• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis and characterization of a sensitive and selective Fe3+fluorescent sensor based on novel sulfonated calix[4]arene-based host-guest complex

    2022-06-20 07:59:48RanCenMingLiuJihongLuWeifangZhangJingjingDaiXiZengZhuTaoXinXiao
    Chinese Chemical Letters 2022年5期

    Ran Cen, Ming Liu, Jihong Lu, Weifang Zhang, Jingjing Dai, Xi Zeng, Zhu Tao, Xin Xiao

    Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China

    Keywords:Calixarenes Rhodamine B Metal ions Fluorescence probe Host-guest chemistry

    ABSTRACT A novel fluorescent sensor was prepared from sulfonated calix[4]arene (SC4A) by the host-guest complexation method using the fluorescent dye rhodamine B (RB) as a structure-directing agent.The crystal structure of the host-guest complex (RB@(SC4A)3) was confirmed by X-ray diffraction studies while its performance and sensing mechanism for metal ion pollutants were characterized using fluorescence and nuclear magnetic resonance spectroscopies.The results showed that RB@(SC4A)3 had a triangular branch structure resulting from host-guest mediation of the interactions between the three SC4A host molecules and the three terminal groups of the guest molecule RB.The host-guest complex exhibited sensitive and selective sensing towards Fe3+ ions via a fluorescence quenching mechanism.The results indicated that RB@(SC4A)3 could be a promising sensitive and selective fluorescent sensor for metal ion pollutants monitoring.It also provided new insights into the synthesis of calixarene-based host-guest complex.

    Trace metal ions such as Cu, Fe, and Zn are essential for the metabolism of plants and animals, while excess can cause harm to the human body and the environment.For instance, although Fe3+ions are active in cell metabolism (as absorbable Fe2+), oxygen transport, and electron transfer, an excess can damage nucleic acids and proteins [1–3].The detection and removal of heavy metal ion pollutants from water is a challenge for environmental control[4–9].Therefore, the development of rapid and effective technology for the detection of these hazardous ions in water has become a priority.In the past few decades, some of the conventional analytical methods developed for the detection of toxic ions were based on electrochemistry, ion chromatography, atomic absorption spectrometry, and fluorescence spectroscopy [10–13].Among the many detection methods, fluorescence has attracted considerable interest because of its short response time, high sensitivity, and simplicity.Recently, the use of photoluminescent materials as chemosensors for the detection of pollutants has been studied [14–17].Arunaet al.[18] synthesized bis(rhodamine) derivatives with pyridine and benzene bridging groups, and the materials were highly selective and sensitive turn-on fluorescent sensors for Fe3+.However,the relatively high cost associated with the production of these sensors has limited their application and the search for novel and cost effective materials remains a challenge.

    Several researchers have reported the preparation of fluorescence sensors based on macrocycles such as cyclodextrins [19–20],calix[n]arenes [21–23], cucurbit[n]urils [24–28] and pillar[n]arenes[29–34].Calixarenes offer several advantages compared with other macromolecules, specifically:(i) a preorganized nonpolar cavity;(ii) a preorganized ion binding site; (iii) tunable functionalization of their lower and upper rims; and (iv) after functionalization,possess good water solubility or oil solubility, which expand the application area.The preorganization of the nonpolar cavities of calixarenes leads to the efficient size- and shape-specific binding of guests [35].Fluorescent calixarenes and their complexes have shown promising sensor performance in a wide range of applications.For example, Erdemir and Malkondu [36] synthesized a novel calix[4]arene derivative by covalent integration, and the sensor exhibited high fluorogenic selectivity towards Zn(II).Uttamet al.[37] preparedp–tert–butyl–calix[4]arene by covalent integration, and the material showed good F- sensing capability.However,many of the current approaches require covalent integration of either the donor or the acceptor, and sometimes both, limiting their synthetic accessibility.Recently, Fenget al.[38] successfully employed electrostatic complexation of tetraphenylethylene and calixarene to prepare a photosensitizer for tumor imaging and therapy (photodynamic therapy) applications.Zhenget al.[39] prepared a fluorescence displacement sensing array from calixarene derivatives (receptors) and eosin Y (reporter dye) for the chemometric discrimination of glycosaminoglycans.Yuet al.[40] established a facile low-cost method for the sensing and quantitative detection of trimethylamine species in the gut using intermolecular recognition of guanidinium-modified calixarene.Hence, the supramolecular strategy can avoid tedious synthesis and provides new opportunities to tune fluorescence sensing behaviors.

    Here, we report the synthesis and characterization of a fluorescent sensor for Fe3+(aq.) from rhodamine B (RB) and sulfonated calix[4]arene (SC4A) using host-guest chemistry (Scheme 1).The main objective of this study was to assess the performance of the host-guest complex (RB@(SC4A)3) as a fluorescent sensor, and its application for the detection of various metal ions.

    Scheme 1.Structures of SC4A (a, b) and RB (c, d).

    The host-guest complex RB@(SC4A)3was prepared from SC4A and the aromatic dye RB using host-guest chemistry to direct the non-covalent interactions.Single-crystal X-ray diffraction (XRD) revealed that hydrogen bonding was the dominant interaction driving the formation of RB@(SC4A)3(Fig.1a).Table S1 (Supporting information) shows the crystal data and structure refinement for RB@(SC4A)3.The proposed initial interactions were as follows:C–H···πinteractions form between the ethyl group on RB molecule and the aromatic ring of the adjacent SC4A molecules (abbreviated as 1 in Fig 1b); the C–H···πand C–H···O interactions form between the RB molecule and a further SC4A molecules (abbreviated as 2 in Fig.1c) and here, the alkyl chain penetrates deeper into the chamber of SC4A and the intermolecular forces are stronger; C–H···πinteraction forms between the RB molecule and the remaining SC4A molecules (abbreviated as 3 in Fig 1d).Supported by these three intermolecular interactions, the RB molecule and SC4A molecules form a stable triangular structure (Fig.1a).Figs.1e and f show the relational interactions between RB@(SC4A)3and two additional macromolecular units resulting from dipole interactions between -SO3H and -OH of the adjacent SC4A molecules (1–3 in Fig.1a).In the initial interactions between the ethyl group of RB with the aromatic ring (1 in Fig.2b), the C–H···πdistances were 3.481 ?.Although the second type of intermolecular interaction was the same as the first type, its force was stronger and the corresponding C–H···πdistances were 2.685 ?.The third interaction between the phenyl group from RB molecules and aromatic ring of the three SC4CA molecules had a C–H···πdistance of 2.642 ?.The additional SO3H···OH interaction between the adjacent SC4A molecules (1–3 in Fig.1a) ranged from 2.401 ? to 2.689 ? in distance.Hence, a combination of these interactions resulted in the formation of the novel RB@(SC4A)3host-guest complex with different channels (Fig.S1 in Supporting information).

    Fig.1.Crystal structures of RB@(SC4A)3.(a) Structure of the SC4A-based supramolecular unit prepared from SC4A and RB; (b-d) Intermolecular interactions between SC4A and RB of the supramolecular unit; (e) Interactions between RB@(SC4A)3 and two adjacent supramolecular units; (f) Intermolecular interaction between adjacent SC4A.

    Fig.2.Crystal structures of RB@(SC4A)3:(a) 1D molecular chain; (b) 2D supramolecular plane; (c) 3D supramolecular networks.

    The 1D, 2D and 3D structures of RB@(SC4A)3are shown in Fig.2.The triangular branches in the 1D supramolecular chain(Fig 2a) each comprised a RB unit and three SC4A units; the SC4A units formed a porous area with a high negative charge density resulting from the portal sulfonic acid groups.The pore formed by the adaptive cavity and portal size of SC4A, could accommodate the RB molecules.Driven by hydrogen bonding, the 1D supramolecular chains assemble into 2D planes and 3D networks(Figs.2b and c).Hence, these finding supported the successful synthesis of the 3D network of RB@(SC4A)3.

    The interaction between RB and SC4A was determined by fluorescence (emission) spectroscopy.The emission spectrum of RB(Fig.S2 in Supporting information) gave a peak at 582 nm in aqueous solution at an excitation wavelength of 554 nm.Incremental addition of SC4A caused a decrease in the fluorescence intensity at 582 nm which reached a minimum at a molar ratio NSC4A/NRBof 3:1.Hence, RB@(SC4A)3was obtained by the simple mixing stoichiometric amounts (1:3) of RB and SC4A in aqueous solution.In aqueous solution, the intensity of the absorption (554 nm) and fluorescence emission (582 nm) peaks of RB@(SC4A)3changed over the pH range of 1–12.According to its pKa titration curve, the pKa value of RB@(SC4A)3was estimated to be 3.5 (Fig.S3 in Supporting information).In general, the RB derivative displays a red color and strong fluorescence in acidic solutions by activation of the carbonyl group in the spirolactone or spirolactam moieties.To study the binding interaction of RB with SC4A, subsequent investigations were carried out at a solution pH of 5.0.

    The intramolecular binding behavior of RB@(SC4A)3was studied by1H NMR spectroscopy at pH 5.0.In D2O solution, the chemical shift (δ) assignments of each proton of RB were ascertained by1H NMR and 2D1H–1H correlation spectroscopy (Figs.S4 and S5 in Supporting information).The1H NMR spectra obtained from the titration of RB with SC4A are shown in Fig.3.When SC4A was added to the RB solution (RB:SC4A = 1:3), the1H resonance peaks corresponding to Ha, Hb, Hc, Hdon the benzoic acid group,together with Hh, Hion theN-ethyl group gradually shifted upfield (Δ:Ha, 0.09 ppm; Hband Hd, 0.02 ppm; Hc, 0.04 ppm; Hh,0.43 ppm; Hi, 0.64 ppm).Conversely, the resonances for He, Hf,and Hgprotons on the benzene ring of the aniline system gradually shifted downfield (Δ:He, 0.08 ppm; Hf, 0.24 ppm; and Hg,0.27 ppm).These results suggested that the benzoic acid group andN-ethyl group were situated within the SC4A cavity forming a triangular structure.

    Fig.3.1H NMR spectra (400 MHz, D2O) obtained from the titration of RB with SC4A:(I) Pure SC4A; (II) Neat RB; (III) RB:SC4A = 1:3.

    The fluorescence properties of RB@(SC4A)3indicated that it should be suitable for the rapid detection of metal ions.Hence,the fluorescence response of RB@(SC4A)3to a series of common metal ions including alkali (Li+, Na+, K+, Rb+, Cs+), alkaline earth(Mg2+, Ca2+, Sr2+, Ba2+), and various transition metal ions (Cr3+,Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg+, Fe2+) was determined (Fig.4).When Fe3+was added to an aqueous solution of RB@(SC4A)3, the fluorescence intensity at 582 nm was strongly reduced (Fig.4a).Except for Fe2+, which showed a slight reduction in intensity, the remaining 18 metal ions had no significant effect on the fluorescence intensity at 582 nm.These results are also illustrated in Fig.5 using the fluorescence images obtained from the corresponding solutions of RB@(SC4A)3containing various Mn+under UV light.Moreover, with the addition of Fe3+(aq.), the significant quenching in fluorescence intensity of the sensor could be observed visually (Fig.4b).These observations indicated that RB@(SC4A)3had high specificity towards Fe3+in aqueous solution.

    Fig.4.Fluorescence response of RB@(SC4A)3 (5 × 10-6 mol/L; λmax = 582 nm) to common metal ions (Mn+ (aq.), 50 equiv.):(a) Emission spectra of each Mn+ (aq.);(b) bar chart showing the intensities obtained from the addition of each Mn+ (aq.).

    Fig.5.Photographic images of the RB@(SC4A)3 solutions containing various Mn+ under UV light (365 nm).

    The effects of varying Fe3+concentrations on the fluorescence intensity of the complex were investigated.Fig.6a shows that the fluorescence maxima of RB@(SC4A)3at 582 nm decreased with increasing concentration additions of Fe3+(aq.) and was effectively quenched.Consistent with this, the maximum absorbance at 554 nm gradually decreased with increasing amounts of Fe3+(aq.);at NFe3+/NRB@(SC4A)3of ~20, further additions of Fe3+(aq.) did not produce any additional change in absorbance.The decay in fluorescence intensity as a function of the ratio of NFe3+/NRB@(SC4A)3is shown in Fig.6b.The change in fluorescence intensity exhibited a good linear relationship with Fe3+over the concentration range of 0–2.0 × 10-5mol/L (R= 0.993) (Fig.S6 in Supporting information) from which, a detection limit (DL) for Fe3+(aq.) could be calculated.The value obtained (3.08 × 10-6mol/L) was comparable to those reported elsewhere (Table S2 in Supporting information).These results demonstrated that the performance of RB@(SC4A)3was suitable for the detection and quantification of Fe3+.

    Fig.6.Titration fluorescence spectra of RB@(SC4A)3 (5 × 10-6 mol/L) with Fe3+(0, 2.0, 4.0,···40.0 equiv.).(a) Emission spectra; (b) change in fluorescence intensity with NFe3+/NRB@(SC4A)3.

    Fig.S7 (Supporting information) shows that binary mixtures Fe3+and Mn+had no significant effect on the fluorescence intensity of RB@(SC4A)3.Furthermore, the Fe3+quenching influence of RB and SC4A was also determined.When sufficient Fe3+or SC4A was added to the free RB solution, the fluorescence intensity of RB slightly decreased (Figs.S2 and S8 in Supporting information)compared with RB@(SC4A)3, whilst the fluorescence intensity of RB and SC4A changed only very slightly after the addition of Fe3+under day light and UV light (Fig.S9 in Supporting information).

    In aqueous solutions, RB@(SC4A)3demonstrated a unique affinity for Fe3+and high selectivity in the presence of other metal ions (Fig.7).To understand how the RB@(SC4A)3responded to Fe3+in solution, titration UV–vis spectrophotometry and1H NMR techniques were used to follow changes in the fluorescence and resonance properties of the RB@(SC4A)3inclusion complex respectively.Titration of RB@(SC4A)3(5 μmol/L) with Fe3+(aq.) resulted in the formation of isosbestic points confirming reaction between the two species (Fig.S10 in Supporting information).Fig.S11(in Supporting information) shows representative1H NMR spectra from the titration of RB@(SC4A)3with increasing the amounts of Fe3+(aq.).1H resonances due to bound RB and SC4A were observed throughout the titration process, confirming that the structure of RB@(SC4A)3remained intact and that it may form a cooperative interaction with Fe3+.On the one hand, the RB is the quinone form in acid conditions (pH<6) and it is in a state of protonation.On the other hand, the carboxyl group of the RB forms a hydrogen bond with the hydroxyl group on the sulfonate groups of SC4A.These make the host-guest complex of RB@(SC4A)3display strong yellow fluorescence, due to RB presenting a planar configuration in aqueous solution [41].Given the sulfonate groups on the upper edge of SC4A are negatively charged, they will bind with cationic metals (Fe3+) [41,42].With the addition of Fe3+, the hydrogen bonds between RB and SC4A have been broken, which changes the configuration from a planar quinone form to a vertical spiro ring structure, which leads to fluorescence quenching of host-guest complex.

    Fig.7.Effects of binary mixtures of Fe3+ and Mn+ on the fluorescence quenching of RB@(SC4A)3:yellow bars are RB@(SC4A)3 + Mn+ (Mn+ = metal ions other than Fe3+); blue bars are RB@(SC4A)3 + Fe3+ + Mn+.

    A novel Fe3+(aq.) fluorescent sensor,i.e., RB@(SC4A)3, was successfully prepared from sulfonated calix[4]arene (SC4A) by the host-guest complexation method using the fluorescent dye rhodamine B (RB) as a structure-directing agent.Single-crystal XRD revealed a triangular branch structure mediated by host-guest interactions between the three SC4A host molecules and the three terminal groups of the guest molecule RB.The driving force responsible for the formation of RB@(SC4A)3was attributed to the intermolecular hydrogen bonding between SC4A and RB.In aqueous solution (pH 5.0), RB@(SC4A)3displayed an emission peak at 582 nm (excitation wavelength 554 nm).When RB@(SC4A)3was sequentially exposed to 19 different common metal ions, only Fe3+(aq.) produced a reduction in fluorescence emission, and the signal was rapidly quenched.In binary systems with 18 different metal ions, RB@(SC4A)3exhibited high selectivity and sensitivity towards Fe3+(DL = 3.08 × 10-6mol/L).The results from this study have given new insights into the design of metal ion sensors based on calixarenes.

    Declaration of competing interest

    The authors declare no competing financial interest.

    Acknowledgments

    We thank the National Natural Science Foundation of China(NSFC, No.21861011), and the Innovation Program for High-level Talents of Guizhou Province (No.2016–5657) are gratefully acknowledged for financial support.

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.12.005.

    国产三级黄色录像| 两个人的视频大全免费| 亚洲在线自拍视频| 国产成人aa在线观看| 国内毛片毛片毛片毛片毛片| 欧美黑人精品巨大| 国产精品久久久久久亚洲av鲁大| 香蕉久久夜色| 在线观看午夜福利视频| 国产av一区二区精品久久| 看片在线看免费视频| 精品久久蜜臀av无| 桃红色精品国产亚洲av| 国产精品爽爽va在线观看网站| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲精品一区av在线观看| 成年版毛片免费区| 国产成人av激情在线播放| 国产日本99.免费观看| 在线观看日韩欧美| 久久精品国产亚洲av高清一级| 国产成人系列免费观看| 岛国在线观看网站| 丰满人妻熟妇乱又伦精品不卡| 给我免费播放毛片高清在线观看| 日韩欧美三级三区| 嫩草影视91久久| 精品高清国产在线一区| 欧美另类亚洲清纯唯美| 午夜精品久久久久久毛片777| 制服丝袜大香蕉在线| 国产av在哪里看| 久久久久免费精品人妻一区二区| 日韩欧美在线二视频| 麻豆av在线久日| 国产精品久久视频播放| 亚洲男人天堂网一区| 亚洲 欧美 日韩 在线 免费| 麻豆一二三区av精品| 色av中文字幕| 色播亚洲综合网| 久久久久久久久久黄片| 免费在线观看影片大全网站| 黑人操中国人逼视频| 日日摸夜夜添夜夜添小说| 欧美黄色淫秽网站| 亚洲黑人精品在线| 美女黄网站色视频| 国产精品影院久久| 亚洲精品一卡2卡三卡4卡5卡| 麻豆一二三区av精品| 久久久精品国产亚洲av高清涩受| 亚洲精品中文字幕一二三四区| 日本 av在线| 一区二区三区高清视频在线| 99国产精品99久久久久| 欧美另类亚洲清纯唯美| 一边摸一边抽搐一进一小说| 久久精品综合一区二区三区| 亚洲成人精品中文字幕电影| 亚洲国产精品合色在线| 国产激情久久老熟女| 两性夫妻黄色片| 男女视频在线观看网站免费 | 最近在线观看免费完整版| 长腿黑丝高跟| 男女下面进入的视频免费午夜| 老司机靠b影院| 又紧又爽又黄一区二区| 天堂av国产一区二区熟女人妻 | 国产又黄又爽又无遮挡在线| 成人国语在线视频| 麻豆国产av国片精品| 国产精品久久久久久人妻精品电影| 日韩三级视频一区二区三区| 婷婷六月久久综合丁香| 波多野结衣高清无吗| 999久久久精品免费观看国产| 又黄又粗又硬又大视频| 91麻豆精品激情在线观看国产| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美成人一区二区免费高清观看 | 女人高潮潮喷娇喘18禁视频| 亚洲精品一卡2卡三卡4卡5卡| 久久 成人 亚洲| √禁漫天堂资源中文www| 欧美3d第一页| 亚洲人成电影免费在线| 男女下面进入的视频免费午夜| 国产一区二区三区视频了| 看免费av毛片| 亚洲成a人片在线一区二区| 国产精品 国内视频| 波多野结衣高清作品| 国产野战对白在线观看| 国产午夜福利久久久久久| 日韩精品中文字幕看吧| 观看免费一级毛片| 国产日本99.免费观看| 嫁个100分男人电影在线观看| 嫩草影院精品99| 长腿黑丝高跟| 男女下面进入的视频免费午夜| 精品电影一区二区在线| 香蕉久久夜色| 看免费av毛片| 在线播放国产精品三级| 成年免费大片在线观看| av视频在线观看入口| 精品乱码久久久久久99久播| 日本免费一区二区三区高清不卡| 国产精品国产高清国产av| 50天的宝宝边吃奶边哭怎么回事| 一进一出抽搐动态| 欧美日本视频| 国产亚洲精品av在线| 老司机在亚洲福利影院| 91av网站免费观看| 露出奶头的视频| 亚洲无线在线观看| 19禁男女啪啪无遮挡网站| 在线免费观看的www视频| 男女下面进入的视频免费午夜| 色在线成人网| 亚洲精品在线观看二区| 在线观看www视频免费| 精品少妇一区二区三区视频日本电影| 中文资源天堂在线| 亚洲精品av麻豆狂野| 国产在线精品亚洲第一网站| svipshipincom国产片| 亚洲第一欧美日韩一区二区三区| 午夜精品在线福利| 男插女下体视频免费在线播放| 欧美在线一区亚洲| 精品久久久久久久毛片微露脸| 变态另类丝袜制服| 国产一区二区在线av高清观看| 亚洲国产看品久久| 少妇人妻一区二区三区视频| 无遮挡黄片免费观看| 精品人妻1区二区| 欧美一区二区精品小视频在线| 亚洲精品一卡2卡三卡4卡5卡| 老熟妇乱子伦视频在线观看| 99国产精品一区二区三区| netflix在线观看网站| 脱女人内裤的视频| 亚洲av成人精品一区久久| 中文在线观看免费www的网站 | 久久久久国产精品人妻aⅴ院| 91大片在线观看| www.熟女人妻精品国产| www国产在线视频色| 老司机福利观看| 欧美丝袜亚洲另类 | 老司机福利观看| 99在线视频只有这里精品首页| 十八禁人妻一区二区| 国模一区二区三区四区视频 | 欧美黑人欧美精品刺激| av国产免费在线观看| 色在线成人网| 免费高清视频大片| 日韩欧美三级三区| av在线播放免费不卡| 少妇人妻一区二区三区视频| 国产男靠女视频免费网站| 亚洲一区二区三区色噜噜| 99国产精品一区二区三区| 三级男女做爰猛烈吃奶摸视频| 精品福利观看| 亚洲一区中文字幕在线| 成人永久免费在线观看视频| 亚洲国产精品合色在线| 黑人巨大精品欧美一区二区mp4| 老汉色∧v一级毛片| 国产男靠女视频免费网站| 搡老岳熟女国产| 亚洲,欧美精品.| 欧美一区二区国产精品久久精品 | 国产av又大| 老司机午夜十八禁免费视频| 免费看日本二区| 午夜成年电影在线免费观看| 国产成人av激情在线播放| 亚洲午夜理论影院| 欧美激情久久久久久爽电影| 小说图片视频综合网站| 国产三级中文精品| 国内揄拍国产精品人妻在线| 宅男免费午夜| 波多野结衣高清作品| 精品久久久久久久毛片微露脸| 一夜夜www| 一本久久中文字幕| 无人区码免费观看不卡| 欧美日韩亚洲国产一区二区在线观看| 国产精品一区二区免费欧美| 丁香六月欧美| www日本在线高清视频| 麻豆久久精品国产亚洲av| 国产精品久久久久久亚洲av鲁大| 五月伊人婷婷丁香| 丰满人妻一区二区三区视频av | 色精品久久人妻99蜜桃| 在线观看免费日韩欧美大片| tocl精华| 国产精品亚洲av一区麻豆| 亚洲精品国产一区二区精华液| 国产高清videossex| 亚洲av五月六月丁香网| 两个人的视频大全免费| 亚洲专区中文字幕在线| av国产免费在线观看| 男女下面进入的视频免费午夜| 国产成年人精品一区二区| 黄色视频,在线免费观看| 99久久无色码亚洲精品果冻| 成人手机av| 亚洲人成77777在线视频| 两个人免费观看高清视频| 亚洲中文av在线| 一个人观看的视频www高清免费观看 | 无人区码免费观看不卡| 成年免费大片在线观看| 法律面前人人平等表现在哪些方面| 午夜久久久久精精品| 亚洲av成人一区二区三| 日韩精品中文字幕看吧| 免费在线观看影片大全网站| av国产免费在线观看| 亚洲男人天堂网一区| 最近视频中文字幕2019在线8| 色精品久久人妻99蜜桃| 热99re8久久精品国产| 国产精品 欧美亚洲| 男男h啪啪无遮挡| 成年版毛片免费区| 又粗又爽又猛毛片免费看| 亚洲精品久久成人aⅴ小说| 国产精品日韩av在线免费观看| 日本免费a在线| 久久久久国内视频| 久久久久性生活片| 日韩欧美国产在线观看| 中文字幕av在线有码专区| 成年版毛片免费区| 亚洲av成人不卡在线观看播放网| 他把我摸到了高潮在线观看| 91成年电影在线观看| 男女之事视频高清在线观看| 桃红色精品国产亚洲av| 亚洲成a人片在线一区二区| 国产高清videossex| 国产亚洲精品综合一区在线观看 | 国产精品 欧美亚洲| 男女那种视频在线观看| 精品高清国产在线一区| 欧美不卡视频在线免费观看 | 变态另类丝袜制服| 亚洲精品中文字幕一二三四区| 最近最新免费中文字幕在线| 成人av在线播放网站| 亚洲欧美精品综合久久99| 亚洲欧美日韩高清在线视频| 搞女人的毛片| 国产一级毛片七仙女欲春2| 国产精品影院久久| 午夜a级毛片| 国产三级黄色录像| а√天堂www在线а√下载| 国产精品 国内视频| 好男人在线观看高清免费视频| 国产日本99.免费观看| www.熟女人妻精品国产| 亚洲av片天天在线观看| 国产精品一区二区三区四区免费观看 | 狂野欧美白嫩少妇大欣赏| 欧美极品一区二区三区四区| 啦啦啦观看免费观看视频高清| 国产精品免费视频内射| 国产亚洲精品久久久久久毛片| 色在线成人网| 90打野战视频偷拍视频| 好男人在线观看高清免费视频| 欧美国产日韩亚洲一区| 亚洲一区二区三区不卡视频| 老熟妇仑乱视频hdxx| 在线免费观看的www视频| 欧美成人性av电影在线观看| 亚洲成人久久爱视频| 亚洲天堂国产精品一区在线| 日韩精品中文字幕看吧| 久久欧美精品欧美久久欧美| 深夜精品福利| 免费人成视频x8x8入口观看| 亚洲免费av在线视频| 成人欧美大片| 动漫黄色视频在线观看| 国产高清激情床上av| 中文字幕熟女人妻在线| 久久久国产成人免费| 正在播放国产对白刺激| 久久精品亚洲精品国产色婷小说| 91字幕亚洲| АⅤ资源中文在线天堂| 国产成人av教育| 久久久久国内视频| 法律面前人人平等表现在哪些方面| 亚洲一区二区三区不卡视频| 久久久久久九九精品二区国产 | 蜜桃久久精品国产亚洲av| 国产亚洲精品av在线| 日本黄大片高清| 黄片小视频在线播放| 一夜夜www| 两人在一起打扑克的视频| 麻豆一二三区av精品| 99久久久亚洲精品蜜臀av| 深夜精品福利| 久久精品91无色码中文字幕| 亚洲avbb在线观看| 成人永久免费在线观看视频| 欧美又色又爽又黄视频| 国产精品日韩av在线免费观看| 国产熟女午夜一区二区三区| 正在播放国产对白刺激| 久久香蕉精品热| 国产精品av视频在线免费观看| 亚洲七黄色美女视频| 欧美色欧美亚洲另类二区| 啦啦啦韩国在线观看视频| 不卡一级毛片| 亚洲av美国av| 亚洲色图 男人天堂 中文字幕| 日本一本二区三区精品| 一区二区三区激情视频| 国产蜜桃级精品一区二区三区| 亚洲av熟女| 99热这里只有精品一区 | 在线看三级毛片| 中文字幕高清在线视频| 午夜福利高清视频| 久久久精品欧美日韩精品| 久久这里只有精品19| 91九色精品人成在线观看| 免费看a级黄色片| 女生性感内裤真人,穿戴方法视频| 可以在线观看的亚洲视频| 免费在线观看日本一区| 亚洲成人久久性| 久久香蕉国产精品| 99久久国产精品久久久| 一区二区三区国产精品乱码| 欧美又色又爽又黄视频| 亚洲av电影在线进入| 精品一区二区三区四区五区乱码| 日韩欧美在线乱码| 男女午夜视频在线观看| 制服丝袜大香蕉在线| 国产v大片淫在线免费观看| 又黄又爽又免费观看的视频| 国产真人三级小视频在线观看| 90打野战视频偷拍视频| 日韩欧美免费精品| 久久久久久国产a免费观看| 草草在线视频免费看| 巨乳人妻的诱惑在线观看| 黄色成人免费大全| 免费观看人在逋| 久久性视频一级片| 久久久久久久久免费视频了| 身体一侧抽搐| 99精品欧美一区二区三区四区| 好男人在线观看高清免费视频| 男男h啪啪无遮挡| 国产亚洲精品第一综合不卡| 日韩欧美免费精品| 99热这里只有精品一区 | 两人在一起打扑克的视频| 国产免费男女视频| 亚洲精品久久成人aⅴ小说| 久久天躁狠狠躁夜夜2o2o| 黄色丝袜av网址大全| 身体一侧抽搐| 午夜福利免费观看在线| 亚洲欧美激情综合另类| 亚洲最大成人中文| 一进一出好大好爽视频| 精品欧美国产一区二区三| 成人精品一区二区免费| 美女免费视频网站| 免费看美女性在线毛片视频| 亚洲精品国产一区二区精华液| 国语自产精品视频在线第100页| 免费在线观看完整版高清| 久99久视频精品免费| 黑人操中国人逼视频| 亚洲国产精品999在线| 母亲3免费完整高清在线观看| 中文在线观看免费www的网站 | 狠狠狠狠99中文字幕| 国产高清videossex| 成人av一区二区三区在线看| 亚洲av电影在线进入| 熟女少妇亚洲综合色aaa.| 精品国产亚洲在线| 久久久精品欧美日韩精品| 欧美日韩亚洲国产一区二区在线观看| 亚洲成人免费电影在线观看| av有码第一页| 亚洲第一欧美日韩一区二区三区| 又紧又爽又黄一区二区| 国产一区二区在线av高清观看| 两人在一起打扑克的视频| 黄色成人免费大全| 亚洲av美国av| 亚洲人成电影免费在线| 亚洲国产日韩欧美精品在线观看 | 很黄的视频免费| 亚洲欧美日韩东京热| 国产精品,欧美在线| 无人区码免费观看不卡| 亚洲va日本ⅴa欧美va伊人久久| 少妇被粗大的猛进出69影院| 久久香蕉激情| 免费在线观看视频国产中文字幕亚洲| 两个人免费观看高清视频| 欧美日韩一级在线毛片| 欧美日韩国产亚洲二区| 99re在线观看精品视频| 日本一二三区视频观看| 亚洲成av人片在线播放无| 国内揄拍国产精品人妻在线| 亚洲一区高清亚洲精品| 国产乱人伦免费视频| 国产精品爽爽va在线观看网站| 婷婷丁香在线五月| 色噜噜av男人的天堂激情| 我要搜黄色片| 一本精品99久久精品77| 欧美又色又爽又黄视频| 一级片免费观看大全| 一级毛片女人18水好多| 日韩成人在线观看一区二区三区| 禁无遮挡网站| 韩国av一区二区三区四区| 草草在线视频免费看| 亚洲人与动物交配视频| 国产精品98久久久久久宅男小说| 亚洲精品粉嫩美女一区| 亚洲avbb在线观看| 亚洲专区中文字幕在线| 国产精品 国内视频| 精品高清国产在线一区| 黄色女人牲交| 热99re8久久精品国产| 国产精品免费视频内射| 琪琪午夜伦伦电影理论片6080| www.精华液| 国产三级中文精品| 免费看十八禁软件| 国产午夜精品论理片| 国产精品,欧美在线| 国产区一区二久久| 在线观看www视频免费| 18禁美女被吸乳视频| 中文字幕久久专区| 草草在线视频免费看| 非洲黑人性xxxx精品又粗又长| 国产精品98久久久久久宅男小说| 久久久国产精品麻豆| 国产片内射在线| 欧美日本亚洲视频在线播放| 精品欧美国产一区二区三| 亚洲国产精品合色在线| 国产av不卡久久| 日韩欧美在线二视频| 午夜免费成人在线视频| 在线观看免费日韩欧美大片| 免费在线观看视频国产中文字幕亚洲| 亚洲精品美女久久av网站| 日本三级黄在线观看| 午夜免费成人在线视频| 给我免费播放毛片高清在线观看| 国产精品国产高清国产av| 色综合站精品国产| 中文在线观看免费www的网站 | 可以在线观看的亚洲视频| 亚洲欧美精品综合一区二区三区| 国产一区二区三区在线臀色熟女| 精品久久久久久久久久久久久| 亚洲真实伦在线观看| 国产av又大| 超碰成人久久| 女生性感内裤真人,穿戴方法视频| 校园春色视频在线观看| 大型黄色视频在线免费观看| 18美女黄网站色大片免费观看| 欧美日本视频| 天堂动漫精品| 99久久综合精品五月天人人| www.自偷自拍.com| 午夜福利视频1000在线观看| 亚洲国产欧洲综合997久久,| www国产在线视频色| 伊人久久大香线蕉亚洲五| 一边摸一边抽搐一进一小说| 亚洲专区字幕在线| 亚洲精品国产精品久久久不卡| 日韩欧美国产在线观看| 亚洲国产精品999在线| 国产真实乱freesex| 又紧又爽又黄一区二区| 男女之事视频高清在线观看| 一级毛片精品| 免费电影在线观看免费观看| 成人三级做爰电影| 久久欧美精品欧美久久欧美| 1024手机看黄色片| 熟女电影av网| 在线观看美女被高潮喷水网站 | 亚洲一卡2卡3卡4卡5卡精品中文| 国产乱人伦免费视频| 免费看美女性在线毛片视频| 免费一级毛片在线播放高清视频| 丰满人妻一区二区三区视频av | 精品不卡国产一区二区三区| 日日干狠狠操夜夜爽| 黑人操中国人逼视频| 亚洲av成人av| 最新美女视频免费是黄的| 丰满的人妻完整版| 欧美日韩亚洲国产一区二区在线观看| av天堂在线播放| 女警被强在线播放| 国产99白浆流出| 十八禁人妻一区二区| 欧美日韩精品网址| 精品免费久久久久久久清纯| netflix在线观看网站| 久久精品综合一区二区三区| 亚洲欧美日韩高清在线视频| 亚洲美女视频黄频| 麻豆国产av国片精品| 日本熟妇午夜| 91av网站免费观看| 日韩欧美国产在线观看| 久久精品人妻少妇| 亚洲人成电影免费在线| 悠悠久久av| 好男人在线观看高清免费视频| 亚洲国产高清在线一区二区三| 又大又爽又粗| 小说图片视频综合网站| 国产精品 国内视频| 国产精品一区二区三区四区免费观看 | 大型黄色视频在线免费观看| 在线观看免费日韩欧美大片| 久久国产精品影院| 99久久无色码亚洲精品果冻| 欧美精品啪啪一区二区三区| 日本免费a在线| 特级一级黄色大片| 精品国产乱码久久久久久男人| 亚洲av片天天在线观看| 久久久国产精品麻豆| 真人做人爱边吃奶动态| 麻豆国产97在线/欧美 | 国产精品亚洲一级av第二区| 久久精品成人免费网站| 婷婷精品国产亚洲av| 日本a在线网址| 91九色精品人成在线观看| 亚洲人成77777在线视频| 欧美高清成人免费视频www| 一个人免费在线观看的高清视频| netflix在线观看网站| 亚洲精品中文字幕一二三四区| 又黄又爽又免费观看的视频| 国内毛片毛片毛片毛片毛片| 欧美乱码精品一区二区三区| 中文字幕熟女人妻在线| 韩国av一区二区三区四区| 欧美性猛交╳xxx乱大交人| 国产亚洲精品一区二区www| 丝袜美腿诱惑在线| 女人爽到高潮嗷嗷叫在线视频| 国产亚洲欧美在线一区二区| 麻豆一二三区av精品| 亚洲av日韩精品久久久久久密| 99国产精品99久久久久| av有码第一页| 中文字幕av在线有码专区| 国产精品日韩av在线免费观看| 成人精品一区二区免费| 一个人免费在线观看的高清视频| 国产亚洲精品综合一区在线观看 | 淫妇啪啪啪对白视频| 波多野结衣高清作品| 中文字幕久久专区| 琪琪午夜伦伦电影理论片6080| 看黄色毛片网站| 亚洲狠狠婷婷综合久久图片| 香蕉久久夜色| 69av精品久久久久久| av福利片在线观看| 国产亚洲av嫩草精品影院| 国产99白浆流出| 亚洲成av人片免费观看| 悠悠久久av| 女警被强在线播放| 亚洲精品一区av在线观看| 免费看日本二区|