• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Constructing a coplanar heterojunction through enhanced π-π conjugation in g-C3N4 for efficient solar-driven water splitting

    2022-06-20 08:00:12ZihoChenBenChongNthnWellsGuidongYngLinzhouWng
    Chinese Chemical Letters 2022年5期

    Ziho Chen, Ben Chong, Nthn Wells, Guidong Yng,*, Linzhou Wng

    a XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China

    b School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, QLD 4072, Australia

    Keywords:g-C3N4 Charge separation Coplanar heterojunction Enhanced π-π conjugation Photocatalysis

    ABSTRACT Adjusting the electronic structure of graphitic carbon nitride (g-C3N4) photocatalyst through π-π conjugation is an effective method to achieve efficient photogenerated carrier separation.One key challenge of π-π conjugation control is to tune the degree of such conjugation without destroying the g-C3N4 structure.Herein we report a conceptual design that achieves a coplanar heterojunction by enhancing the π-π conjugation via the doping of crystalline g-C3N4 using a conjugated double bond ring molecule,1,3,5-benzenetriol, during calcination process.The selection of the dopant enables the facile creation of a unique coplanar heterojunction which not only retains the pristine network structure of g-C3N4,but remarkably promotes separation and transfer of photogenerated carriers through the enhanced πconjugated endogenous electric field.As a result, the new g-C3N4 photocatalyst efficiently photocatalytically produces hydrogen from water under visible light irradiation with a high H2 production rate up to 94.94 μmol/h, and a notable external quantum efficiency of 16.4% at 420 nm.

    Utilization of semiconductor photocatalytic materials for solar driven environmental and energy applications such as splitting of water to produce hydrogen has attracted increasing attention [1–3].In recent years, organic semiconductor graphitic carbon nitride(g-C3N4), comprised of polymerized triazine rings, has shown its promise for use as a metal free, highly photoactive, chemically and biologically inert photocatalyst, particularly for application as a hydrogen evolution reaction (HER) catalyst [4–9].A great deal of work has been done in order to enhance the photocatalytic activity of g-C3N4by element doping [10,11] or heterojunction construction[12–14], and more recently, modification of the electronic structure by introducing different aromatic molecules to adjust theπ-πconjugation in g-C3N4[15,16].For organic semiconductors, since the semiconductor characteristics are determined by the delocalizedπsystem, adjusting the degree of delocalization of itsπsystem is an effective means to improve the semiconductor properties of g-C3N4[17].In particular, theπdelocalization causes a narrowing of the band gap, thereby increasing the amount of light to be harvested by the semiconductor, improving visible-light driven photocatalytic performance.However, due to the weak driving force in the semiconductor plane, only those photogenerated charge carriers around the solid/liquid interface can be separated, and it is still inevitable that a large percentage of the charge carriers in the bulk phase will recombine, leading to a limited increase in photocatalytic efficiency[18].The high electronegativity of nitrogen atoms in a triazine ring results in an asymmetric redistribution of electrons among the nitrogen atoms and the carbon atoms, which leads to the increase ofπ-deficiency in the conjugated system, thereby reducing the availability of electrons [19,20].One solution to this problem is to introduce benzene rings into the polymer structure, which can effectively improve the degree ofπelectron delocalization, leading to improved conductivity, electron availability and light harvesting ability [21].Additionally, there is a potential difference between the pristine g-C3N4domains and benzene doped planar regions, which may lead to an endogenous coplanar heterojunction,enhancing the directional transportation of photogenerated carriers, therefore reducing recombination [22–26].However, one challenge is the possible damage to the pristine network structure of g-C3N4upon introducing the benzene ring into the structure [23,27],which could lead to incomplete polymerization of the -NH2group if the dopant precursors were selected without detailed consideration [28].The unreacted -NH2groups, often defined as structure defects, act as charge trap sites in photocatalytic reactions, resulting in low photocatalytic activity [29–31].To improve the charge separation and photocatalytic property of g-C3N4, it is of urgent need to design an efficient coplanar heterojunction by deliberately selecting the dopants without the cost of structural damage in the materials.

    Herein, we report a new class of g-C3N4with remarkably improvedπ-πconjugation by rationally introducing 1,3,5-benzenetriol as a copolymer in the calcination of urea, for use as a H2evolution photocatalyst.The benzene ring-doped coplanar heterojunction not only retains the original structure of g-C3N4but also provides an excellent driving force for facilitating charge transportation through the enhancedπ-conjugated endogenous electric field.The new photocatalyst was synthesized by a thermal copolymerization strategy, shown in Fig.1a, and labeled as BCN-xwherexindicates the mol% value of 1,3,5-benzenetriol.Pure g-C3N4was obtained by the same synthesis method, wherex= 0,labelled CN.In the process of (1), urea is decomposed into ammonia and isocyanic acid at a high temperature, and then isocyanic acid polymerized into melamine [32,33].During the process of (2),the red colored structure represents the benzene ring.At the reaction process of (2), the hydroxyl groups of 1,3,5-benzenetriol react with ammonia, while urea further reacts on the amino groups to form a cyclized in-plane heterogeneous unit [34].Finally, these heterostructure units are further polymerized with melamine at a high temperature to form a planar heterojunction structure.Figs.1b and c and Fig.S1 (Supporting information) show typical Transmission Electron Microscope (TEM) images of CN and BCN-0.03% samples, indicating no change in the morphology of g-C3N4when 1,3,5-benzenetriol is introduced.According to the results of energy dispersive spectrometer (EDS) element analysis (Fig.S2 and Table S1 in Supporting information) and organic element analysis(Table S2 in Supporting information), with the addition of 1,3,5-benzenetriol, the atomic C/N ratio was found to increase in the material, indicating successful inclusion of the benzene ring [35].Table S3 (Supporting information) shows the pore structure parameters and specific surface area of the CN and BCN-xsamples,which implies that the pore size showed a downward trend, while the pore volume first increased and then decreased with the addition of more 1,3,5-benzenetriol.This can be attributed to the relative inhibitory effect of the benzene ring on the polymerization of the triazine ring, which causes the distortion of the g-C3N4plane structure [22].Appropriate distortion is conducive to the increase of pores, but severe distortion causes the instability of the g-C3N4structure, causing some large pores to collapse[22,35].Among all the samples, the BCN-0.03% sample shows the largest specific surface area, which means that the photocatalyst exposes more active sites and the shorter electron diffusion path,thus improving the photocatalytic activity.In Fig.1d and Fig.S3(Supporting information), it can be seen that the introduction of a small amount of benzene ring structure greatly increases the photocatalytic hydrogen evolution performance of g-C3N4material.The BCN-0.03% sample showed the highest hydrogen evolution performance, reaching 94.94 μmol/h with the external quantum efficiency (EQE) of 16.4% at 420 nm (Fig.1e), a 6.6 fold increase over that of the undoped CN.Moreover, after 16 h of photocatalytic reaction, the hydrogen evolution performance of the BCN-0.03% and the CN did not show apparent change, demonstrating the high stability of the samples (Fig.S4 in Supporting information).

    Fig.1.(a) Schematic diagram showing the introduction of the benzene ring structure into g-C3N4.Typical TEM images of (b) CN and (c) BCN-0.03%.(d) Photocatalytic H2 generation of all samples under visible light irradiation (λ >420 nm).(e) Wavelength-dependent EQE for photocatalytic H2 evolution over BCN-0.03%.For photocatalytic H2 generation testing, 10 mg of photocatalyst was added in aqueous solution with 10% lactic acid as the sacrificial reagent.

    Figs.S5 and S6 (Supporting information) show the X-ray diffraction (XRD) patterns and Fourier transform infrared spectroscopy(FT-IR) of CN and BCN-xsamples.The characteristic peaks in the XRD and FT-IR spectra correspond to the classic peaks of g-C3N4,and the intensity of the XRD peaks remained the same, indicating that the basic g-C3N4structure was preserved in the samples, preserving the crystallinity after introducing the benzene ring structure.To further elucidate the changes in the chemical structure of g-C3N4caused by introducing the benzene ring, we also performed X-ray photoelectron spectroscopy (XPS) analysis (Fig.S7 in Supporting information) and solid-state13C nuclear magnetic resonance (NMR) analysis.Fig.S8 (Supporting information) displays the N 1s XPS spectra and constituent peaks of CN and BCN-0.03%sample [36].As shown in the synthesis scheme, the introduction of the benzene ring structure replaced the position of a triazine ring unit in the tri-s-triazine ring, thereby changing the C/N ratio in the samples and also the ratio of nitrogen in different chemical environments (Table S4 in Supporting information) [27,37].Fig.2a shows the13C NMR spectra of CN, BCN-0.03% and BCN-0.12% sample.The spectra show two main resonance peaks at 164.2 and 156.1 ppm, corresponding to C(1) atoms and C(2) atoms in tri-striazine rings, respectively [34].It should be noted that the BCN-0.12% spectrum exhibits an additional weak and broad peak at 132.1 ppm, which is ascribed to the emergence of aromatic rings[37], while the peak of BCN-0.03% did not appear due to the low doping concentration.The XPS and NMR results are both consistent with the above conclusion, which further proves that the benzene ring structure was successfully introduced into the network structure of g-C3N4, and subsequently constructed an enhancedππconjugation structure.

    Fig.2.(a) Solid-state 13C NMR spectra of the CN and BCN-0.12% samples.(b) Room-temperature EPR spectra of all samples.(c) PL spectra of all samples.(d) Transient state photoluminescence spectra of CN and BCN-0.03% samples.

    Fig.S9a (Supporting information) shows the ultraviolet visible(UV-vis) diffuse reflectance spectra of CN and BCN-xsamples.As the amount of benzene ring increases, the maximum absorption edge was significantly broadened, which indicated that introduction of the benzene ring enlarges the delocalization range of the electrons in g-C3N4.Furthermore, the external quantum efficiency(Fig.1e), measured at 420, 450, 500, 550 and 600 nm, matched well with the absorption value of the sample.Tauc plots were generated to estimate the optical band gap of the prepared samples[38,39], shown in Fig.S9b (Supporting information).Electron paramagnetic resonance (EPR) tests were performed, shown in Fig.2b,indicating the degree of electron delocalization of the samples.The spectra exhibit a single peak with a g-value of 2.003 [40], which was attributed to the unpaired electrons of the g-C3N4networks withinπ-bonded clusters.Compared with CN, BCN-xsamples have a stronger EPR signal, indicating that the incorporation of benzene ring significantly extended theπ-conjugated system and enhanced the electron delocalization, which reduced the resistance of electron transportation, leading to the observed increase in photocatalytic activity.

    It is of importance to understand the influence of the newππconjugation structure on the electronic separation and transportation properties of the g-C3N4.Steady state photoluminescence(PL) spectra (Fig.2c) showed a significant increase in PL intensity for low dopant concentration samples before decreasing as the amount of dopant increased, with all samples showing a trend of increasing red-shift as the degree ofπ-πconjugation increases[41,42].The increase in PL intensity was attributed to the extension of theπ-conjugation system in the g-C3N4, enhancing theπelectron delocalization, and the observed subsequent decrease is explained by the benzene ring dopant possibly acting as a chargetrapping site, prohibiting radiative recombination, which in turn greatly enhances the separation ability of photogenerated carriers[43].In the PL spectra, it can be observed that there were two PL emission centers of CN sample, one emission center was located at 435 nm, and the other emission center was located at 468 nm.The emission peak located at 435 nm was caused by the transition between lone pair (LP) state toδ*antibonding state, while the emission peak at 468 nm was caused by the transition between LP state toπ*antibonding state [44,45].As theπ-conjugation degree of the BCN-xsample increased, the delocalization of electrons will increase, and theπ*antibonding state and theδ*antibonding state will overlap more strongly.Hence, the probability for the excited electrons located atδ*antibonding state relaxing to theπ*antibonding state was increasing.As a result, theπ*→LP emission gradually dominated the carbon nitride PL emission as theπconjugation degree of the BCN-xsample increases.CN and BCN-0.03% samples were selected for time-resolved fluorescence decay spectroscopy (Fig.2d and Table S5 in Supporting information), and showed that the average lifetime of 12.0 ns in CN increased to 15.6 ns in BCN-0.03%, indicating the charge carriers of the BCN-0.03% sample have a longer lifetime.

    This remarkable ability to separate photogenerated carriers is further confirmed by electrochemical testing.Transient photocurrent and electrochemical impedance spectroscopy tests were performed on BCN-0.03% and CN samples (Fig.3a), which showed that the photocurrent obtained in the electrode of BCN-0.03% is higher than that obtained in CN, indicating an enhanced interface electron transfer resulting from benzene ring doping.The electrochemical impedance spectroscopy (Fig.3b) shows a smaller semicircle Nyquist plot, demonstrating the lower charge transfer resistance of the BCN-0.03%.This result proves that the enhancedπ-πconjugation structure can significantly reduce the migration resistance of photogenerated carriers, thereby improving the lifetime of the carriers.In order to investigate the effect of benzene ring doping on the band structure of g-C3N4, the Mott-Schottky test (Figs.3c and d) and ultraviolet photoelectron spectroscopy (UPS) test (Fig.S10 in Supporting information) was performed on CN and BCN-0.03%.According to Mott-Schottky test, it can be determined that the conduction band edges of CN and BCN-0.03% are -1.30 V and -1.04 Vvs.NHE (pH 7), respectively.

    Fig.3.(a) Photocurrent density curves of CN and BCN-0.03%.(b) EIS Nyquist plots of CN and BCN-0.03% electrodes.Mot-Schottky plots of (c) CN and (d) BCN-0.03%.

    To better understand the relationship between benzene ring doping and band gap in depth, the theoretical calculations of energy and electronic structure were performed using Viennaabinitiosimulation package (VASP).The results model used in the calculation is shown in Schemes 1a and b.From the results of structure optimization, there is no distortion of the g-C3N4network plane in BCN structure, which is consistent with the conclusion that the crystallinity was not altered after introduction of the benzene ring, and no defects were introduced as a result of the doping.It can be clearly seen (Fig.4a) that the electron densities of states (DOS) of CN and BCN-xboth exhibit semiconductor properties.To further clarify the effect of the benzene ring on the band structure, the DOS diagram is divided into contributions ofπandδelectron orbitals.The band gap of BCN-xis significantly reduced due to theπorbital contribution at the conduction band, corroborating the results of the Mot-Schottky plots.Based on the results of the Mot-Schottky and UV-vis diffuse reflectance, a schematic diagram of the band gap structure of CN and BCN-0.03% is shown in Fig.4b.The introduction of the benzene ring in the tri-s-triazine units will inevitably affect the electronic localization and electrostatic potential of the g-C3N4network, thereby affecting the directional transportation of electrons.Fig.S11 (Supporting information) and Figs.4c and d show the calculation results of electron localization function (ELF) and electrostatic potentials of CN and BCN-xsamples, respectively.According to the calculation results of the electrostatic potential of CN and BCN-x, the work functions are 4.15 eV and 3.94 eV, respectively, suggesting that the benzene ring will increase the electrostatic potential of the tri-s-triazine units.The electrons, therefore, would spontaneously transfer through the benzene ring doped tri-s-triazine units to the undoped units until their Fermi levels are the same, resulting in a net loss of electron density, and a concomitant increase in electron density in the undoped units, thus generating an endogenous directional electric field in the planar network structure.

    Scheme 1.Structure of (a) g-C3N4 and (b) benzene doped g-C3N4 (equivalent substitution sites circled by dashed line).(c) Schematic diagram of directional transportation of photogenerated carriers on the BCN-x plane.

    Fig.4.(a) DOSs for CN and BCN-x.(b) Band gap structure diagram for g-C3N4 and BCN-0.03%.Electrostatic potentials of (c) CN surface and (d) BCN surface.

    According to the above results, Scheme 1c shows the electric field inside the CN and BCN-xmaterial.In Scheme 1c, the color of the electron cloud outside the g-C3N4structure indicates the degree of delocalization, and the blue arrow indicates the direction of the electric field in the planar structure.Since the pristine g-C3N4has the same tri-s-triazine units, there is no such endogenous directional electric field, thus no driving force for photogenerated electrons, which makes it difficult to migrate to the photocatalyst surface thereby recombining inside the bulk material.In contrast, in the structure of BCN-x, driven by the electric field, photogenerated electrons move to the benzene ring doped tri-s-triazine units (indicated by green arrow in Scheme 1c), which act as charge-trapping sites, limiting the recombination of the photogenerated charge carriers, consistent with the PL results.On the other side, photogenerated holes migrate to the opposite direction under visible light irradiation driven by the endogenous electric field (red arrow in Fig.1c), thereby significantly reducing carrier recombination, allowing more charges to participate in the hydrogen evolution reaction, and greatly improving the activity.

    In summary, a unique coplanar heterostructure in theπconjugated g-C3N4photocatalysts was successfully generated by selective doping the g-C3N4during a simple calcination process.The dopant, 1,3,5-benzenetriol, can easily participate in the formation of a tri-s-triazine unit and ensure the integrity of the pristine network structure of carbon nitride, thereby forming a coplanar heterojunction via enhancedπ-πconjugation.This new structure can significantly expand the light absorption range of g-C3N4and increase the separation and transportation rate of photogenerated carriers.The photoelectrochemical characterization and theoretical calculation results show that the decrease of the BCN-xband gap is mainly due to the contribution of theπelectron orbit.In addition, the transportation of photogenerated carriers was further calculated by the work function, indicating that photogenerated electrons transfer to the benzene ring doped units and photogenerated holes transfers to the undoped units, thereby significantly reducing charge carrier recombination.This finding proposes a new design principle which can be applied to other two-dimensional organic photocatalysts to achieve a higher solar energy conversion efficiency

    Declaration of competing interests

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China (Nos.U1862105, 22078256), Natural Science Basic Research Plan in Shaanxi Province of China(Nos.2017JZ001, 2018KJXX-008), Fundamental Research Funds for the Central Universities (No.cxtd2017004) and K.C.Wong Education Foundation, Hong Kong, China, and financial support from Australian Research Council are appreciated.

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.08.118.

    国产精品 欧美亚洲| 色94色欧美一区二区| 亚洲成国产人片在线观看| 国产视频一区二区在线看| 香蕉丝袜av| 欧美精品啪啪一区二区三区| 黄频高清免费视频| 欧美 日韩 精品 国产| 精品国产一区二区久久| 天天影视国产精品| 午夜成年电影在线免费观看| 18禁美女被吸乳视频| 国产成+人综合+亚洲专区| 久久99一区二区三区| 久久久国产欧美日韩av| 不卡av一区二区三区| 免费在线观看日本一区| 亚洲一卡2卡3卡4卡5卡精品中文| 精品人妻1区二区| 男女之事视频高清在线观看| 亚洲人成伊人成综合网2020| 美女视频免费永久观看网站| 成人18禁高潮啪啪吃奶动态图| 99热国产这里只有精品6| 在线天堂中文资源库| 精品第一国产精品| 国产激情久久老熟女| cao死你这个sao货| videosex国产| 宅男免费午夜| 欧美在线黄色| 亚洲国产欧美日韩在线播放| 啦啦啦在线免费观看视频4| 亚洲天堂av无毛| 亚洲性夜色夜夜综合| 国产精品影院久久| 欧美大码av| 大型av网站在线播放| 精品一区二区三卡| 无人区码免费观看不卡 | 少妇精品久久久久久久| 99九九在线精品视频| 国产成人欧美在线观看 | 国产不卡一卡二| av免费在线观看网站| 久久国产精品人妻蜜桃| 亚洲色图 男人天堂 中文字幕| 国产欧美亚洲国产| 丁香六月天网| 欧美国产精品va在线观看不卡| 久久精品国产99精品国产亚洲性色 | 亚洲美女黄片视频| 午夜福利影视在线免费观看| 色婷婷av一区二区三区视频| 黄色视频,在线免费观看| 韩国精品一区二区三区| 中文字幕av电影在线播放| 欧美精品一区二区免费开放| 蜜桃在线观看..| 黄色成人免费大全| 一级片'在线观看视频| 肉色欧美久久久久久久蜜桃| 女人高潮潮喷娇喘18禁视频| 午夜日韩欧美国产| 日本wwww免费看| 亚洲九九香蕉| 一个人免费看片子| 国产精品久久久久久精品电影小说| 国产精品免费大片| 国产黄频视频在线观看| 亚洲熟妇熟女久久| 精品亚洲成a人片在线观看| 真人做人爱边吃奶动态| 成年人黄色毛片网站| www.999成人在线观看| 婷婷成人精品国产| 国产精品一区二区免费欧美| 欧美日韩成人在线一区二区| 欧美黄色片欧美黄色片| 亚洲五月色婷婷综合| 午夜久久久在线观看| 久久免费观看电影| 日韩欧美一区二区三区在线观看 | 夫妻午夜视频| 涩涩av久久男人的天堂| 国产欧美日韩一区二区精品| 一区二区三区激情视频| 国产av又大| 欧美 日韩 精品 国产| 一区二区av电影网| 极品教师在线免费播放| 人妻 亚洲 视频| 每晚都被弄得嗷嗷叫到高潮| 午夜91福利影院| av一本久久久久| 99久久国产精品久久久| 狠狠狠狠99中文字幕| 人妻一区二区av| av线在线观看网站| 老司机在亚洲福利影院| 成年动漫av网址| 久久亚洲精品不卡| 下体分泌物呈黄色| 亚洲精品国产色婷婷电影| 大香蕉久久成人网| 亚洲中文av在线| 国产野战对白在线观看| 国产亚洲av高清不卡| 国精品久久久久久国模美| 精品久久久久久电影网| 精品免费久久久久久久清纯 | 91字幕亚洲| 丰满人妻熟妇乱又伦精品不卡| 国产男女超爽视频在线观看| 亚洲伊人色综图| 一二三四在线观看免费中文在| 在线观看免费高清a一片| 菩萨蛮人人尽说江南好唐韦庄| 高清黄色对白视频在线免费看| 欧美激情极品国产一区二区三区| 91成人精品电影| 一级黄色大片毛片| av电影中文网址| 精品少妇久久久久久888优播| 女人精品久久久久毛片| 精品福利永久在线观看| 国产一区二区激情短视频| 午夜福利乱码中文字幕| 中文字幕制服av| 国产精品国产高清国产av | 十八禁人妻一区二区| 亚洲精品粉嫩美女一区| av视频免费观看在线观看| 国产在线一区二区三区精| 日韩人妻精品一区2区三区| 熟女少妇亚洲综合色aaa.| 嫁个100分男人电影在线观看| 天天操日日干夜夜撸| 欧美在线一区亚洲| 这个男人来自地球电影免费观看| 老鸭窝网址在线观看| 亚洲性夜色夜夜综合| 精品人妻1区二区| 在线观看66精品国产| 女性被躁到高潮视频| 国产精品一区二区免费欧美| 一区在线观看完整版| 69av精品久久久久久 | 性色av乱码一区二区三区2| 搡老岳熟女国产| 亚洲精品在线美女| 国产精品熟女久久久久浪| 脱女人内裤的视频| 视频区图区小说| 精品福利永久在线观看| 国产成人精品在线电影| 97在线人人人人妻| 成年版毛片免费区| 在线观看免费高清a一片| 欧美大码av| 熟女人妻精品中文字幕| 亚洲欧美日韩卡通动漫| 国产亚洲欧美在线一区二区| 美女大奶头视频| 成年版毛片免费区| 一本综合久久免费| 在线播放国产精品三级| 成人性生交大片免费视频hd| 最近最新免费中文字幕在线| 日本免费a在线| 国产欧美日韩精品亚洲av| 免费看a级黄色片| 婷婷亚洲欧美| 亚洲国产日韩欧美精品在线观看 | 久久精品综合一区二区三区| 国产一区在线观看成人免费| 亚洲精品一区av在线观看| 麻豆成人av在线观看| 成人精品一区二区免费| 国产激情久久老熟女| 又爽又黄无遮挡网站| 国产成人av教育| 欧美xxxx黑人xx丫x性爽| а√天堂www在线а√下载| 欧美日韩中文字幕国产精品一区二区三区| 国产真人三级小视频在线观看| 99久久久亚洲精品蜜臀av| 一级黄色大片毛片| 三级男女做爰猛烈吃奶摸视频| 国产成+人综合+亚洲专区| 国产亚洲精品综合一区在线观看| 国产毛片a区久久久久| 手机成人av网站| www日本在线高清视频| 午夜日韩欧美国产| 级片在线观看| 国产成人啪精品午夜网站| 日本撒尿小便嘘嘘汇集6| 夜夜爽天天搞| 欧美日韩中文字幕国产精品一区二区三区| 日韩 欧美 亚洲 中文字幕| 18禁观看日本| 亚洲成人免费电影在线观看| 搞女人的毛片| 中文字幕av在线有码专区| 一级毛片女人18水好多| 久久久久久久久免费视频了| 久久伊人香网站| 欧美日韩亚洲国产一区二区在线观看| 一本一本综合久久| 男人的好看免费观看在线视频| 久久天躁狠狠躁夜夜2o2o| 国产伦人伦偷精品视频| 国产精品自产拍在线观看55亚洲| 久久精品国产清高在天天线| www国产在线视频色| 亚洲成a人片在线一区二区| 亚洲人与动物交配视频| 午夜精品在线福利| 男插女下体视频免费在线播放| 黄频高清免费视频| 狠狠狠狠99中文字幕| 最近视频中文字幕2019在线8| 欧美性猛交黑人性爽| 亚洲熟妇中文字幕五十中出| 色综合亚洲欧美另类图片| 国产精品久久久久久精品电影| 国产欧美日韩一区二区三| 欧美黑人欧美精品刺激| 色噜噜av男人的天堂激情| 一a级毛片在线观看| 国产蜜桃级精品一区二区三区| 男女做爰动态图高潮gif福利片| 久久精品aⅴ一区二区三区四区| 国产精品久久久人人做人人爽| 男女下面进入的视频免费午夜| 日本 av在线| 美女黄网站色视频| 欧美黄色片欧美黄色片| 老汉色av国产亚洲站长工具| 淫秽高清视频在线观看| 99国产综合亚洲精品| 在线观看美女被高潮喷水网站 | 国产一区二区激情短视频| 长腿黑丝高跟| 综合色av麻豆| 精品国产乱码久久久久久男人| 观看美女的网站| 亚洲aⅴ乱码一区二区在线播放| 成人无遮挡网站| a级毛片在线看网站| 久久性视频一级片| 男人的好看免费观看在线视频| 欧美日韩一级在线毛片| 久久久久性生活片| xxxwww97欧美| 亚洲精品乱码久久久v下载方式 | 成人av在线播放网站| 国内精品久久久久精免费| 亚洲熟妇中文字幕五十中出| 亚洲国产欧洲综合997久久,| 欧美一区二区国产精品久久精品| a级毛片a级免费在线| 精品国产乱码久久久久久男人| 色播亚洲综合网| 十八禁人妻一区二区| 黄色片一级片一级黄色片| 成年免费大片在线观看| 天天躁日日操中文字幕| 久久中文字幕一级| а√天堂www在线а√下载| 国产黄a三级三级三级人| 国产精品,欧美在线| 男人舔奶头视频| 久久欧美精品欧美久久欧美| 色在线成人网| 他把我摸到了高潮在线观看| 国内精品一区二区在线观看| 一本一本综合久久| 成年版毛片免费区| 国产乱人伦免费视频| 国产亚洲av高清不卡| 一进一出抽搐gif免费好疼| 老司机午夜十八禁免费视频| 成年免费大片在线观看| 首页视频小说图片口味搜索| 欧美大码av| 成人精品一区二区免费| 国产精品乱码一区二三区的特点| 亚洲午夜精品一区,二区,三区| 一区二区三区激情视频| 免费在线观看影片大全网站| 久久人人精品亚洲av| 亚洲国产精品999在线| 在线免费观看的www视频| 国产一区二区激情短视频| 亚洲欧美日韩卡通动漫| 免费看十八禁软件| 免费在线观看亚洲国产| 色尼玛亚洲综合影院| 精品久久久久久久久久免费视频| 搡老熟女国产l中国老女人| 国产黄片美女视频| 又粗又爽又猛毛片免费看| www.999成人在线观看| 男女床上黄色一级片免费看| 一个人免费在线观看电影 | 黄片大片在线免费观看| 欧美色欧美亚洲另类二区| 麻豆国产av国片精品| 一进一出抽搐gif免费好疼| 此物有八面人人有两片| 久久99热这里只有精品18| 久久久久久久午夜电影| 99久久无色码亚洲精品果冻| 国产成人一区二区三区免费视频网站| 精品午夜福利视频在线观看一区| 午夜精品一区二区三区免费看| 国内精品一区二区在线观看| 1000部很黄的大片| 亚洲国产看品久久| 色综合站精品国产| 色精品久久人妻99蜜桃| 日本黄色片子视频| 怎么达到女性高潮| 婷婷精品国产亚洲av| 国产三级中文精品| 亚洲片人在线观看| 亚洲性夜色夜夜综合| 成人无遮挡网站| 非洲黑人性xxxx精品又粗又长| 免费在线观看日本一区| 两个人的视频大全免费| 九九热线精品视视频播放| 一进一出抽搐动态| 成人精品一区二区免费| 亚洲va日本ⅴa欧美va伊人久久| 白带黄色成豆腐渣| ponron亚洲| 日韩欧美一区二区三区在线观看| 久久精品国产亚洲av香蕉五月| 久久久成人免费电影| 国产午夜精品久久久久久| 日本a在线网址| 中文字幕熟女人妻在线| 在线观看午夜福利视频| 国产69精品久久久久777片 | 久久精品91蜜桃| 99re在线观看精品视频| 琪琪午夜伦伦电影理论片6080| 中亚洲国语对白在线视频| 国产视频内射| 脱女人内裤的视频| 一二三四在线观看免费中文在| 亚洲乱码一区二区免费版| АⅤ资源中文在线天堂| 嫩草影院入口| 国产97色在线日韩免费| 亚洲 欧美一区二区三区| 国产精品一区二区精品视频观看| 99国产极品粉嫩在线观看| 中文字幕人妻丝袜一区二区| 国产精品 国内视频| 日本黄色片子视频| 国产欧美日韩精品一区二区| 国产亚洲精品久久久久久毛片| 亚洲成人中文字幕在线播放| 国产亚洲欧美在线一区二区| 午夜福利视频1000在线观看| 国产麻豆成人av免费视频| 亚洲av成人精品一区久久| h日本视频在线播放| 免费看a级黄色片| 女生性感内裤真人,穿戴方法视频| 日韩高清综合在线| 校园春色视频在线观看| 成人午夜高清在线视频| 亚洲人成伊人成综合网2020| 国内精品一区二区在线观看| 亚洲熟妇熟女久久| 成熟少妇高潮喷水视频| 免费一级毛片在线播放高清视频| 久久国产乱子伦精品免费另类| 长腿黑丝高跟| 熟女少妇亚洲综合色aaa.| 亚洲精品一卡2卡三卡4卡5卡| 久久久久久大精品| 午夜福利成人在线免费观看| 两性午夜刺激爽爽歪歪视频在线观看| 日本黄色视频三级网站网址| 欧美激情久久久久久爽电影| 人人妻人人澡欧美一区二区| 欧美日韩乱码在线| 成年免费大片在线观看| 国产免费男女视频| 村上凉子中文字幕在线| 国产亚洲欧美在线一区二区| 99热6这里只有精品| 国产久久久一区二区三区| 特级一级黄色大片| 啦啦啦免费观看视频1| 欧美日韩中文字幕国产精品一区二区三区| 久久久国产成人免费| 观看免费一级毛片| 岛国在线观看网站| 九九久久精品国产亚洲av麻豆 | 国产av不卡久久| 1024手机看黄色片| 亚洲天堂国产精品一区在线| 国产毛片a区久久久久| 国产精品久久久人人做人人爽| 91av网站免费观看| 成在线人永久免费视频| x7x7x7水蜜桃| 国产探花在线观看一区二区| 午夜视频精品福利| 国产精品久久久人人做人人爽| 欧美成人性av电影在线观看| 特大巨黑吊av在线直播| 成人精品一区二区免费| 亚洲成人久久性| 国产午夜精品久久久久久| 美女cb高潮喷水在线观看 | 神马国产精品三级电影在线观看| 日韩三级视频一区二区三区| 精品一区二区三区视频在线 | www.www免费av| 老司机福利观看| 搡老熟女国产l中国老女人| 色哟哟哟哟哟哟| 琪琪午夜伦伦电影理论片6080| av女优亚洲男人天堂 | 18禁黄网站禁片免费观看直播| 琪琪午夜伦伦电影理论片6080| 国产成人aa在线观看| 精品久久久久久久人妻蜜臀av| 999精品在线视频| 久久久久久久午夜电影| 午夜激情福利司机影院| 搡老熟女国产l中国老女人| 美女大奶头视频| 观看美女的网站| 久久伊人香网站| 日韩欧美 国产精品| 香蕉av资源在线| 欧美成狂野欧美在线观看| 色老头精品视频在线观看| 国产欧美日韩一区二区三| 男插女下体视频免费在线播放| 国产激情欧美一区二区| 人人妻人人澡欧美一区二区| 日本一二三区视频观看| 欧美一级毛片孕妇| 中文亚洲av片在线观看爽| 男女床上黄色一级片免费看| 精品欧美国产一区二区三| 美女扒开内裤让男人捅视频| 99视频精品全部免费 在线 | 午夜精品久久久久久毛片777| 精品一区二区三区av网在线观看| 日本黄大片高清| 久久中文看片网| 国产成人aa在线观看| 韩国av一区二区三区四区| 亚洲美女黄片视频| 午夜福利在线观看吧| 丰满人妻熟妇乱又伦精品不卡| 日本黄色视频三级网站网址| 五月玫瑰六月丁香| 国产真实乱freesex| 美女被艹到高潮喷水动态| 大型黄色视频在线免费观看| 黄色视频,在线免费观看| 精品久久蜜臀av无| 亚洲欧美日韩东京热| 国产蜜桃级精品一区二区三区| 欧美xxxx黑人xx丫x性爽| 欧美最黄视频在线播放免费| 少妇熟女aⅴ在线视频| 美女免费视频网站| 高清毛片免费观看视频网站| 一本精品99久久精品77| 国产三级中文精品| 嫩草影院精品99| 成人三级做爰电影| 久久国产精品影院| 国产精品免费一区二区三区在线| x7x7x7水蜜桃| 亚洲av成人一区二区三| 热99在线观看视频| 欧美成狂野欧美在线观看| 久久久久久久久中文| avwww免费| 日本 欧美在线| 亚洲欧洲精品一区二区精品久久久| av天堂中文字幕网| 国产成年人精品一区二区| 又爽又黄无遮挡网站| 757午夜福利合集在线观看| 九九久久精品国产亚洲av麻豆 | 日本一二三区视频观看| 精品久久久久久久人妻蜜臀av| 男女午夜视频在线观看| 日日干狠狠操夜夜爽| 国产探花在线观看一区二区| 久久精品人妻少妇| 亚洲精品中文字幕一二三四区| 男女那种视频在线观看| 日韩欧美 国产精品| 男女视频在线观看网站免费| 精品久久久久久久久久免费视频| 美女午夜性视频免费| 又大又爽又粗| 亚洲自偷自拍图片 自拍| 亚洲国产看品久久| 在线观看日韩欧美| 国产精品乱码一区二三区的特点| 一进一出好大好爽视频| 97超级碰碰碰精品色视频在线观看| 757午夜福利合集在线观看| 国产一区二区在线av高清观看| 成人鲁丝片一二三区免费| 国内精品美女久久久久久| 国产精品自产拍在线观看55亚洲| 狂野欧美激情性xxxx| 在线a可以看的网站| 国产三级黄色录像| 色综合欧美亚洲国产小说| 久久久久久九九精品二区国产| 天天添夜夜摸| 脱女人内裤的视频| 亚洲美女黄片视频| 亚洲aⅴ乱码一区二区在线播放| 午夜久久久久精精品| 成人国产一区最新在线观看| 亚洲五月婷婷丁香| 欧美日本视频| 天堂动漫精品| 老司机午夜福利在线观看视频| ponron亚洲| 啪啪无遮挡十八禁网站| 啦啦啦观看免费观看视频高清| 久久国产乱子伦精品免费另类| 精品久久久久久久末码| 午夜日韩欧美国产| 亚洲片人在线观看| 国产精品亚洲av一区麻豆| 国产精品98久久久久久宅男小说| 久久久国产精品麻豆| 国产av一区在线观看免费| 国产男靠女视频免费网站| 色精品久久人妻99蜜桃| 99久久精品一区二区三区| 日韩欧美三级三区| av片东京热男人的天堂| 亚洲中文字幕一区二区三区有码在线看 | 日韩欧美国产一区二区入口| 亚洲国产精品成人综合色| 午夜精品一区二区三区免费看| 成人三级黄色视频| 欧美日韩一级在线毛片| 色老头精品视频在线观看| 中文字幕熟女人妻在线| 日本一本二区三区精品| 午夜福利欧美成人| 免费在线观看亚洲国产| 成人特级黄色片久久久久久久| cao死你这个sao货| 成人精品一区二区免费| 久久久久久久久久黄片| 久久草成人影院| 神马国产精品三级电影在线观看| 久久精品91无色码中文字幕| 欧美日韩瑟瑟在线播放| 久久久水蜜桃国产精品网| 最新美女视频免费是黄的| av天堂在线播放| 成年人黄色毛片网站| 婷婷亚洲欧美| 久久精品影院6| 午夜激情欧美在线| 熟妇人妻久久中文字幕3abv| 国产亚洲欧美在线一区二区| 午夜久久久久精精品| 男女下面进入的视频免费午夜| 免费在线观看成人毛片| 亚洲 国产 在线| 男人的好看免费观看在线视频| 欧美日韩综合久久久久久 | 亚洲专区字幕在线| 19禁男女啪啪无遮挡网站| 女人被狂操c到高潮| 久久香蕉精品热| www.www免费av| 久久久久国产精品人妻aⅴ院| 免费观看人在逋| 中文字幕av在线有码专区| 亚洲18禁久久av| 最近最新中文字幕大全电影3| 男女午夜视频在线观看| 精品熟女少妇八av免费久了| 久久香蕉精品热| 国产成人影院久久av| 又黄又爽又免费观看的视频| 亚洲精品中文字幕一二三四区| 少妇的逼水好多| 国产高清视频在线观看网站| 在线播放国产精品三级| 香蕉av资源在线| 日本在线视频免费播放| 久久精品国产亚洲av香蕉五月| 婷婷丁香在线五月| 97人妻精品一区二区三区麻豆| 国产日本99.免费观看| 亚洲av成人不卡在线观看播放网|