• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On-off-on fluorescence detection for biomolecules by a fluorescent cage through host-guest complexation in water

    2022-06-20 07:59:46HonghongDunFnCoMinjieZhngMengGoLipingCo
    Chinese Chemical Letters 2022年5期

    Honghong Dun, Fn Co, Minjie Zhng, Meng Go, Liping Co,*

    a College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China

    b National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China

    Keywords:Host-guest complexation Tetraphenylethene-based octacationic cage Nucleoside derivatives Fluorescence Cell imaging

    ABSTRACT Detection of nucleoside derivatives has paramount importance because they are the essential biomolecular units for all life.Herein, we report a host-guest approach by using a fluorescent tetraphenylethenebased octacationic cage as host and 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) as guest and fluorescent indicator to form non-fluorescent 1:1:1 host-(endo-exo)guest complex in water.This new host-(endo-exo)guest complex can be successfully used for detecting nucleosides (e.g., ATP and GTP), DNA(e.g., sm-DNA), and antibiotics (e.g., Penicillin G) with off-on fluorescence response via a competitive hostguest exchange with HPTS as exo-guest in water.Furthermore, this on-off-on fluorescent host-guest complex is also used for cell imaging based on ATP concentration in HeLa cells.Therefore, this study not only provides insight into the construction of a supramolecular probe with on-off-on fluorescence via host-guest complexation and exchange in solution, but also realizes a universal method for detecting and monitoring biomolecules.

    The research progress of fluorescence detection systems for biomolecules has received considerable attention in recent years because of the important application in a wide range of fields such as biology, chemical process, and environmental science [1–5].Specifically, nucleoside derivatives, such as ATP, CTP, GTP and UTP, are essential in the regulation of organisms [6–10].They are not only the raw materials for RNA synthesis, but also play an important role in metabolism process.For example, ATP is the "electricity" in organisms; GTP is essential in protein synthesis; UTP is involved in carbohydrate metabolism in organisms; CTP plays an important role in phospholipid synthesis [11,12].However, owing to the solvation of phosphate and sugar groups and the competitive hydrogen bonding of base units with water molecules, their detection and recognition in the aqueous medium still are limited [13–15].On the other hand, most of conventional fluorescent probes exhibit aggregation-caused quenching (ACQ) in water when aggregating and/or binding with biomolecules, which often makes the detection process to employ a fluorescent “turn-off” feature with the high background noise and poor sensitivity [16].Therefore, the use of fluorescent turn-on mechanism can provide a better approach for the detection of biomolecules.

    In host-guest chemistry, a variety of macrocyclic hosts, such as crown ethers [17,18], cyclodextrins [19,20], calix[n]arenes [21,22],pillar[n]arenes [23,24], cyclophanes [25,26], cucurbit[n]urils[27,28], and molecular cages [29–36], have been synthesized and their functions have been widely investigated for molecular recognition, drug delivery systems, photoelectric materials, and supramolecular polymers.Especially, molecular cages with various sizes, shapes, and functional groups have been widely developed,because of not only their unique hydrophobic cavity for selectively binding guest molecules but also their reduction-oxidation properties for electronic devices (e.g., semiconductor) and molecular machines (e.g., molecular shuttle and molecular pump) [37–39].Furthermore, molecular cages have also attracted intensive attention for biochemical applications including bioimaging and drug/gene delivery [40–44], photodynamic therapy [45,46], and biosensors [47].

    Recently, we have utilized tetraphenylethene (TPE) and pyridinium units as molecular building blocks to construct a series of supramolecular hosts including macrocycles, cages, and frameworks, which exhibited promising applications in host-guest recognitions, light-harvesting systems, and stimuli-responsive fluorescent materials [48–59].Specially, combined with the physicochemical properties of TPE and pyridinium units, the tetraphenylethenebased octacationic cage (1·8Cl-, Scheme 1) possesses a large and rigid binding cavity, positive-charged surfaces, good watersolubility, and excellent fluorescence [52].This fluorescent cationic cage exhibits remarkable affinities toward negative-charged chiral biomoleculesviaa series of CH-π, π-π, hydrophobic, and electrostatic interactions in water to achieve conformationally adaptive chirality with circular dichroism (CD) and circularly polarized luminescence (CPL) responses [57].As a result, this cage is endowed with several features, such as host-guest ability, strong fluorescence, and good water-solubility, which make it well suited for studying stimuli-responsive fluorescence processes through forming host-guest complexes with organic dyes in aqueous media.Two water-soluble pyrene-based dyes, 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) and 1,3,6,8-pyrenetetrasulfonic acid tetrasodium salt (PTSA), are selected as guest to form fluorescent host-guest complexes with 1·8Cl-in water.Herein, we report a host-guest approach by using a tetraphenylethene-based octacationic cage as host and HPTS as guest to form non-fluorescent 1:1:1 host-(endo-exo)guest complexes, which is successfully used for detecting nucleosides (e.g., ATP and GTP), DNA (e.g., sm-DNA),and antibiotics (e.g., Penicillin G) with turn-on fluorescence responseviaa competitive host-guest exchange withexo-HPTS in water.Furthermore, this on-off-on fluorescent host-guest complex also is used for cell imaging based on ATP concentration in HeLa cells.

    Scheme 1.The formation of host-(endo-exo)guest complexes between 1·8Cl- and HPTS/PTSA.

    Initially, the host-guest complexation between 1·8Cl-and HPTS was investigated by employing NMR experiments.The1H NMR titration of 1·8Cl-with HPTS showed the following changes for the proton resonances of both cage and guest (Fig.1a):1) With the gradual addition of HPTS, the proton resonances (Hd-Hc) of pyridinium rings showed downfield shifts while the proton resonances (Ha-Hb) in the central part of the TPE faces displayed different upfield shifts which caused byπ-electron deshielding and shielding of HPTS.2) The proton resonances (H1-H6) corresponding to HPTS shifted upfield, strongly confirming that HPTS molecules are completely encapsulated inside the cavity of cage to form the host-guest inclusion complex.3) The addition of 2.0 equiv.of HPTS induced that all resonances (Ha-Hf) of cage split into two sets of peaks (Ha’-Hf’and Ha’’-Hf’’), because the formation of a new host-(endo-exo)guest complex decreases the symmetry of cage.Based on the results from NMR, the cavity of cage cannot encapsulate two HPTS.Therefore, one HPTS molecule asendoguest is located inside the cavity of cagevia π-π, hydrophobic, and electrostatic interactions, and another HPTS molecule asexo-guest binds on the tetrapyridinium-TPE surface to give a 1:1:1 host-(endo-exo)guest complex (1?endo-HPTS)·exo-HPTSviaelectrostatic interactions between the positive-charged surface of cage and the negative-charged sulfonic groups of HPTS.

    Fig.1.(a) 1H NMR titration (400 MHz, 298 K, D2O) of 1·8Cl- (0.4 mmol/L) titrated with HPTS (0-2.2 equiv.).Here, primes ’and ’’denote the resonances of the inner and outer tetrapyridinium-TPE surfaces within the 1:1:1 host-(endo-exo)guest complex, respectively.(b) NOESY spectrum recorded (400 MHz, 298 K, D2O) for 1·8Cl-(2.0 mmol/L) with HPTS (2.0 equiv.).

    Furthermore,1H-1H correlation spectroscopy (COSY) spectra show strong signal peaks between Ha’and Hb’, and Ha’and Hb’’,which indicates that the symmetry of the cage is broken and the 1:1:1 host-(endo-exo)guest complex is formed (Fig.S1 in Supporting information).Besides, nuclear overhauser effect spectroscopy(NOESY) spectra showed the correlation signals between proton H1’-H6’ of HPTS and proton Ha’-Hd’ on the TPE units of cage(Fig.1b), indicating that HPTS and cage form host-guest complex.The single host-guest complex was confirmed by diffusionordered spectroscopy (DOSY), which showed a similar diffusion coefficient [(1.79 ± 0.03) × 10-10m2/s] when compared with that of 1·8Cl-[(1.95 ± 0.05) × 10-10m2/s] in D2O at 298 K (2.0 mmol/L),thus suggesting the formation of a host-guest complex (Figs.S2 and S3 in Supporting information).On the other hand, electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS)provided further evidence for 1·8Cl-:HPTS = 1:2 (including inner and outer guests) with continuous charge states atm/z663.6344,896.5014, and 877.1946 corresponding to +4 to +3 charge states due to successive loss of the Cl-and Na+counterions.Meanwhile, 1·8Cl-:HPTS = 1:1 with continuous charge states atm/z430.5416, 547.1665, 741.2040 and 1129.7878 corresponding to +5 to +2 charge states due to successive loss of the Cl-and Na+counterions (Figs.S4 and S5 in Supporting information).Owing to the weak binding between cage andexo-HPTS, only one binding constant between 1·8Cl-andendo-HPTS was estimated as (1.85 ±0.13) × 105L/mol by UV-titration experiment (Fig.S6 in Supporting information).

    Next, the host-guest behavior of 1·8Cl-and PTSA was investigated in D2O.In1H NMR titration of 1·8Cl-with PTSA, downfield shifts were observed for pyridinium protons (Hc’-Hd’), bridging CH2groups (He’), andp-xylylene moieties (Hf’), while the phenyl proton resonances (Ha’-Hb’) located in the central part of the cage’s TPE units showed apparent upfield shifts as compared to the free cage at 1:1 ratio, which caused byπ-electron deshielding and shielding of PTSA (Fig.S7 in Supporting information).Meanwhile, proton resonances (H1-H2) showed obvious upfield shifts and was split indicating that PTSA was entirely located within the cage and shielded by the cavity of 1·8Cl-.Furthermore, NOE correlation signals were observed between proton H1’-H2’of PTSA and proton Ha’-Hb’on the TPE of cage from the 2D NOESY NMR spectrum.These results further confirm the central location of PTSA in the cage cavity (Fig.S8 in Supporting information).However, with the gradual addition of PTSA, a lot of precipitate began to appear, and when 2.0 equiv.of PTSA was added, host-guest complex was completely precipitated, resulting in the complete disappearance of NMR signal.We speculated that two PTSA with eight negative sulfonic groups and octacationic cage form a poor water-soluble zwitterionic complex (1?endo-PTSA)·exo-PTSA through multiple electrostatic interactions.ESI-TOF-MS further provided evidence for the formation of 1?endo-PTSA with continuous charge states atm/z553.9076,750.5335, corresponding to +4 to +3 charge states due to successive loss of the Cl-and Na+counterions (Fig.S9 in Supporting information).The binding constants between 1·8Cl-and PTSA was calculated as (8.01 ± 0.09) × 105L/mol for 1?endo-PTSA (Fig.S10 in Supporting information).

    Subsequently, the photophysical properties of 1·8Cl-with HPTS/PTSA were analyzed by fluorescence and UV-vis experiments in water.As shown in Fig.2a, when HPTS was successively added into the solution of cage in water, the absorbance at 284 nm increased and red-shifted to 290 nm, while the absorbance at 362 nm decreased and red-shifted to 369 nm, indicating the formation of the host-guest complex.At the same time, the absorption peak from 440 nm gradually appears, which may be caused by a strong intermolecular charge-transfer interaction between anionic HPTS and octacationic pyridinium units of cage.A dramatic fluorescence quenching (ΦF= from 0.27 to<0.01) of cage at 540 nm when 2.0 equiv.of HPTS was added, which could be attributed to the strong photoinduced electron transfer (PET) from HPTS to cage based on the formation of the host-guest complex (Fig.2b and Table S1 in Supporting information) [60–62].On the other hand, when PTSA was successively added to cage in water, UV-vis spectroscopy showed that there was weak charge transfer interaction between 1·8Cl-and PTSA (Fig.2c).Therefore, compared with HPTS, the fluorescence spectra of PTSA showed different changes.With the gradual addition of PTSA, the fluorescence intensity of cage at 540 nm gradually increased and reached the maximum at 1:1 ratio, indicating that a 1:1 host-guest complex 1?endo-PTSA was formed,which is consistent with the result from NMR titration.The fluorescent enhancement could be contributed to the restriction of intramolecular rotation (RIR) of TPE units of cage when forming the host-guest complex.After the continuous addition of PTSA, the fluorescence intensity of cage showed red shift (Δλmax= 23 nm) and slightly decreased (Fig.2d), accompanying with a precipitation, indicating that a zwitterionic complex (1?endo-PTSA)·exo-PTSA was formed.The 1931 CIE chromaticity diagram also confirmed tracks of the fluorescence color change, followed by the titration of HPTS and PTSA (Fig.S11 in Supporting information).

    Fig.2.(a) UV-vis and (b) fluorescence spectra of 1·8Cl- titrated with HPTS; (c) UVvis and (d) fluorescence spectra of 1·8Cl- titrated with PTSA.[1·8Cl-] = 10 μmol/L,λex = 410 nm, Ex/Em slit = 1.2 nm, solvent:H2O.

    Given the on-off fluorescence of octacationic cage with HPTSviahost-(endo-exo)guest complexation, a series of negative-charged nucleoside derivatives (e.g., ATP, AMP, ADP, CTP, GTP and UTP,Scheme S1 in Supporting information) were selected as competitive guests for releasing theexo-HPTS from host-(endo-exo)guest complex (1?endo-HPTS)·exo-HPTS in aqueous solution.The competitive fluorescence experiments confirmed that the off-on fluorescence process can be realized by a competitive host-guest exchange, resulting different turn-on fluorescence responses for different nucleosides (Scheme 2).In fluorescence titration experiment(Fig.3a), (1?endo-HPTS)·exo-HPTS exhibited various off-on fluorescence responses to nucleosides with different intensities, absolute quantum yields, and lifetimes (Table S1).Interestingly, the fluorescence titrations of (1?endo-HPTS)·exo-HPTS with ATP, GTP or UTP in water showed a drastic increase in the intensity of the emission of HPTS centered at 515 nm with high fluorescence intensity ratio(I/I0) of ~31, ~71 and ~25, respectively, exhibiting excellent green fluorescence emission of HPTS (Figs.3a and b).However, other nucleosides, such AMP, ADP, and CTP, just caused low enhancement in fluorescence intensity (Fig.3b and Figs.S12-S17 in Supporting information).These results indicated that the electrostatic interaction between positive-charged pyridinium units of host and negativecharged phosphate groups of guests is main driving force to release theexo-HPTS from (1?endo-HPTS)·exo-HPTSviacompetitive hostguest exchange between theexo-HPTS of the host-guest complex and negative-charged nucleoside derivatives.For nucleoside derivatives with different nucleobase and the same number of phosphate groups, such as ATP, UTP, CTP and GTP, the fluorescence intensities of (1?endo-HPTS)·exo-HPTS were also different in the titration processes, which indicated that the nucleobase could also affect the binding affinity with 1?endo-HPTS through hydrophobic effect andπ-πinteraction.

    Scheme 2.Schematic illustration of the process of turn-on fluorescence via competitive exclusion host-guest exchange.

    Fig.3.Fuorescence spectra of (1?endo-HPTS)·exo-HPTS (10 μmol/L) titrated with(a) ATP (0-100.0 equiv.), (c) Penicillin G (0-100.0 equiv.).The I/I0 of (1?endo-HPTS)·exo-HPTS with (b) nucleosides and DNA (5.0 equiv.), (d) antibiotics (75.0 equiv.).

    To further verify the mechanism of turn-on fluorescence, NMR titration experiments were carried out in D2O.When ATP was successively added to (1?endo-HPTS)·exo-HPTS in D2O, the split proton peaks of 1 in (1?endo-HPTS)·exo-HPTS became broaden and converged again, indicating that theexo-HPTS on the outer surface was released after the addition of ATP (Fig.S18 in Supporting information).Theendo-HPTS in the cavity still formed a stable hostguest inclusion complex with cage (Scheme 2).This experimental result is consistent with the fluorescence experiment.

    Given the off-on fluorescence responses between (1?endo-HPTS)·exo-HPTS and nucleoside derivatives, (1?endo-HPTS)·exo-HPTS can be an ideal probe for DNA molecules.As expected,the addition of salmon testes DNA (smDNA) or calf thymus DNA(ctDNA) into the solution of (1?endo-HPTS)·exo-HPTS in water induced drastic fluorescence enhancement with ~8 and ~15 times,respectively (Fig.3b and Figs.S19 and S20 in Supporting information).The detection limits of (1?endo-HPTS)·exo-HPTS were calculated to be 2.03 μg/μL for smDNA and 1.53 μg/μL for ctDNA, respectively (Figs.S19 and S20 in Supporting information).

    With the abuse of antibiotics, the detection of antibiotics has become a hot spot for scientists (Scheme S1 in Supporting information).Due to the host-guest complex can detect negativecharged molecules with turn-on fluorescence response in water,(1?endo-HPTS)·exo-HPTS can be an ideal probe for antibiotics, such as Penicillin G, ampicillin and carbenicillin.Not surprisingly, with the addition of antibiotics, the emission intensity of (1?endo-HPTS)·exo-HPTS at 515 nm was significantly enhanced, with ~25,~31 and ~38 times (Figs.3c and d Figs.S21-S23 in Supporting information), respectively.The off-on fluorescence response was successfully realized.These experimental results show that the host-(endo-exo)guest complex is universal and can be used as a probe to detect various substances in water.

    The host-(endo-exo)guest complex (1?endo-HPTS)·exo-HPTS also was employed for cell imaging.Confocal laser scanning microscopy (CLSM) experiments in HeLa cells were performed to assess whether host-guest probe (1?endo-HPTS)·exo-HPTS could be in mitochondrion selectively, where the concentration of ATP is higher than other area in cells (Fig.4).HeLa cells stained with Mito-Tracker Deep Red (a commercially mitochondrial tracker) displayed fluorescence on the red channel (Fig.4a).The cells stained with (1?endo-HPTS)·exo-HPTS exhibited fluorescence on the green channel in Fig.4b.The bright-field (Fig.4c) and the merged(Fig.4d) images of the cells showed overlap with commercial mitochondrial dyes, indicating that (1?endo-HPTS)·exo-HPTS can serve as a mitochondrion fluorescent probe.CLSM imaging and fluorescence intensity profile confirm that the emission is belonged to free HPTS (Figs.4e and f).

    Fig.4.CLSM imaging of HeLa cells stained with Mito-Tracker Deep Red (100 μmol/L) and (1?endo-HPTS)·exo-HPTS (50 μmol/L):(a) red channel, (b) green channel, (c) bright field, and (d) merged image.(e) CLSM imaging and (f) fluorescence intensity profile of regions of interest.

    In conclusion, we have reported the formation of 1:1:1 host-(endo-exo)guest complexes between TPE-based octacationic cage with organic dyes (e.g., HPTS and PSTA) in water.In these host-(endo-exo)guest complexes, cage can entirely encapsulate one dye asendo-guest inside the hydrophobic cavity and bind with another dye asexo-guest on the outer face throughπ-π, hydrophobic, and electrostatic interactions.Their host-guest behaviours have been investigated by1H NMR, UV-vis, fluorescence experiments.In aqueous media, cage exhibits an on-off fluorescence quenching when binding with HPTS.We utilize this on-off fluorescent hostguest system as a fluorescent probe to selectively detect negativecharged biomolecules including nucleoside derivatives, DNA, and antibiotics to achieve an off-on fluorescence response.We anticipate that this design of on-off-on fluorescent host-guest system has universality for probing biomolecules and cell imaging in water.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.22122108, 21971208 and 21771145), the Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province of China (No.2021JC-37), and the Fok Ying Tong Education Foundation (No.171010).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.11.010.

    两性夫妻黄色片| 精品一区二区三卡| 曰老女人黄片| 欧美精品啪啪一区二区三区| 亚洲 欧美一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 校园春色视频在线观看| 亚洲欧美精品综合久久99| 极品人妻少妇av视频| 精品无人区乱码1区二区| 国产国语露脸激情在线看| 在线观看免费日韩欧美大片| 欧美日韩视频精品一区| 伦理电影免费视频| 久久香蕉精品热| 亚洲片人在线观看| 一边摸一边抽搐一进一小说| 成人18禁高潮啪啪吃奶动态图| 午夜激情av网站| 国产xxxxx性猛交| 国产伦人伦偷精品视频| 91麻豆av在线| 日韩免费高清中文字幕av| 欧美+亚洲+日韩+国产| 亚洲久久久国产精品| www.www免费av| 国产精品 欧美亚洲| 欧美激情久久久久久爽电影 | 精品久久久久久,| 露出奶头的视频| 欧美日韩一级在线毛片| 一区二区三区国产精品乱码| 国产av在哪里看| 国产成人精品在线电影| 国产成人欧美在线观看| 99国产精品一区二区三区| 久久人人精品亚洲av| 国产精品九九99| 亚洲一卡2卡3卡4卡5卡精品中文| 99国产精品99久久久久| www.自偷自拍.com| 国内毛片毛片毛片毛片毛片| 91麻豆av在线| 又黄又爽又免费观看的视频| 国产精品久久久人人做人人爽| 男女下面插进去视频免费观看| 国产单亲对白刺激| 国产精品98久久久久久宅男小说| 婷婷六月久久综合丁香| 男人的好看免费观看在线视频 | 久久久久久久午夜电影 | 亚洲国产毛片av蜜桃av| 国产成人精品无人区| 中出人妻视频一区二区| 国产精品亚洲一级av第二区| 亚洲激情在线av| 亚洲国产欧美一区二区综合| 天堂影院成人在线观看| 久久精品91蜜桃| 亚洲成人国产一区在线观看| 一区在线观看完整版| 国产99久久九九免费精品| 丝袜在线中文字幕| 淫秽高清视频在线观看| 久久久久国产一级毛片高清牌| 中文字幕精品免费在线观看视频| 久久亚洲精品不卡| 超色免费av| 国产精品一区二区免费欧美| 自线自在国产av| 亚洲av电影在线进入| 精品无人区乱码1区二区| 亚洲午夜理论影院| 精品国产一区二区三区四区第35| 桃红色精品国产亚洲av| 他把我摸到了高潮在线观看| 一级片免费观看大全| www.精华液| 国产精品1区2区在线观看.| 亚洲片人在线观看| 久9热在线精品视频| 99精品在免费线老司机午夜| 新久久久久国产一级毛片| 中文字幕人妻丝袜制服| 男女高潮啪啪啪动态图| 在线观看免费视频日本深夜| 国产午夜精品久久久久久| 免费在线观看黄色视频的| 国产精品野战在线观看 | 精品午夜福利视频在线观看一区| 久久久久国产精品人妻aⅴ院| 男女下面进入的视频免费午夜 | 国产欧美日韩一区二区三| 午夜免费激情av| 怎么达到女性高潮| 免费看a级黄色片| 亚洲av第一区精品v没综合| 欧美成人免费av一区二区三区| 女性被躁到高潮视频| 一区二区日韩欧美中文字幕| 日韩大码丰满熟妇| 一级毛片高清免费大全| 免费看a级黄色片| 日本a在线网址| 一级片'在线观看视频| 精品福利观看| 亚洲第一青青草原| 三级毛片av免费| 91在线观看av| 黑人巨大精品欧美一区二区蜜桃| 香蕉丝袜av| 色综合欧美亚洲国产小说| 老司机在亚洲福利影院| 老汉色av国产亚洲站长工具| 性欧美人与动物交配| 亚洲国产精品合色在线| 国产精品一区二区三区四区久久 | 大陆偷拍与自拍| 成人国语在线视频| 在线观看免费视频日本深夜| 19禁男女啪啪无遮挡网站| 美女 人体艺术 gogo| 91九色精品人成在线观看| 丁香欧美五月| 视频在线观看一区二区三区| 亚洲av片天天在线观看| 久久精品国产亚洲av香蕉五月| 日韩高清综合在线| 日日摸夜夜添夜夜添小说| 国产精品影院久久| 高清黄色对白视频在线免费看| 多毛熟女@视频| 超碰97精品在线观看| 国产免费现黄频在线看| 夫妻午夜视频| 激情视频va一区二区三区| 国产黄a三级三级三级人| 亚洲欧美激情综合另类| 激情在线观看视频在线高清| 日本黄色日本黄色录像| 自拍欧美九色日韩亚洲蝌蚪91| 欧美精品啪啪一区二区三区| 在线天堂中文资源库| 亚洲成a人片在线一区二区| 曰老女人黄片| 99精品欧美一区二区三区四区| tocl精华| 精品国产乱子伦一区二区三区| 国产一区二区激情短视频| 日本精品一区二区三区蜜桃| 99国产精品免费福利视频| av超薄肉色丝袜交足视频| 亚洲精品国产色婷婷电影| 久久精品影院6| 五月开心婷婷网| 后天国语完整版免费观看| 久久国产精品人妻蜜桃| 黄网站色视频无遮挡免费观看| 亚洲男人天堂网一区| 中国美女看黄片| 亚洲免费av在线视频| 国产精品久久电影中文字幕| 亚洲精品av麻豆狂野| 一级a爱视频在线免费观看| 国产在线观看jvid| 国产一区二区三区在线臀色熟女 | 欧美人与性动交α欧美软件| 大型黄色视频在线免费观看| 十八禁网站免费在线| 一区二区三区精品91| 男女高潮啪啪啪动态图| 国产精品国产高清国产av| 久久久国产欧美日韩av| 精品久久久久久久毛片微露脸| av福利片在线| 看片在线看免费视频| 精品国产超薄肉色丝袜足j| 亚洲精品美女久久av网站| 日本vs欧美在线观看视频| 国产精品免费视频内射| 欧美激情高清一区二区三区| 日韩大尺度精品在线看网址 | 久久人妻熟女aⅴ| 国产片内射在线| 男人舔女人的私密视频| av超薄肉色丝袜交足视频| 亚洲色图综合在线观看| av视频免费观看在线观看| 操出白浆在线播放| 国产精品一区二区精品视频观看| 黄色视频,在线免费观看| 午夜成年电影在线免费观看| 18禁观看日本| 国产成人精品无人区| 人妻丰满熟妇av一区二区三区| 新久久久久国产一级毛片| 在线观看午夜福利视频| 免费一级毛片在线播放高清视频 | 久久久久久久久久久久大奶| 亚洲午夜理论影院| 日本黄色日本黄色录像| 丰满人妻熟妇乱又伦精品不卡| 韩国精品一区二区三区| 久久午夜亚洲精品久久| www日本在线高清视频| 亚洲熟妇中文字幕五十中出 | 欧美在线一区亚洲| 成人精品一区二区免费| 亚洲国产看品久久| 99久久精品国产亚洲精品| 亚洲欧美日韩另类电影网站| 成人免费观看视频高清| 天堂影院成人在线观看| 国产不卡一卡二| 99香蕉大伊视频| av电影中文网址| 欧美激情 高清一区二区三区| 女人精品久久久久毛片| 一进一出抽搐gif免费好疼 | 99国产极品粉嫩在线观看| 久久天躁狠狠躁夜夜2o2o| 一级毛片高清免费大全| 中文字幕人妻丝袜一区二区| www.精华液| 亚洲av成人不卡在线观看播放网| 亚洲一区二区三区欧美精品| 又黄又爽又免费观看的视频| 丝袜美腿诱惑在线| 日日爽夜夜爽网站| 久久中文看片网| 女人精品久久久久毛片| 91字幕亚洲| 最近最新免费中文字幕在线| 超碰成人久久| 国产欧美日韩精品亚洲av| 成人亚洲精品av一区二区 | av网站在线播放免费| 欧美一区二区精品小视频在线| 母亲3免费完整高清在线观看| 亚洲av片天天在线观看| 黄片小视频在线播放| 欧美黄色淫秽网站| 久久人人97超碰香蕉20202| 久久亚洲真实| 欧美日韩国产mv在线观看视频| 人人妻人人爽人人添夜夜欢视频| svipshipincom国产片| 欧美+亚洲+日韩+国产| www.www免费av| 国产免费男女视频| 日韩三级视频一区二区三区| 成人18禁高潮啪啪吃奶动态图| 美女大奶头视频| 在线观看日韩欧美| 国产视频一区二区在线看| 少妇裸体淫交视频免费看高清 | 岛国视频午夜一区免费看| 精品午夜福利视频在线观看一区| 国产亚洲精品第一综合不卡| 美女 人体艺术 gogo| 成人特级黄色片久久久久久久| 国产伦人伦偷精品视频| 女人爽到高潮嗷嗷叫在线视频| 国产精品二区激情视频| 久久人妻av系列| 日本欧美视频一区| 女人精品久久久久毛片| 亚洲精品在线观看二区| 人人妻人人澡人人看| 侵犯人妻中文字幕一二三四区| 99精国产麻豆久久婷婷| 一区二区三区国产精品乱码| 欧美激情极品国产一区二区三区| 精品国产乱子伦一区二区三区| 精品人妻在线不人妻| 国产成人一区二区三区免费视频网站| 欧美日韩亚洲高清精品| 男人操女人黄网站| 又紧又爽又黄一区二区| 亚洲aⅴ乱码一区二区在线播放 | 两性夫妻黄色片| 777久久人妻少妇嫩草av网站| 久久中文字幕一级| 在线观看舔阴道视频| www.999成人在线观看| 国产激情久久老熟女| 亚洲美女黄片视频| 精品久久久久久电影网| 老司机靠b影院| 18禁裸乳无遮挡免费网站照片 | 男女高潮啪啪啪动态图| 国产主播在线观看一区二区| 久久久久国产一级毛片高清牌| 波多野结衣高清无吗| 麻豆国产av国片精品| 欧美成人午夜精品| 满18在线观看网站| 不卡av一区二区三区| 成人亚洲精品一区在线观看| 久久国产亚洲av麻豆专区| 88av欧美| 国产高清国产精品国产三级| 久久天堂一区二区三区四区| 级片在线观看| 午夜a级毛片| 成人国语在线视频| 亚洲自拍偷在线| 美女 人体艺术 gogo| 国产成人欧美| 日韩高清综合在线| 亚洲欧美激情在线| 这个男人来自地球电影免费观看| 一边摸一边抽搐一进一出视频| 天天添夜夜摸| 热re99久久国产66热| 国产精品一区二区三区四区久久 | 国产av又大| 国产视频一区二区在线看| 日韩av在线大香蕉| 9热在线视频观看99| 中文字幕另类日韩欧美亚洲嫩草| 无限看片的www在线观看| 亚洲av电影在线进入| 日日爽夜夜爽网站| 日韩三级视频一区二区三区| 国产激情欧美一区二区| 成年人免费黄色播放视频| av天堂久久9| 男人舔女人下体高潮全视频| 高清av免费在线| 精品久久久久久,| 免费不卡黄色视频| 欧美日本亚洲视频在线播放| 在线av久久热| 精品人妻1区二区| 热99re8久久精品国产| 亚洲精品中文字幕在线视频| 真人一进一出gif抽搐免费| 亚洲熟女毛片儿| 麻豆av在线久日| 美女国产高潮福利片在线看| 一级片免费观看大全| 老熟妇乱子伦视频在线观看| 中亚洲国语对白在线视频| 成年版毛片免费区| 午夜福利在线观看吧| 欧美精品亚洲一区二区| 麻豆av在线久日| 亚洲精品一卡2卡三卡4卡5卡| 高清黄色对白视频在线免费看| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美成人免费av一区二区三区| 久久久国产欧美日韩av| 中出人妻视频一区二区| av欧美777| 熟女少妇亚洲综合色aaa.| 欧美av亚洲av综合av国产av| 成熟少妇高潮喷水视频| 午夜福利欧美成人| 国产精品永久免费网站| 国产欧美日韩一区二区三| 男女高潮啪啪啪动态图| 日韩欧美三级三区| 精品国内亚洲2022精品成人| 女生性感内裤真人,穿戴方法视频| 日韩大尺度精品在线看网址 | 欧美日韩一级在线毛片| 波多野结衣高清无吗| x7x7x7水蜜桃| 亚洲少妇的诱惑av| 久久久久久亚洲精品国产蜜桃av| 一级a爱片免费观看的视频| 女人被狂操c到高潮| 色在线成人网| 久久久久国产一级毛片高清牌| 丝袜在线中文字幕| 99热国产这里只有精品6| 午夜精品国产一区二区电影| 亚洲欧美激情综合另类| 丁香欧美五月| 精品久久久久久成人av| 一进一出好大好爽视频| 人人妻人人添人人爽欧美一区卜| 91精品三级在线观看| 精品国内亚洲2022精品成人| 淫秽高清视频在线观看| 高清欧美精品videossex| 极品教师在线免费播放| 757午夜福利合集在线观看| 欧美在线一区亚洲| 久久香蕉精品热| 久久九九热精品免费| 麻豆久久精品国产亚洲av | 搡老岳熟女国产| 成熟少妇高潮喷水视频| 另类亚洲欧美激情| 高潮久久久久久久久久久不卡| 老汉色av国产亚洲站长工具| 在线国产一区二区在线| 99精国产麻豆久久婷婷| 又黄又爽又免费观看的视频| 这个男人来自地球电影免费观看| 色哟哟哟哟哟哟| 别揉我奶头~嗯~啊~动态视频| 少妇粗大呻吟视频| av片东京热男人的天堂| 国产一区在线观看成人免费| 级片在线观看| 91精品三级在线观看| 日日爽夜夜爽网站| 欧美日韩亚洲综合一区二区三区_| 免费在线观看视频国产中文字幕亚洲| 久久亚洲真实| 又紧又爽又黄一区二区| 欧美人与性动交α欧美精品济南到| 999久久久国产精品视频| 免费在线观看亚洲国产| 国产xxxxx性猛交| 多毛熟女@视频| 久久中文看片网| 一级毛片女人18水好多| 视频区欧美日本亚洲| 美女福利国产在线| 岛国视频午夜一区免费看| 精品乱码久久久久久99久播| 一夜夜www| 制服人妻中文乱码| 欧美在线黄色| 很黄的视频免费| 精品国产亚洲在线| a级毛片在线看网站| 无限看片的www在线观看| 91成年电影在线观看| 中文字幕高清在线视频| 美女高潮喷水抽搐中文字幕| 成年女人毛片免费观看观看9| 免费看a级黄色片| 99久久综合精品五月天人人| 午夜福利一区二区在线看| 国产精品一区二区免费欧美| 国产成人精品在线电影| 色老头精品视频在线观看| 免费看十八禁软件| 欧美亚洲日本最大视频资源| 精品一区二区三区四区五区乱码| 久久国产精品男人的天堂亚洲| 国产精品永久免费网站| 国产黄a三级三级三级人| 午夜91福利影院| 51午夜福利影视在线观看| 国产乱人伦免费视频| 91国产中文字幕| 亚洲 国产 在线| 狂野欧美激情性xxxx| 午夜福利一区二区在线看| 1024香蕉在线观看| 最新在线观看一区二区三区| 男人舔女人的私密视频| 久久久国产成人免费| 一区二区三区激情视频| 丝袜人妻中文字幕| 九色亚洲精品在线播放| 久久精品国产亚洲av高清一级| 久久青草综合色| 在线免费观看的www视频| 国产高清videossex| 久久精品影院6| 精品久久久精品久久久| 18美女黄网站色大片免费观看| 精品国产超薄肉色丝袜足j| 日本wwww免费看| 一a级毛片在线观看| 亚洲情色 制服丝袜| 午夜福利免费观看在线| 岛国在线观看网站| 成年人黄色毛片网站| 神马国产精品三级电影在线观看 | 亚洲 国产 在线| 亚洲欧美精品综合久久99| 亚洲精品一二三| 国产激情欧美一区二区| а√天堂www在线а√下载| 精品少妇一区二区三区视频日本电影| 一进一出抽搐动态| avwww免费| 高潮久久久久久久久久久不卡| 99国产综合亚洲精品| 国产精品一区二区精品视频观看| 精品熟女少妇八av免费久了| 美女大奶头视频| 久久人妻av系列| 一个人免费在线观看的高清视频| 欧美精品亚洲一区二区| 国产极品粉嫩免费观看在线| 男女下面进入的视频免费午夜 | 国产极品粉嫩免费观看在线| 精品国产一区二区三区四区第35| 怎么达到女性高潮| 51午夜福利影视在线观看| 亚洲熟女毛片儿| 极品人妻少妇av视频| 久热这里只有精品99| 啦啦啦在线免费观看视频4| 免费观看人在逋| 女同久久另类99精品国产91| 精品一区二区三区四区五区乱码| 黄色女人牲交| 在线国产一区二区在线| 一级,二级,三级黄色视频| 亚洲专区中文字幕在线| 欧美中文综合在线视频| 国产午夜精品久久久久久| 欧美日韩瑟瑟在线播放| 午夜精品久久久久久毛片777| 丁香欧美五月| 黄色怎么调成土黄色| 男女之事视频高清在线观看| 日本黄色视频三级网站网址| 夜夜夜夜夜久久久久| 一进一出好大好爽视频| 精品国产国语对白av| 视频在线观看一区二区三区| 99国产极品粉嫩在线观看| 国产av一区在线观看免费| 欧美日韩中文字幕国产精品一区二区三区 | xxxhd国产人妻xxx| 欧美成人性av电影在线观看| 午夜视频精品福利| 欧美成人免费av一区二区三区| 男女床上黄色一级片免费看| 日韩免费高清中文字幕av| 一区二区三区精品91| 村上凉子中文字幕在线| 久久人妻av系列| 精品国产乱码久久久久久男人| 久久香蕉精品热| 国产区一区二久久| 欧美黑人欧美精品刺激| 免费日韩欧美在线观看| 真人一进一出gif抽搐免费| 在线观看一区二区三区激情| 黄色怎么调成土黄色| 日日干狠狠操夜夜爽| 女人被躁到高潮嗷嗷叫费观| 午夜久久久在线观看| 琪琪午夜伦伦电影理论片6080| 国产乱人伦免费视频| 午夜老司机福利片| 久久天堂一区二区三区四区| 美国免费a级毛片| 91国产中文字幕| 天天影视国产精品| 丁香六月欧美| 久久亚洲真实| 午夜免费成人在线视频| 久久人妻av系列| 天堂中文最新版在线下载| 久久婷婷成人综合色麻豆| av网站在线播放免费| 国产精品日韩av在线免费观看 | 亚洲激情在线av| 日韩免费高清中文字幕av| 成年人黄色毛片网站| 日韩 欧美 亚洲 中文字幕| 国产成人免费无遮挡视频| 麻豆av在线久日| 国产野战对白在线观看| 午夜免费鲁丝| 啪啪无遮挡十八禁网站| 亚洲伊人色综图| 国产精品一区二区免费欧美| 欧美成人性av电影在线观看| 亚洲 国产 在线| 制服人妻中文乱码| 精品免费久久久久久久清纯| 免费在线观看影片大全网站| 日韩欧美在线二视频| 国产精品自产拍在线观看55亚洲| 久久久久久免费高清国产稀缺| 精品日产1卡2卡| 国产欧美日韩精品亚洲av| 午夜激情av网站| av片东京热男人的天堂| 天堂动漫精品| 国产精品99久久99久久久不卡| 日本撒尿小便嘘嘘汇集6| 深夜精品福利| 成年版毛片免费区| 操美女的视频在线观看| 亚洲av成人av| 黄片小视频在线播放| 热99国产精品久久久久久7| 女警被强在线播放| 欧美激情 高清一区二区三区| 在线十欧美十亚洲十日本专区| 人人妻人人澡人人看| 精品乱码久久久久久99久播| 亚洲国产精品合色在线| 很黄的视频免费| 国产精品一区二区三区四区久久 | 正在播放国产对白刺激| 黄频高清免费视频| 精品电影一区二区在线| 丰满人妻熟妇乱又伦精品不卡| 欧美激情高清一区二区三区| 纯流量卡能插随身wifi吗| 国产高清国产精品国产三级| а√天堂www在线а√下载| 嫩草影视91久久| 久久久久久久久免费视频了| 免费搜索国产男女视频| 欧美日本亚洲视频在线播放| 日日夜夜操网爽| 男人的好看免费观看在线视频 | 日日夜夜操网爽|