• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Single-Cu-atoms anchored on 3D macro-porous carbon matrix as efficient catalyst for oxygen reduction and Pt co-catalyst for methanol oxidation

    2022-06-20 08:00:12JinMaBinLiuRongyueWangZhiyaoSunYingZhangYuboSunZhuangCaiYaoLiJinlongZou
    Chinese Chemical Letters 2022年5期

    Jin Ma, Bin Liu, Rongyue Wang, Zhiyao Sun, Ying Zhang, Yubo Sun, Zhuang Cai, Yao Li,Jinlong Zou

    Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China

    Keywords:Defects Electrocatalytic activity Macro-porous structure Metal-nitrogen-carbon Single atom catalyst

    ABSTRACT Single metal atoms immobilized on a carbon substrate are of great potential for enhancing the catalytic activities for oxygen reduction and methanol oxidation reactions (ORR/MOR) owing to the maximized atom utilization.Herein, single copper atoms (SCAs) are loaded on macro-porous nitrogen-doped carbon(Cu-NC) derived from zeolitic imidazolate framework-8 (ZIF-8), which are used as catalysts for ORR and Pt-supports for MOR.For ORR, the catalyst marked as Cu-NC-3 exhibits a higher peak potential of 0.87 V(vs. Reversible hydrogen electrode) than that of commercial Pt/C (0.83 V), mainly attributing to that the 3D macro-porous structure of Cu-NC-3 provides adequate space for uniform dispersion of SCAs as the main active species, and smooth diffusion pathways for fast transport of substances (O2, H2O), therefore reducing the overpotential and the intermediate (H2O2) generation to enhance ORR activity.For MOR, Pt-Cu-NC-3 has a higher mass activity of 1217.4 mA/mgPt than that of Pt/C (752.4 mA/mgPt), and its activity maintenance (decline of 27.6%) is also better than Pt/C (decline of 44.0%) after 5000 cyclic voltammetry(CV) cycles.The interactions between SCAs and Pt nanoparticles should facilitate the generation of OHfrom water molecules, which can fast eliminate the adsorbed CO to recover the Pt active sites to improve MOR performance.This synthesis strategy affords a new inspiration to prepare single metal atoms loaded on ZIFs-derived macro-structure with diverse activities for ORR/MOR.

    To solve global energy and environmental problems, great eff orts have been made to explore alternatives to fossil fuels [1–4].Among the new energy sources, direct methanol fuel cell (DMFC)is one of the candidates to well meet the energy demand because of its advantages of clean fuel, simple cell structure, and fast startup [5,6].Although significant advances have been made in recent years, there are still obstacles to the commercialization of DMFC technology, including slow kinetics of anodic methanol oxidation reaction (MOR) and cathodic oxygen reduction reaction (ORR), high platinum (Pt) loading, easy catalyst poisoning, and serious agglomeration and corrosion of active components during catalytic process [7–9].In general, Pt-based nanomaterials are considered as the most advanced catalysts for MOR/ORR [10].However, Pt-based catalysts are difficult to be applied and commercialized on a large scale due to their exiguity, high price, low stability, and poor tolerance to carbon monoxide (CO)/methanol [11–13].Therefore, it is urgent to develop non-noble metal-based catalysts with high activity, stability and resistance to toxicity.

    Metal carbides have been used as non-noble metal catalysts in DMFCs by optimizing their geometric and electronic structures to improve their intrinsic activity and stability.In recent years,zeolite-imidazole frameworks (ZIFs) have become the hot raw materials to synthesize metal-nitrogen (N)-carbon catalysts [14–16].Nevertheless, due to the limitation of such a fixed structure (polyhedron, sphere,etc.) of ZIFs-derived catalysts, the active sites on metal species cannot be fully utilized.Therefore, the size, structure and composition of these catalysts should be properly controlled to accelerate the electron transfer to further improve the electrocatalysis performance by allowing the barrier-free contact between active sites and reactants [17–19].As reported previously, by comparing with the microporous electrocatalysts, the three-dimensional(3D) macro-porous carbon matrix can expose the active sites to the maximum extent, thus significantly improving the diffusion of reactants (mass transfer) to obtain a higher electrocatalytic performance [20].

    In addition to the improvement of mass transfer ability, it is particularly important to improve the utilization rate of active sites on the 3D macro-porous structure [21].In particular, it is reported that by adding a small amount of metal single-atom species to the porous structure, higher catalytic selectivity and active-site availability can be obtained.There is no doubt that the single atomsbased catalysts are the best choices for electrocatalysis.At present,a series of monatomic metal catalysts, such as Pt, Co, Fe,etc., have been studied in the field of electrochemistry [22–26].As we all know, Cu as a low-cost metal usually has a comparable electrocatalytic activity to other transition metals (such as Fe, Co, Ni).Cu has the second highest conductivity, which is only lower than that of silver.This makes it possible to promote the charge transfer between the active sites and the reactants, which thus has a good effect on activity for electrocatalysis (oxygen evolution reaction (OER),etc.) [27–29].Based on the above analyses, establishing a relationship between atomic (Cu) active sites and structural functions through a comprehensive method is a promising option for improving the catalytic activity for MOR/ORR.

    This study reports the synthesis and application of single Cu atoms (SCAs) anchored on macro-porous carbon (Cu-NC) as catalysts for ORR and MOR (as Pt support).SiO2nanospheres as the template are added during the ZIF-8 synthesis process, which is completely removed by acid (HF) washing after carbonization to form a macro-porous carbon to facilitate the mass transfer.The reaction of copper nitrate trihydrate and urea occurs in a macroporous medium to obtain the SCAs.As the temperature of the reaction solution rises under the ultrasound condition, the decomposition of urea in a high-energy environment can provide a weak alkaline environment for the reduction of Cu atoms.The well-dispersed SCAs can provide abundant active sites to enhance the adsorption of oxygen on the catalyst surface to improve the ORR performance.In addition, under the action of SCAs, Pt atom should correspondingly improve the catalytic activity and antitoxicity (CO) in the MOR process.As expected, the as-prepared Cu-NC catalysts may exhibit higher catalytic activities, long-term durability and CO/methanol resistance than those of commercial catalysts for MOR and ORR.

    The synthesis process of Cu-NC is schematically illustrated in Fig.1a (The detailed preparation procedure, material characterizations and electrochemical tests can be seen in Supporting information).Fig.1b shows that SiO2nanoparticles (NPs) are spherical shape with a narrow size range of 110 to 130 nm.Zn(NO3)2·6H2O and 2-methylimidazole are coordinated to form to ZIF-8 to assemble with SiO2NPs.Abundant voids between SiO2NPs facilitate the deposition of ZIF-8 (Fig.1c).ZIF-8 can interconnect the individual SiO2NPs through annealing for the formation of precursor material with SiO2NPs inside (Fig.1d).As shown in Fig.S1 (Supporting information), the carbonized ZIF-8 NPs (without SiO2, denoted as NC) still remain the original polyhedral morphology.NC-0(without Cu source) is obtained by removing SiO2template from the carbon structure by using HF.The preparation processes of NC, NC-0, Pt-NC and Pt-NC-0 are provided in Supporting information.Macro-porous Cu-NC-3 catalyst with well-defined interconnections is obtained by adding Cu sources (Fig.1e).The diameter of macropores is approximately 120 nm, which is similar to that of SiO2template,indicating that SiO2NPs have been completely washed away.The macro-porous structure with a high degree of 3D structural interconnection should facilitate the diffusion of the reactants and expose more active sites to significantly improve the stability of the catalysts (Fig.S2 in Supporting information).The high-angle annular dark-field-scanning transmission electron microscope (HAADF-STEM) image in Fig.1f confirms that SCAs are well-dispersed on the surface of NC material.As shown in the inset of Fig.1f (selected-area electron diffraction, SAED), the presence of several rings indicates the poor crystallinity of the prepared catalysts [30–32].As shown in Figs.1g-i (partially-enlarged mapping images), the C, N and Cu elements are uniformly dispersed in the NC skeleton.Notably, the uniform distribution of SCAs throughout the framework of NC can establish a large number of active sites,which will greatly promote the catalytic activity.

    Fig.1.(a) Schematic synthesis process for Cu-NC and Pt-Cu-NC composites.SEM images of silica (b), ZIF-8 -silica composite (c), ZIF-8-derived carbon-silica composite (d), and Cu-NC-3 (e).Atomic-resolution HAADF-STEM image of Cu-NC-3 material(f, SCAs show bright contrast), and the inset is the corresponding SAED pattern; elemental mapping results of C (g), N (h) and Cu (i).

    As shown in Figs.2a and b, N2adsorption-desorption isotherms for NC and Cu-NC-3 belong to type IV with H-3 hysteresis loops.There are a large number of mesopores and macropores in NC and Cu-NC-3 (SBETof 315 m2/g) as calculated by the Hamilton-Jacobi-Bellman (HJB) method.It confirms that macro-porous carbon (NC) with 3D structure is successfully prepared.The adsorption isotherms, specific surface area and pore size distributions of the Cu-NC-y(y= 1, 2, 4 and 5) catalysts are shown in Fig.S3 and Table S1 (Supporting information).The surface areas (SBET)of Cu-NC catalysts with different Cu loadings do not differ much from each other.The largerSBETof Cu-NC-2 and Cu-NC-3 indicates that more active sites (per unit mass) and mass transfer channels can be provided on the catalyst for reactants, thus promoting the transport of substances and the catalytic activity of the catalyst [33].Moreover, the highly-porous structure can also provide enough space to obtain the uniform dispersion of SCAs.

    As shown in Fig.2c, the binding energies of Cu 2p3/2are 932.3 and 934.8 eV, indicating that there are two chemical states Cu(Cu+, Cu2+) in Cu-NC-3 [34].Two peaks at around 952.1 (Cu 2p1/2)and 954.6 eV (Cu 2p1/2) are attributed to Cu+and Cu2+, respectively.The two peaks with relatively-weak intensities at around 943.7 and 963.0 eV correspond to the satellite peaks, which can be ascribed to the shakeup excitation [35].The intensities of the satellite peaks are weak, indicating that Cu species is mainly existed in the form of single-atom with metallic state [32,34,36].Highresolution X-ray photoelectron spectroscopy (XPS) spectra of Cu 2p for Cu-NC-y(y= 1, 2, 4 and 5) are shown in Fig.S4 (Supporting information).Fig.2d and Fig.S5 (Supporting information) shows that the peaks at around 284.5, 285.4, 287.8, 288.9 and 291.7 eV correspond to C–C sp2, C–O/C–N, C=O/C=N, O=C–OH andπ-π*, respectively.The largest peak areas of C–C sp2belong to the graphic carbon, indicating that the carbon skeleton is partially graphitized to obtain the promising conductivity [37].Moreover, the existence of C–O/C–N and C=O/C=N shows that N atoms are successfully doped into the carbon skeleton.Both NC-0 and Cu-NC-y(y= 1, 2, 3, 4 and 5) have the peak of C=O/C=N, while NC does not show this peak(Fig.S5).The dipole moment of C=O/C=N is larger than that of C–O/C–N, indicating that C=O/C=N has a higher polarity to obtain a higher hydrophilicity [38,39].The O=C–OH as an O-containing functional group on catalyst surface can also promote the surface hydrophilicity to facilitate the adsorption of H+/O2to improve the ORR electrocatalytic activity [40].

    Fig.2.N2 adsorption/desorption isotherms and pore size distributions (inset) for NC (a) and Cu-NC-3 (b) catalysts.High resolution XPS spectra of Cu 2p (c), C 1s (d), N 1s(e), O 1s (f) for Cu-NC-3.

    In high-resolution XPS spectra of N 1s (Fig.2e and Fig.S6 (in Supporting), there are five peaks at around 398.3, 399.1, 400.2,401.5 and 406.2 eV correspond to pyridinic N, Cu-N, pyrrolic N,graphitic N and oxidized N, respectively.Pyridinic N can improve the O2adsorption capacity on adjacent C atoms to accelerate ORR electron transfer [41].As reported previously, the coordination environment of Cu-N is the same as Cu phthalocyanine [34].Pyridinic N can provide the coordination sites for central Cu atom to form Cu-N active sites implanted in carbon matrix [41].π-πsystem of carbon is broken by graphitic N, which attracts electrons from adjacent carbon atoms to increase the adsorption capacity of O2[42].As reported previously, oxidized N plays an important role in the process of decreasing protonation and increasing utilization of Ptviathe charge-cloud interactions between Pt and oxidized N [43].Because of the highest polarizability of oxidized N, it has been considered as the co-catalytic active-center for MOR [44].Fig.2f and Fig.S7 (Supporting information) show that the peaks at around 531.6, 532.7 and 533.5 eV correspond to O=C–OH, C=O and C–OH, respectively.A large number of surface oxygen-containing functional groups are generated on the carbon skeleton, which can promote the adsorption of oxygen, thereby improving the ORR catalytic activity.

    In the X-ray diffraction (XRD) patterns (Fig.3a), the peaks of graphitic carbon are observed at 2θ= 24.5°, and no other peaks appear because the Cu content is too small to be detected by XRD.As shown in the Raman spectra (Fig.3b), peaks at around 1352 and 1590 cm-1correspond to the D bands generated by lattice defects and the G bands generated by graphitic carbon, respectively.Cu-NC-3 has a lowerID/IG(1.71) value than that of NC (1.87), indicating that a higher degree of graphitization is obtained in Cu-NC-3.The conductivity and electronic transport ability of catalysts are enhanced with a high degree of graphitization.Stronger D band means that there are a lot of defects and vacancies in the asprepared catalysts, which can provide more spaces for electrons to transfer, and also maximize the deposition of SCAs [32,45].The contact angles of NC and Cu-NC-3 are 18.79° (Fig.3c) and 12.88°(Fig.3d), respectively, indicating that the catalyst shows a higher hydrophilicity.It is known that materials with polar groups have a great affinity for water [46], which makes the Cu-NC-3 catalyst more easily wetted by water.Therefore, the absorption time for electrolyte is shortened on the Cu-NC-3 catalyst, and then the contact between active sites and reactants is accelerated to improve the electrocatalytic performance.

    Fig.3.XRD patterns of NC-0 and Cu-NC-3 (a); Raman spectra of NC and Cu-NC-3(b); contact angles of NC (c) and Cu-NC-3 (d).

    In the O2-saturated 0.1 mol/L KOH solution, the catalytic performances of Cu-NC-y, NC and Pt/C for ORR are examined.As shown in Fig.4a and Fig.S8 (Supporting information), obvious oxygen reduction peaks are exhibited in cyclic voltammetry (CV) curves.Notably, Cu-NC-3 has the highest activity for ORR at peak potential of 0.87 V, which is much higher than those of commercial Pt/C (0.81 V), NC (0.73 V) and NC-0 (0.77 V).It implies that the proper loading of SCAs on the 3D macro-porous structure (Cu-NC-3) can form the Cu-N-C structure to greatly improve the ORR activity.Macro-porous carbon with a high degree of 3D structural interconnection can provide adequate space and diffusion pathways for transport of substances (O2, H2O, OH-) and facilitate the uniform dispersion of the crucial Cu-N active sites [45].According to previous reports, the adsorption energy of Cu2+-N (bridge-connected)for oxygen is extremely close to that of commercial Pt/C [32,34].According to the Sabatier principle [47], it is believed that Cu2+-N is the main active site of Cu-NC-3 for ORR.LSV tests are conducted at a rotating speed of 1600 rpm to estimate ORR activity in O2-saturated 0.1 mol/L KOH electrolyte.In Fig.4b and Fig.S9 (Supporting information), Cu-NC-3 shows better onset potential(E0= 0.95 V), half-waves potential (E1/2= 0.87 V) and limiting current density (JL= 5.4 mA/cm2) than those of Pt/C (E0= 0.92 V,E1/2= 0.84 V andJL= -5.7 mA/cm2).Table S2 (Supporting information) shows the ORR activities of Cu-NC-3 and other recentlyreported transition metals-based catalysts.More ORR test results are provided in Figs.S10–13 (Supporting information).

    Fig.4.CV curves for Pt/C, NC, NC-0 and Cu-NC-3 in an O2-saturated 0.1 mol/L KOH solution at a scan rate of 10 mV/s (a); LSV curves (5 mV/s and 1600 rpm) in an O2-saturated 0.1 mol/L KOH solution (b); CV curves of Pt-Cu-NC-3 and Pt/C tested in 1 mol/L KOH (c); CV curves of Pt-NC, Pt-NC-0, Pt-Cu-NC-3 and Pt/C catalysts in 1 mol/L KOH with 1 mol/L methanol at a scan rate of 50 mV/s (d).

    Fig.4c shows the CV curves of Pt-Cu-NC-3 and Pt/C tested in 1 mol/L KOH solution.The electrochemical activity surface area(ECSA) of Pt-Cu-NC-3 (150.1 m2/gPt) can be obtained by calculating the area of the hydrogen zone in the CV curve, which is much greater than that of Pt/C (93.9 m2/gPt).The larger hydrogen adsorption and desorption areas of the catalysts, the larger ECSA and the higher MOR activity [46].Pt-Cu-NC-3 has a larger hydrogen adsorption and desorption area, mainly because the 3D macro-porous structure can fully utilize the Pt active sites, thereby improving the MOR performance [48].As shown in Fig.4d, Pt-Cu-NC-3 has a high mass activity of 1217.4 mA/mgPtat 0.8 V (50 mV/s), which is much higher than that of Pt/C (752.4 mA/mgPt).In addition, the mass activity of Pt-NC-0 (501.8 mA/mgPt) is also higher than that of Pt-NC(221.4 mA/mgPt).Fig.S14 (Supporting information) shows that the mass activities of Pt-Cu-NC-y(y= 1, 2, 4 and 5) are 718, 919.2,878.6, and 527 mA/mgPt, respectively.The macro-porous structure of Cu-NC-ysupports can improve the utilization of Pt to promote the mass activity [45].Table S3 (Supporting information) compares the MOR activity of Pt-Cu-NC-3 with other similar catalysts that have been recently reported.It shows that Pt-Cu-NC-3 exhibits the highest mass activity.The SCAs that form the catalytically active sites are usually combined with non-metallic N atoms [36].When there are other metals (such as Pt) around, it may cause the metal atomic orbital to overlap and form a complicated effect [49].The interactions between two atoms (Pt and Cu) can cause the redistribution of electrons to catalyze the*OH generated by water molecules in the electrolyte, which can fast react with the intermediates such as CO to release the active sites to improve MOR performance [36,50].More MOR test results are provided in the Supporting information (Figs.S15–18 in Supporting information).The schematic illustration of possible mechanisms for ORR (Cu-NC-3) and MOR (Pt-Cu-NC-3) is shown in Fig.5, and more discussions are provided in Supporting information.

    Fig.5.Schematic illustration of possible mechanisms for ORR (Cu-NC-3) and MOR(Pt-Cu-NC-3).

    In summary, we present a new approach for synthesis of Cu-NC composites from ZIF-8 as highly active catalysts with a promising tolerance to methanol for ORR and as Pt-supports with a superior CO tolerance for MOR.Cu-NC-3 has the highest ORR activity with a peak potential of 0.87 V,E0= 0.95 V,E1/2= 0.87 V andJL= 5.4 mA/cm2.Cu-NC-3 shows better Tafel slopes and Rctvalue than those of commercial Pt/C.Such an excellent ORR performance of Cu-NC-3 is achieved by using the SCAs as the active species loaded on the N-containing defective carbon matrix.Moreover, Pt-Cu-NC-3 has higher mass activity (1217.4 mA/mgPt), CO tolerance, and stability than those of Pt/C, which is attributed to that the strong interactions between SCAs and Pt NPs allow electrons to be accumulated around Pt atom to improve catalytic activity and stability.In this study, we rationally design a highly-active ORR/MOR catalyst/co-catalyst with a promising stability, and provide a deeper understanding of the synergy between the single atoms and the 3D structure of carbon matrix.In the future, single atoms-based catalysts will continue to attract a great deal of attention because of their maximal atom utilization and, more importantly, promising activity and selectivity toward various reactions.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    We acknowledge the support by the National Natural Science Foundation of China (Nos.52070074, 21806031 and 51578218),Longjiang Scholars Program (No.Q201912), and the Open Project of State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology (No.HC202144).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.09.108.

    亚洲精品国产色婷婷电影| a在线观看视频网站| 黄色片一级片一级黄色片| 亚洲国产精品一区二区三区在线| 午夜福利免费观看在线| 国产一卡二卡三卡精品| 婷婷精品国产亚洲av在线| 日韩 欧美 亚洲 中文字幕| 久久精品国产清高在天天线| 欧美黄色片欧美黄色片| 色综合站精品国产| 亚洲五月天丁香| 久久香蕉激情| 国产av一区在线观看免费| 可以在线观看毛片的网站| 亚洲专区字幕在线| 天天躁夜夜躁狠狠躁躁| 亚洲精品一二三| 国产精品自产拍在线观看55亚洲| 如日韩欧美国产精品一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲精品国产色婷婷电影| 在线观看舔阴道视频| 午夜两性在线视频| 亚洲国产看品久久| 成在线人永久免费视频| videosex国产| 亚洲成人国产一区在线观看| 久久久国产成人精品二区 | 久9热在线精品视频| 成人手机av| 十八禁人妻一区二区| 人成视频在线观看免费观看| 极品教师在线免费播放| 亚洲视频免费观看视频| 国产精品一区二区三区四区久久 | 久久99一区二区三区| 久久午夜亚洲精品久久| 久久精品国产99精品国产亚洲性色 | 精品少妇一区二区三区视频日本电影| 欧美在线黄色| 久久中文看片网| 亚洲一区二区三区色噜噜 | 国产一区二区三区视频了| 丁香欧美五月| 亚洲精品国产精品久久久不卡| 狠狠狠狠99中文字幕| 久久性视频一级片| 高清av免费在线| 黄色毛片三级朝国网站| 久久婷婷成人综合色麻豆| avwww免费| 黄色视频,在线免费观看| tocl精华| 精品一区二区三区av网在线观看| 成人特级黄色片久久久久久久| 99re在线观看精品视频| 成在线人永久免费视频| 精品无人区乱码1区二区| 国产精品一区二区在线不卡| 九色亚洲精品在线播放| 精品国产一区二区三区四区第35| 日本免费a在线| 99香蕉大伊视频| 黑人猛操日本美女一级片| 亚洲人成电影免费在线| 成年人免费黄色播放视频| 日韩欧美在线二视频| 波多野结衣av一区二区av| 脱女人内裤的视频| 在线观看免费午夜福利视频| 另类亚洲欧美激情| 手机成人av网站| 亚洲国产中文字幕在线视频| 1024视频免费在线观看| 国产xxxxx性猛交| 亚洲av五月六月丁香网| www.精华液| 这个男人来自地球电影免费观看| 久久国产精品男人的天堂亚洲| 国产精品乱码一区二三区的特点 | 超色免费av| 日本精品一区二区三区蜜桃| 亚洲欧美日韩另类电影网站| 欧美日韩亚洲国产一区二区在线观看| 国产一区二区三区在线臀色熟女 | 亚洲一码二码三码区别大吗| 日韩精品免费视频一区二区三区| 久久精品亚洲熟妇少妇任你| 在线av久久热| 日韩av在线大香蕉| 国产在线观看jvid| 91在线观看av| 欧美成人免费av一区二区三区| 欧美激情高清一区二区三区| 亚洲国产毛片av蜜桃av| 久久精品亚洲熟妇少妇任你| 国产亚洲欧美98| 叶爱在线成人免费视频播放| 女人高潮潮喷娇喘18禁视频| 色综合欧美亚洲国产小说| 一级,二级,三级黄色视频| 欧美黑人欧美精品刺激| 国产成人欧美| 99在线视频只有这里精品首页| 久久久久亚洲av毛片大全| 国产高清国产精品国产三级| 亚洲色图 男人天堂 中文字幕| 90打野战视频偷拍视频| 啦啦啦 在线观看视频| 精品一区二区三区av网在线观看| 桃红色精品国产亚洲av| 久久精品91无色码中文字幕| 极品教师在线免费播放| 亚洲中文av在线| a级毛片在线看网站| 日韩欧美在线二视频| 黄色片一级片一级黄色片| 久久精品亚洲av国产电影网| 中亚洲国语对白在线视频| 国产有黄有色有爽视频| 女生性感内裤真人,穿戴方法视频| 国产精品久久久人人做人人爽| 纯流量卡能插随身wifi吗| 麻豆成人av在线观看| 欧美 亚洲 国产 日韩一| 亚洲专区字幕在线| 久久 成人 亚洲| av片东京热男人的天堂| 女警被强在线播放| 麻豆国产av国片精品| 久久午夜亚洲精品久久| 超色免费av| 嫁个100分男人电影在线观看| 桃红色精品国产亚洲av| 18美女黄网站色大片免费观看| 一夜夜www| 嫩草影院精品99| 国产精品 国内视频| 交换朋友夫妻互换小说| 久久天躁狠狠躁夜夜2o2o| 麻豆av在线久日| 午夜免费激情av| 亚洲五月婷婷丁香| 桃红色精品国产亚洲av| 欧美日韩视频精品一区| 国产精华一区二区三区| 青草久久国产| 日韩av在线大香蕉| 免费女性裸体啪啪无遮挡网站| 欧美激情极品国产一区二区三区| 国产免费现黄频在线看| 黑丝袜美女国产一区| 精品免费久久久久久久清纯| av网站免费在线观看视频| 色精品久久人妻99蜜桃| 91国产中文字幕| 亚洲一卡2卡3卡4卡5卡精品中文| 久99久视频精品免费| 日本vs欧美在线观看视频| 亚洲成a人片在线一区二区| 狂野欧美激情性xxxx| 婷婷丁香在线五月| svipshipincom国产片| 淫妇啪啪啪对白视频| 日日夜夜操网爽| 精品高清国产在线一区| 超碰成人久久| 一级a爱视频在线免费观看| 丰满饥渴人妻一区二区三| 丝袜在线中文字幕| 最好的美女福利视频网| 美女午夜性视频免费| 久久精品国产清高在天天线| 88av欧美| 天天添夜夜摸| 亚洲aⅴ乱码一区二区在线播放 | 中文字幕人妻丝袜制服| 日韩人妻精品一区2区三区| 嫁个100分男人电影在线观看| 国产成人一区二区三区免费视频网站| 在线av久久热| 亚洲国产中文字幕在线视频| 日韩大尺度精品在线看网址 | 热re99久久国产66热| 老司机在亚洲福利影院| 夜夜看夜夜爽夜夜摸 | 91成年电影在线观看| 51午夜福利影视在线观看| 亚洲人成电影观看| 久99久视频精品免费| 校园春色视频在线观看| 欧美大码av| 午夜日韩欧美国产| 一本大道久久a久久精品| 一二三四在线观看免费中文在| 欧美日韩黄片免| 亚洲精品一区av在线观看| 国产精品香港三级国产av潘金莲| a级片在线免费高清观看视频| 亚洲精品美女久久av网站| 日韩视频一区二区在线观看| 视频在线观看一区二区三区| 99在线视频只有这里精品首页| 成年女人毛片免费观看观看9| 制服人妻中文乱码| 麻豆一二三区av精品| 欧美 亚洲 国产 日韩一| 老汉色∧v一级毛片| 男人舔女人下体高潮全视频| 免费av毛片视频| 国产精品久久电影中文字幕| 亚洲欧美一区二区三区久久| 亚洲av五月六月丁香网| 国产无遮挡羞羞视频在线观看| 在线观看一区二区三区| 亚洲av电影在线进入| 人人妻人人澡人人看| 高清av免费在线| 免费在线观看日本一区| 亚洲va日本ⅴa欧美va伊人久久| 麻豆成人av在线观看| 亚洲欧美精品综合一区二区三区| 亚洲精品中文字幕在线视频| 亚洲美女黄片视频| 男女下面进入的视频免费午夜 | 亚洲人成77777在线视频| 男女下面插进去视频免费观看| 久久午夜亚洲精品久久| 十分钟在线观看高清视频www| www.熟女人妻精品国产| 国产1区2区3区精品| 曰老女人黄片| 成人国产一区最新在线观看| 国产又爽黄色视频| www.999成人在线观看| av在线天堂中文字幕 | 中文字幕色久视频| av天堂久久9| 黑人操中国人逼视频| 国产精品亚洲一级av第二区| 日韩免费av在线播放| 久久精品国产亚洲av香蕉五月| 一二三四社区在线视频社区8| 男女之事视频高清在线观看| 香蕉国产在线看| 高清在线国产一区| 中文字幕av电影在线播放| 欧美日韩av久久| 好男人电影高清在线观看| 国产av一区二区精品久久| 88av欧美| cao死你这个sao货| 在线观看免费午夜福利视频| 狂野欧美激情性xxxx| 精品国产乱子伦一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 久热这里只有精品99| 免费高清视频大片| 夜夜爽天天搞| 日本vs欧美在线观看视频| 久久午夜综合久久蜜桃| 欧美性长视频在线观看| 伊人久久大香线蕉亚洲五| 日韩 欧美 亚洲 中文字幕| 亚洲熟妇中文字幕五十中出 | 日日摸夜夜添夜夜添小说| a级毛片黄视频| 日本五十路高清| 岛国视频午夜一区免费看| 99国产精品一区二区蜜桃av| 精品熟女少妇八av免费久了| 亚洲精品国产色婷婷电影| 在线观看舔阴道视频| 亚洲成人久久性| 国产av一区二区精品久久| 国产精品自产拍在线观看55亚洲| 青草久久国产| 亚洲avbb在线观看| 亚洲专区字幕在线| 悠悠久久av| 国产一卡二卡三卡精品| 天堂中文最新版在线下载| 黄色片一级片一级黄色片| 国产97色在线日韩免费| 亚洲中文av在线| 十分钟在线观看高清视频www| 国产精品一区二区免费欧美| 亚洲欧美激情在线| 精品国产亚洲在线| 国产av在哪里看| 日韩三级视频一区二区三区| 久久精品亚洲av国产电影网| 午夜久久久在线观看| 国产精品久久久久成人av| 999久久久国产精品视频| 亚洲精品美女久久av网站| 成人手机av| 久久午夜综合久久蜜桃| 亚洲精品一卡2卡三卡4卡5卡| 成人三级黄色视频| 香蕉丝袜av| 日韩一卡2卡3卡4卡2021年| 日日摸夜夜添夜夜添小说| 色哟哟哟哟哟哟| 精品乱码久久久久久99久播| 一级片免费观看大全| av网站在线播放免费| 国产成+人综合+亚洲专区| 久久久久亚洲av毛片大全| 色综合站精品国产| 午夜精品久久久久久毛片777| 一区二区三区国产精品乱码| 国产欧美日韩一区二区三区在线| 亚洲av美国av| 最近最新免费中文字幕在线| 久久久久国产一级毛片高清牌| 在线观看免费高清a一片| 亚洲欧美激情在线| 中文字幕另类日韩欧美亚洲嫩草| 精品欧美一区二区三区在线| 99国产精品一区二区三区| 日韩中文字幕欧美一区二区| 丰满的人妻完整版| 电影成人av| 国产精品久久电影中文字幕| 欧美不卡视频在线免费观看 | 波多野结衣高清无吗| 亚洲久久久国产精品| 国产成人影院久久av| 两个人看的免费小视频| 麻豆成人av在线观看| 久久亚洲精品不卡| 一级片免费观看大全| 国产激情久久老熟女| 老司机在亚洲福利影院| 久久精品国产亚洲av香蕉五月| 大型av网站在线播放| 亚洲国产中文字幕在线视频| 欧美日韩精品网址| 美女午夜性视频免费| 日日干狠狠操夜夜爽| 老司机午夜福利在线观看视频| 欧美国产精品va在线观看不卡| 村上凉子中文字幕在线| 国产成人精品久久二区二区91| 国产精品久久电影中文字幕| 97人妻天天添夜夜摸| 在线观看一区二区三区| 母亲3免费完整高清在线观看| 国产亚洲欧美精品永久| 国产伦一二天堂av在线观看| 免费在线观看影片大全网站| 亚洲熟妇熟女久久| 在线观看免费午夜福利视频| 精品高清国产在线一区| 久久久久久人人人人人| 国产精品九九99| 国产精品秋霞免费鲁丝片| 国产精品电影一区二区三区| 一区二区三区激情视频| 88av欧美| 在线观看日韩欧美| 久久人妻av系列| 亚洲中文字幕日韩| 长腿黑丝高跟| 99热国产这里只有精品6| 国产成人精品久久二区二区免费| 日韩欧美国产一区二区入口| 国产av精品麻豆| 精品午夜福利视频在线观看一区| 欧美激情久久久久久爽电影 | 国产三级在线视频| 天堂中文最新版在线下载| 一级片'在线观看视频| 色哟哟哟哟哟哟| 欧美黑人欧美精品刺激| 69精品国产乱码久久久| 黑人操中国人逼视频| 精品一区二区三卡| 国产精品 国内视频| 亚洲欧美精品综合久久99| 老熟妇乱子伦视频在线观看| 日韩欧美一区视频在线观看| 一边摸一边抽搐一进一小说| 黄色a级毛片大全视频| 黄色 视频免费看| 成人免费观看视频高清| 国产精品美女特级片免费视频播放器 | 国产精品98久久久久久宅男小说| 久久天堂一区二区三区四区| 在线观看午夜福利视频| 亚洲情色 制服丝袜| 久久人人97超碰香蕉20202| 少妇裸体淫交视频免费看高清 | 99精国产麻豆久久婷婷| 中文字幕色久视频| 亚洲精品成人av观看孕妇| 国产黄a三级三级三级人| 美女 人体艺术 gogo| 国产伦一二天堂av在线观看| 在线观看一区二区三区激情| 一级,二级,三级黄色视频| 怎么达到女性高潮| 最好的美女福利视频网| 人成视频在线观看免费观看| 久久人人爽av亚洲精品天堂| 亚洲 国产 在线| 最近最新中文字幕大全免费视频| 久久人人爽av亚洲精品天堂| 亚洲全国av大片| 免费高清在线观看日韩| 成人亚洲精品av一区二区 | 麻豆av在线久日| 可以在线观看毛片的网站| 国产av在哪里看| 高清黄色对白视频在线免费看| 亚洲在线自拍视频| 欧美+亚洲+日韩+国产| 亚洲国产精品一区二区三区在线| 亚洲欧美激情综合另类| 免费观看精品视频网站| 免费在线观看影片大全网站| 日韩成人在线观看一区二区三区| 精品福利永久在线观看| xxx96com| 久久欧美精品欧美久久欧美| 91av网站免费观看| 正在播放国产对白刺激| 亚洲成人免费电影在线观看| 女生性感内裤真人,穿戴方法视频| 十分钟在线观看高清视频www| 777久久人妻少妇嫩草av网站| 亚洲成人国产一区在线观看| 别揉我奶头~嗯~啊~动态视频| 91大片在线观看| 国产成+人综合+亚洲专区| 国产av一区二区精品久久| tocl精华| 好看av亚洲va欧美ⅴa在| 国产av一区二区精品久久| 日韩有码中文字幕| 亚洲专区字幕在线| 美女高潮喷水抽搐中文字幕| 免费在线观看黄色视频的| 超碰成人久久| 99热只有精品国产| 可以免费在线观看a视频的电影网站| 亚洲精品一卡2卡三卡4卡5卡| 成年人免费黄色播放视频| 国内久久婷婷六月综合欲色啪| 精品电影一区二区在线| 免费人成视频x8x8入口观看| 一级毛片女人18水好多| 国产野战对白在线观看| 18美女黄网站色大片免费观看| 久久久久久久久中文| 久久精品国产亚洲av香蕉五月| 日本一区二区免费在线视频| 亚洲成人免费电影在线观看| 夜夜爽天天搞| 9热在线视频观看99| 成人亚洲精品一区在线观看| 成人亚洲精品av一区二区 | 99riav亚洲国产免费| 国产熟女xx| 国产成年人精品一区二区 | av中文乱码字幕在线| 青草久久国产| 色老头精品视频在线观看| 日本黄色日本黄色录像| 性欧美人与动物交配| 亚洲国产欧美日韩在线播放| 最近最新中文字幕大全免费视频| 亚洲 欧美一区二区三区| 一区二区日韩欧美中文字幕| 久久久精品国产亚洲av高清涩受| 国产精品亚洲一级av第二区| 久久人妻福利社区极品人妻图片| 国产在线精品亚洲第一网站| 亚洲精品一区av在线观看| 欧美精品一区二区免费开放| 老司机亚洲免费影院| 天堂√8在线中文| 成人18禁在线播放| 亚洲精品一区av在线观看| 成人黄色视频免费在线看| a级毛片黄视频| 亚洲人成77777在线视频| 久久人人爽av亚洲精品天堂| 一级a爱片免费观看的视频| 国产精品美女特级片免费视频播放器 | 国产野战对白在线观看| 嫁个100分男人电影在线观看| 欧美国产精品va在线观看不卡| 琪琪午夜伦伦电影理论片6080| 国产人伦9x9x在线观看| 国产在线观看jvid| 女警被强在线播放| 热re99久久精品国产66热6| 久久久久久久精品吃奶| 久久精品国产综合久久久| 日韩欧美三级三区| 国产片内射在线| 国产一区在线观看成人免费| 国产成人av教育| 亚洲中文字幕日韩| 在线看a的网站| 看黄色毛片网站| 国产精品一区二区三区四区久久 | 久久精品亚洲精品国产色婷小说| 亚洲男人天堂网一区| 欧洲精品卡2卡3卡4卡5卡区| 波多野结衣高清无吗| 国产精品偷伦视频观看了| 国产乱人伦免费视频| 久久人妻熟女aⅴ| 精品卡一卡二卡四卡免费| 亚洲精品美女久久久久99蜜臀| 国产亚洲欧美精品永久| 午夜免费成人在线视频| 久9热在线精品视频| 国产亚洲av高清不卡| 精品福利永久在线观看| 精品久久久精品久久久| 久久久国产精品麻豆| 精品国产乱子伦一区二区三区| 久久亚洲精品不卡| 91麻豆av在线| 日本五十路高清| 日本一区二区免费在线视频| 日韩中文字幕欧美一区二区| av超薄肉色丝袜交足视频| 欧美日韩瑟瑟在线播放| 国产一区二区三区在线臀色熟女 | 婷婷六月久久综合丁香| 久久久久国产一级毛片高清牌| 亚洲精品一区av在线观看| 免费在线观看黄色视频的| 精品国产亚洲在线| 这个男人来自地球电影免费观看| 国产精品1区2区在线观看.| 性色av乱码一区二区三区2| 国产伦一二天堂av在线观看| 午夜福利在线免费观看网站| 日日爽夜夜爽网站| 亚洲成av片中文字幕在线观看| 黑人猛操日本美女一级片| 国产成人系列免费观看| 最新在线观看一区二区三区| 日韩免费av在线播放| 桃红色精品国产亚洲av| 精品少妇一区二区三区视频日本电影| 亚洲七黄色美女视频| 亚洲自偷自拍图片 自拍| 久久中文字幕人妻熟女| 亚洲欧美一区二区三区久久| 90打野战视频偷拍视频| 中文字幕高清在线视频| 日韩三级视频一区二区三区| 在线观看免费高清a一片| 国产精品一区二区三区四区久久 | 999久久久精品免费观看国产| 国产成人影院久久av| 欧美成人午夜精品| av超薄肉色丝袜交足视频| 97人妻天天添夜夜摸| 99国产精品一区二区蜜桃av| 女性被躁到高潮视频| 国产精品av久久久久免费| 欧美日韩国产mv在线观看视频| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品国产av在线观看| 中文字幕最新亚洲高清| 欧美老熟妇乱子伦牲交| 国产精品一区二区在线不卡| 亚洲视频免费观看视频| 久久国产精品人妻蜜桃| 男女床上黄色一级片免费看| 看免费av毛片| 国产一区二区激情短视频| 精品国内亚洲2022精品成人| 国产一区二区三区综合在线观看| 精品国产乱子伦一区二区三区| 长腿黑丝高跟| 日日爽夜夜爽网站| 身体一侧抽搐| 色精品久久人妻99蜜桃| 91九色精品人成在线观看| 欧美激情高清一区二区三区| 精品久久久精品久久久| 免费女性裸体啪啪无遮挡网站| 99国产精品一区二区三区| 性色av乱码一区二区三区2| 757午夜福利合集在线观看| 亚洲国产精品一区二区三区在线| 757午夜福利合集在线观看| 夜夜爽天天搞| 午夜两性在线视频| 亚洲色图 男人天堂 中文字幕| 国产无遮挡羞羞视频在线观看| 别揉我奶头~嗯~啊~动态视频| 老汉色∧v一级毛片| 99香蕉大伊视频| 久久欧美精品欧美久久欧美| 国产麻豆69| 亚洲少妇的诱惑av| 可以免费在线观看a视频的电影网站| 国产又爽黄色视频| 国产成人啪精品午夜网站| 国产免费av片在线观看野外av| 国产高清国产精品国产三级| 欧美午夜高清在线| 最近最新中文字幕大全电影3 | 国产黄色免费在线视频|