有码 亚洲区| 日日摸夜夜添夜夜添小说| 女生性感内裤真人,穿戴方法视频| 日日夜夜操网爽| 色哟哟·www| 真人做人爱边吃奶动态| 99国产综合亚洲精品| 国产午夜精品论理片| 我要搜黄色片| 欧美不卡视频在线免费观看| 欧美成人一区二区免费高清观看| 精品一区二区三区视频在线观看免费| 欧美乱妇无乱码| 麻豆久久精品国产亚洲av| 精品一区二区三区视频在线| 国产精品久久久久久亚洲av鲁大| 久久久国产成人精品二区| 国产午夜精品久久久久久一区二区三区 | 成年女人看的毛片在线观看| 简卡轻食公司| 亚洲精品一区av在线观看| 欧美黄色淫秽网站| av欧美777| 国产av一区在线观看免费| 亚洲av.av天堂| 国产精品一区二区免费欧美| 成年女人永久免费观看视频| 好看av亚洲va欧美ⅴa在| 制服丝袜大香蕉在线| 亚洲最大成人中文| 欧美成人一区二区免费高清观看| 国内精品美女久久久久久| 成人av在线播放网站| 又粗又爽又猛毛片免费看| aaaaa片日本免费| 日韩成人在线观看一区二区三区| 色av中文字幕| 免费av毛片视频| 男女那种视频在线观看| 久久精品影院6| 日本一本二区三区精品| 色综合站精品国产| 99国产精品一区二区三区| 日韩av在线大香蕉| 亚洲电影在线观看av| 在现免费观看毛片| 久久久久亚洲av毛片大全| 女人被狂操c到高潮| 国产不卡一卡二| 丰满人妻熟妇乱又伦精品不卡| 精品乱码久久久久久99久播| 天堂av国产一区二区熟女人妻| 亚洲无线在线观看| 亚洲va日本ⅴa欧美va伊人久久| 男女视频在线观看网站免费| 午夜福利在线观看免费完整高清在 | h日本视频在线播放| 一个人观看的视频www高清免费观看| 中文字幕av在线有码专区| 丁香六月欧美| 国内精品美女久久久久久| 69av精品久久久久久| 尤物成人国产欧美一区二区三区| 日韩免费av在线播放| 午夜老司机福利剧场| 欧美日韩国产亚洲二区| 亚洲国产欧洲综合997久久,| 直男gayav资源| 亚洲自拍偷在线| 欧美在线一区亚洲| 免费av观看视频| 国产国拍精品亚洲av在线观看| 亚洲男人的天堂狠狠| 村上凉子中文字幕在线| 久久久国产成人免费| 在线天堂最新版资源| 夜夜爽天天搞| 日韩国内少妇激情av| 乱人视频在线观看| 日日摸夜夜添夜夜添小说| 亚洲自偷自拍三级| 天堂影院成人在线观看| 最新中文字幕久久久久| 欧美中文日本在线观看视频| 神马国产精品三级电影在线观看| 国产人妻一区二区三区在| 真实男女啪啪啪动态图| 色综合亚洲欧美另类图片| 欧美一级a爱片免费观看看| 久久久久久久午夜电影| 黄色配什么色好看| 一区二区三区免费毛片| 国产爱豆传媒在线观看| 如何舔出高潮| 五月玫瑰六月丁香| 91狼人影院| 毛片一级片免费看久久久久 | 免费一级毛片在线播放高清视频| 一个人免费在线观看电影| 国产黄片美女视频| 亚洲国产色片| 此物有八面人人有两片| 国产精品久久电影中文字幕| 亚州av有码| 日韩欧美在线乱码| 国产精品久久久久久人妻精品电影| 亚洲电影在线观看av| 非洲黑人性xxxx精品又粗又长| 中文字幕人成人乱码亚洲影| 欧美一级a爱片免费观看看| 我要看日韩黄色一级片| av福利片在线观看| 国产成人av教育| 少妇被粗大猛烈的视频| 日韩欧美国产在线观看| 90打野战视频偷拍视频| 网址你懂的国产日韩在线| 久9热在线精品视频| 亚洲成人精品中文字幕电影| 国产综合懂色| 国产精品精品国产色婷婷| 国产精品1区2区在线观看.| 国产欧美日韩一区二区精品| 久久国产乱子免费精品| 亚洲av成人精品一区久久| 黄色视频,在线免费观看| 国产精品1区2区在线观看.| 成人性生交大片免费视频hd| eeuss影院久久| 亚洲在线自拍视频| 少妇裸体淫交视频免费看高清| 日本成人三级电影网站| 一级黄片播放器| 亚洲美女视频黄频| 真人做人爱边吃奶动态| 久久亚洲真实| 91午夜精品亚洲一区二区三区 | av福利片在线观看| 热99re8久久精品国产| 最新中文字幕久久久久| 丁香六月欧美| 亚洲黑人精品在线| 每晚都被弄得嗷嗷叫到高潮| 特大巨黑吊av在线直播| 国产国拍精品亚洲av在线观看| 内射极品少妇av片p| 免费观看的影片在线观看| 人人妻人人澡欧美一区二区| 精品人妻一区二区三区麻豆 | 无遮挡黄片免费观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 欧洲精品卡2卡3卡4卡5卡区| 国产一区二区亚洲精品在线观看| 激情在线观看视频在线高清| 久99久视频精品免费| 日韩中字成人| 可以在线观看毛片的网站| 亚洲av熟女| 一进一出抽搐gif免费好疼| 欧美极品一区二区三区四区| 国产一区二区在线av高清观看| 国产精品国产高清国产av| 99精品久久久久人妻精品| 国产不卡一卡二| 成人欧美大片| 亚洲精品影视一区二区三区av| 好男人电影高清在线观看| 最新在线观看一区二区三区| 国产真实伦视频高清在线观看 | 乱码一卡2卡4卡精品| 99热只有精品国产| 成人一区二区视频在线观看| 俄罗斯特黄特色一大片| 亚洲国产高清在线一区二区三| 欧美丝袜亚洲另类 | 毛片女人毛片| 美女免费视频网站| 成人欧美大片| 精品久久久久久久末码| 午夜免费成人在线视频| 亚洲第一电影网av| 欧美黄色片欧美黄色片| 欧美一级a爱片免费观看看| 国产高清视频在线观看网站| 日韩欧美在线乱码| 亚洲精品久久国产高清桃花| 自拍偷自拍亚洲精品老妇| 国产高清三级在线| 69人妻影院| 老熟妇仑乱视频hdxx| 国产久久久一区二区三区| 一个人免费在线观看的高清视频| 国产亚洲精品久久久久久毛片| 麻豆av噜噜一区二区三区| 国产高清视频在线观看网站| 国产毛片a区久久久久| 国产成人av教育| 亚洲av.av天堂| 国产精品99久久久久久久久| 欧美成狂野欧美在线观看| 欧美bdsm另类| 午夜日韩欧美国产| 99riav亚洲国产免费| 久久国产乱子伦精品免费另类| 人妻丰满熟妇av一区二区三区| 免费人成视频x8x8入口观看| 中文字幕av成人在线电影| av黄色大香蕉| 国产黄色小视频在线观看| 成人毛片a级毛片在线播放| 国产精品永久免费网站| 国产精品女同一区二区软件 | 久久精品综合一区二区三区| 精品不卡国产一区二区三区| 久久精品国产99精品国产亚洲性色| 哪里可以看免费的av片| 亚洲专区国产一区二区| 欧美丝袜亚洲另类 | 亚洲人成电影免费在线| 色综合亚洲欧美另类图片| 欧美激情国产日韩精品一区| 别揉我奶头~嗯~啊~动态视频| 久久婷婷人人爽人人干人人爱| 国产熟女xx| 亚洲国产色片| 国产欧美日韩一区二区三| 熟妇人妻久久中文字幕3abv| 欧美日韩福利视频一区二区| 久久精品国产清高在天天线| 天天一区二区日本电影三级| 国产成人av教育| 亚洲av美国av| 亚洲色图av天堂| 色视频www国产| 麻豆国产97在线/欧美| 黄色日韩在线| 成人鲁丝片一二三区免费| 少妇的逼好多水| 国产精品亚洲一级av第二区| 极品教师在线视频| 亚洲最大成人av| 人妻夜夜爽99麻豆av| 99久久成人亚洲精品观看| 国产伦人伦偷精品视频| 好男人电影高清在线观看|