• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pincer iridium(III)-catalyzed enantioselective C(sp3)-H functionalization via carbenoid C–H insertion of 3-diazooxindoles with 1,4-cyclohexadiene

    2022-06-20 07:59:40NanLiXiaoyanYangYanyanZhuFangWangJunfangGongMaopingSong
    Chinese Chemical Letters 2022年5期

    Nan Li, Xiaoyan Yang, Yanyan Zhu, Fang Wang, Junfang Gong, Maoping Song

    College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China

    Keywords:Asymmetric catalysis C–H functionalization Pincer iridium(III) catalyst Carbenoid C–H insertion 3-Diazooxindole Chiral 3-substituted oxindole

    ABSTRACT The asymmetric carbenoid C–H insertion of 3-diazooxindoles into 1,4-cyclohexadiene has been accomplished in the presence of chiral bis(imidazoline) NCN pincer iridium(III) complexes as the catalysts.With a catalyst loading of 0.5 mol%, the reactions proceeded smoothly at 0 °C to afford a variety of chiral 3-substituted oxindoles in good yields with moderate to excellent enantioselectivities (up to 99% ee).The protocol exhibits good functional group tolerance with respect to 3-diazooxindoles and is readily scaled up to 2 mmol scale without any loss in activity and enantioselectivity.Density functional theory (DFT)calculations have been performed to better understand the reaction mechanism and to explain the stereochemical outcome of the reactions.

    Catalytic enantioselective insertion reaction of metal carbenoids, generatedin situfrom metal mediated decomposition of diazo compounds, into C–H bonds represents an important and powerful strategy for C–H bond functionalization and construction of C–C bonds [1–4].In particular, chiral dirhodium(II) complexes catalyzed intermolecular C–H insertions of donor/acceptorsubstituted carbenoids have been extensively investigated and found broad applications in the synthesis of natural products, pharmaceuticals, bioactive compounds and other complex chiral targets[5,6].Successful dirhodium(II) catalysts include, among others, binaphtholphosphates,ortho-metalated arylphosphine dirhodium, especially various dirhodium carboxylates and carboxamidates complexes.Undoubtedly, rhodium complexes have been widely established as the most effective and versatile catalysts for asymmetric carbenoid C–H bond insertion reactions.In contrast, only a limited number of iridium complexes have been reported as viable catalysts for such reactions despite the fact that less expensive Ir belongs to the same group as Rh [7].Compared with their rhodium counterparts, iridium carbenoids tend to have a lower electrophilic character due to the increased metal to ligand backbonding, which makes the iridium carbenoids less reactive but more selective [6,7].Indeed, researches from Suematsu and Katsuki[8], Weldyet al.[9] have demonstrated the unique reactivity of iridium carbenoids by means of which some challenges in the area have been addressed.In their works, intermolecular C–H insertions ofα-diazopropionates [8] and ethyl diazoacetates [9] were successfully realized with high enantioselectivities (83% ~>99%eeand up to 96%ee, respectively) for the first time by using chiral Ir(III)-(salen) or bis(imidazoline) pincer Ir(III) complexes as catalysts.It is well known that the reactions with these two types of diazo compounds are quite challenging.Forα-diazopropionates, they are inclined to undergo competitiveβ-hydride elimination.While for ethyl diazoacetates, controlling site, chemo- and stereo-selectivity of the reactions is difficult owing to the very high reactivity and non-prochiral property of the corresponding acceptor-only metallocarbenoids.

    Oxindole derivatives, including chiral 3-substituted oxindoles,are widely found in alkaloid natural products, pharmaceuticals and synthetic biologically active molecules [10,11].They can also serve as versatile precursors in organic synthesis and as central intermediates in the synthesis of a number of naturally occurring compounds [12,13].Transition metal catalyzed intermolecular carbenoid C–H insertion of 3-diazooxindoles, a kind of cyclic diazoamide and also a donor-acceptor diazo compound,provides a direct and efficient approach for the construction of 3-substituted oxindoles.Thus, various achiral 3-substituted oxindoles with diverse structures have been successfully prepared through Rh, In, Au or Ru catalyzed non-asymmetric C–H insertion of 3-diazooxindoles with a wide range of substrates such as indoles, pyrroles, anthracenes, carbazoles,β-enaminoesters,N,Ndisubstituted anilines, phenols,β-enaminones [14–24].However, to the best of our knowledge, there are no reports on enantioselective C–H carbenoid insertion of 3-diazooxindoles for the synthesis of chiral 3-substituted oxindoles.

    We have been interested in exploring applications of pincer metal complexes in metal-catalyzed transformations including those of chiral ones in enantioselective reactions [25–28].Very recently, we found that pincer Ir(III) complex 1d with a chiral bis(imidazolinyl)phenyl ligand (abbreviated as Phebim, Fig.1) exhibited good activity and stereocontrol (up to 86%ee) in asymmetric carbenoid C–H insertion ofα-aryl-α-diazoacetates withNprotected indoles [29].To develop more Ir-catalyzed, especially pincer Ir-catalyzed intermolecular carbenoid C–H insertions for further exploring and understanding the chiral iridium chemistry in the area, we herein present the use of the pincer (Phebim)Ir complexes (Fig.1) in catalytic enantioselective C–H insertion of 3-diazooxindoles into 1,4-cyclohexadiene.The current work represents the first example of asymmetric intermolecular C–H carbenoid insertion reaction using 3-diazooxindoles as carbenoid precursors.

    Fig.1.Chiral bis(imidazoline) NCN pincer iridium(III) complexes.

    In our previous study, the pincer (Phebim)Ir complex 1d with a catalyst loading of 3 mol% gave the best result among complexes 1a-1d [29].For further catalyst optimization, synthesis of the new (Phebim)Ir complexes 1e-h were carried out (for details see Supporting information).In comparison with 1d, complexes 1e-1h have the same (4S,5S)-diphenyl substituents but differentNsubstituent on the imidazoline ring.Synthetically, a chiral diamine was used as the chiral source for complexes 1e-1h, while for complex 1d (and also complexes 1a-1c) the chiral substituents originated from chiral amino alcohols.In addition, it was found that the introduction ofN-electron withdrawing group (N-sulfonyl or acyl) on the imidazoline ring was detrimental to the direct metallation of the corresponding Phebim-H ligands, leading to the obviously lower yields of complexes 1e-1h (22%-28%) in this step when compared with 1d (46%) and 1a-1c (34%-45%).X-ray single crystal analysis of the complex 1h confirmed that it is the expected H2O-bound six-coordinate pincer complex with meridionally tridentate coordination of the Phebim ligand (Fig.2, CCDC:1971477).

    Fig.2.Molecular structure of complex 1h.

    The C–H insertion of 3-diazo-1-methylindolin-2-one with 1,4-cyclohexadiene was first chosen as a model to evaluate the potential of the obtained (Phebim)Ir complexes (for details see Supporting information).Encouragingly, except for complexes 1b and 1c,all other complexes including 1a and 1d-1h could give the desired product 3a in high yields (81%-97%) with excellent enantioselectivities (93%-97%ee) when the reactions were conducted with a large excess of the cyclodiene (21.5 equiv.) under solvent-free condition at room temperature with a catalyst loading of 1.0 mol% for 12 h (Table 1, entries 1–6).Considering that the synthetic yield of 1a was higher than those of 1f-1h in the metallation step (44%vs.22%-26%), complex 1a was then further utilized as the catalyst for optimization of reaction conditions.A screening of temperature indicated that in the range of -20~40 °C lowering the temperature helped to improve the yield of product 3a by inhibiting side reactions such as dimerization of the diazo compound and 0 °C was found to be the optimal temperature (entry 7).Next, we tried to reduce the amount of 1,4-cyclohexadiene and the catalyst loading.It turned out that the use of 10.8 equiv.of the cyclodiene in the presence of CH2Cl2solvent (0.2 mL) and with a catalyst loading of 0.5 mol% could also afford a good result (entry 8, 88% yield with 93%ee).Pleasingly, under these conditions, complex 1g gave a better result than 1a in terms of both yield and enantioselectivity (entry 9, 93% yield with 97%ee).Increasing the CH2Cl2solvent volume resulted in decreased yields and/or enantioselectivity of 3a.Based on the results and also for convenience of manipulation, 0.5 mL of CH2Cl2as the solvent was considered to be appropriate (entry 10).Finally, TLC monitoring of the reaction showed that the diazo compound was completely consumed within 8 h, furnishing the product 3a in 87% yield with 96%ee(entry 11).

    Table 1 Optimization of reaction conditions.a

    The substrate scope of 3-diazooxindoles was then investigated under the optimized conditions.As shown in Table 2,various substituted 3-diazooxindoles reacted smoothly with 1,4-cyclohexadiene to furnish structurally diverse oxindoles 3 bearing a chiral cyclohexa-2,5–dien-1-yl group at the 3-position in moderate to excellent yields (42%-99%) with moderate to excellent enantioselectivities (51%-99%ee).The substituents involve electronwithdrawing groups (EWG) including F, Cl, Br, I, CF3, and OCF3as well as electron-donating groups (EDG) including Me and OMewhich are located at 4-, 5-, 6- or 7-position of 3-diazooxindoles.In general, 3-diazooxindoles containing an EDG at 5-, 6- or 7-position reacted quite well with the cyclodiene, giving the corresponding products 3 in high yields (76%-95%) with invariably excellent enantioselectivities (entries 4–6, 13, 14, 18 and 19, 94%-99%ee).In contrast, 3-diazooxindoles with an EWG exhibited lower reactivity and an extended reaction time (24vs.8 h) was needed to ensure satisfactory yields.Good to excellent enantioselectivities (80%-91%ee) could still be achieved when the electron-withdrawing substituents including F, Cl and Br are located at 6- or 7-position(entries 15–17 and 20–22).However, when the EWG are at 5-position and a CF3group at 7-position, moderate enantioselectivities (51%-70%ee) were obtained (entries 7–12 and 23).In the case of 4-substituted 3-diazooxindoles, 4-methyl failed to react with the cyclodiene possibly due to the steric hindrance at the 4-position.For the smaller 4-F substituent, the reaction could occur but besides prolonged time (24 h), a higher catalyst loading of 1.0 mol% and an elevated reaction temperature (25 °C) were also necessary because of the steric hindrance and the strong electronwithdrawing property of the fluorine (entry 3).The desired product 3b was generated in 62% yield with 78%ee.In addition, the effect of theN-substituent was studied as well.The reactions of unsubstituted and 5-Me substitutedN-benzyl diazooxindoles proceeded efficiently to afford the products 3a′and 3c′in 88% yield with 97%eeand 88% yield with 99%ee, respectively (entries 2 and 5).The results were slightly better in terms of both the yields and enantioselectivities when compared with the correspondingN-methyl reactants.On the other hand, the reaction of the 5-Cl substitutedN-benzyl diazooxindole provided an obviously inferior result to that of the 5-ClN-methyl diazooxindole (entry 9vs.8).The absolute configurations of the products 3c′(CCDC:1476610)and 3o (CCDC:2051865) were determined by X-ray single crystal diffraction analysis to beS(Fig.3).

    Fig.3.Molecular structures of compounds 3c′(left) and 3o (right).

    Table 2 Substrate scope.a

    Besides 1,4-cyclohexadiene, 1-methyl-1,4-cyclohexadiene was also subjected to the reaction withN-methyl 3-diazooxindole,providing (S)-1-methyl-3-(m-tolyl)indolin-2-one 3u as the single regioisomer in 36% yield with 16%eeafter subsequent oxidation of the crude insertion product with DDQ.When 1,3,5-cycloheptatriene reacted with the same 3-diazooxindole, the corresponding insertion product 3v was obtained in 48% yield with 55%ee.In addition, we tried the C–H insertion reactions ofN-methyl 3-diazooxindole into cyclohexene and toluene.Unfortunately, no desired products were observed.

    A scale-up reaction of 1-benzyl-3-diazoindolin-2-one with 1,4-cyclohexadiene was carried out on a 2 mmol scale under the optimized reaction conditions with a reaction time of 24 h (Scheme 1).The desired product 3a′was isolated in excellent yield without any loss in enantioselectivity (93% yield, 98%ee).In addition, the chiral cyclohexa-2,5–dien-1-yl group in the product 3a′was easily reduced by catalytic hydrogenation in the presence of Pd/C catalyst,delivering the corresponding 3-cyclohexyl substituted oxindole 4a′in 70% yield with 95%ee.

    Scheme 1.A scale-up experiment and transformation of the catalysis product 3a′.

    In order to gain a better understanding of the reaction mechanism and the origin of stereocontrol of the current pincer Ircatalyzed asymmetric C–H insertion, density functional theory(DFT) calculations were performed by employment of Gaussian 09 program [30].The geometry optimization was carried out by using the M06–2X [31,32] functional with the basis set of 6–31G(d,p) for C, N, Cl, O, H and SDD for Ir [33,34] and accounting for the dichloromethane solvent effect by employing the IEF-PCM[35,36] solvation model (M06–2X/6–31G(d,p)+SDD//IEF-PCMDCM).As shown in Fig.4, the reaction initiates with dissociation of the water from the catalyst 1g, which requires only 1.4 kcal/mol energy, giving rise to the formation of the 16-electron intermediatetrans-5 with the two chloride ligands locatedtransto each other.Then the resultingtrans-5 intermediate would interact with the 3-diazooxindole to generate the iridium carbenoid complex along with extrusion of nitrogen.The energy barrier associated with this process (through the transition state 8-TS) is found to be 25.9 kcal/mol, which is difficult to attain under the optimized reaction conditions.Meanwhile,trans-5 can rearrange to itsciscounterpartcis-5 through 6-TS with a much lower energy barrier of 17.5 kcal/mol.Furthermore, the interaction ofcis-5 intermediate with the 3-diazooxindole proceeds very readilyviathe 7-TS because the 7-TS has a lower energy thancis-5, furnishing the iridium carbenoid intermediate 9 with the carbene ligand coordinated at the axial position.Subsequently, the carbenoid intermediate 9 undergoes the C–H insertion step with 1,4-cyclohexadiene to give the product 3a.It was found that the reaction did not proceedviaa three-centered transition state which would yield directly the insertion product 3a.Instead, a stepwise process involving hydride transfer followed by C–C bond formation was proposed computationally (Fig.4).This is quite different from the related Ir and Rh catalyzed asymmetric C–H insertion with cyclohexadiene,where a concerted or concerted asynchronous mechanism involving a three-centered transition state was well supported by computational analysis [37,38].In the hydride transfer step,Si-face approach of the cyclodiene to the intermediate 9 through the 10-TS has an energy barrier of 15.3 kcal/mol, whereas a higher barrier of 20.2 kcal/mol (11-TS) is present for the correspondingReface approach.The higher energy of the 11-TS is related to the steric hindrance of upward 4S-phenyl substituent on the imidazoline ligand, which shields theRe-face of the carbenoid intermediate, thereby making theSi-face approach of the cyclodiene preferentially and leading to the formation of (S)-isomer of the product with high enantioselectivity.In addition, noncovalent interaction (NCI) [39,40] was used to analyze the transition states 10-TS and 11-TS (Fig.5).It is found that there are five stronger interactions (C–H···Cl, C–H···π, C–H···Cl and twoπ···π) in 10-TS.While only four interactions (C–H···π, C–H···Cl, N–H···πandπ···π) exist in 11-TS.The observation also indicates that 10-TS is more stable than 11-TS.The lower energy 10-TS results in generation of the zwitterionic intermediate 12.From this intermediate, the reaction continues and the C–C bond is formed to afford the product (S)-3aviathe 14-TS with an energy barrier of 10.7 kcal/mol.

    Fig.4.The relative Gibbs free energy profiles of the pincer (Phebim)Ir complex 1g catalyzed asymmetric C–H insertion of 3-diazo-1-methylindolin-2-one with 1,4-cyclohexadiene (light gray, white, blue, red, green and brown balls represent C, H, N, O, Cl, Ir atoms respectively).

    Fig.5.NCI analysis of the transition states 10-TS and 11-TS (distances in ?).

    In summary, we have developed a chiral NCN pincer (Phebim)Ir complex-catalyzed enantioselective C–H insertion of 3-diazooxindoles with 1,4-cyclohexadiene.During the investigations four new (Phebim)Ir complexes were synthesized and well characterized.The catalytic reactions tolerate a variety of functional groups, furnishing chiral 3-substituted oxindoles with structural diversity in high yields and in most cases with good to excellent enantioselectivities (15 of 23 examples, 80%-99%ee).DFT calculations suggest that the current asymmetric C–H insertion proceedsviaa stepwise mechanism involving hydride transfer and the subsequent C–C bond formation, rather than a concerted or concerted asynchronous mechanism involving a three-centered transition state.The calculations also explain the stereoselectivity and are consistent with the experimental observation.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgment

    This research was supported by a grant from the National Natural Science Foundation of China (No.21472176).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.11.067.

    av又黄又爽大尺度在线免费看| 建设人人有责人人尽责人人享有的 | 久久精品国产自在天天线| 精品午夜福利在线看| 国产免费视频播放在线视频 | 男女下面进入的视频免费午夜| 男女边吃奶边做爰视频| 国产在视频线精品| 国产日韩欧美在线精品| 亚洲电影在线观看av| 在线观看一区二区三区| 色播亚洲综合网| 婷婷色av中文字幕| 搞女人的毛片| eeuss影院久久| 舔av片在线| 久99久视频精品免费| videos熟女内射| 国产精品.久久久| 国产精品一区二区性色av| 在线观看av片永久免费下载| 男人舔女人下体高潮全视频| 国产黄片视频在线免费观看| 欧美极品一区二区三区四区| 国产精品99久久久久久久久| 五月伊人婷婷丁香| av卡一久久| 18禁动态无遮挡网站| 色5月婷婷丁香| 亚洲激情五月婷婷啪啪| 日韩强制内射视频| 干丝袜人妻中文字幕| kizo精华| 97人妻精品一区二区三区麻豆| 偷拍熟女少妇极品色| 国产中年淑女户外野战色| 成年女人在线观看亚洲视频 | 国产 一区精品| 久久久成人免费电影| 国产精品一及| 亚州av有码| 精品久久国产蜜桃| 18禁在线播放成人免费| 卡戴珊不雅视频在线播放| 大片免费播放器 马上看| 麻豆成人午夜福利视频| 免费看av在线观看网站| 欧美 日韩 精品 国产| 欧美成人午夜免费资源| 国产高清三级在线| 日韩在线高清观看一区二区三区| 亚洲精品自拍成人| 成人漫画全彩无遮挡| 狂野欧美白嫩少妇大欣赏| 欧美潮喷喷水| 两个人的视频大全免费| 亚洲国产欧美人成| 成人二区视频| 欧美最新免费一区二区三区| 亚洲18禁久久av| 日韩亚洲欧美综合| 少妇的逼水好多| 久久热精品热| 欧美性猛交╳xxx乱大交人| 三级毛片av免费| 中文字幕av在线有码专区| 久久久亚洲精品成人影院| 麻豆国产97在线/欧美| 人妻少妇偷人精品九色| 久久亚洲国产成人精品v| 汤姆久久久久久久影院中文字幕 | 成人美女网站在线观看视频| 神马国产精品三级电影在线观看| 亚洲av电影在线观看一区二区三区 | 97超视频在线观看视频| 观看美女的网站| 欧美日韩国产mv在线观看视频 | 男女下面进入的视频免费午夜| 免费观看性生交大片5| 久久草成人影院| 免费看光身美女| 美女主播在线视频| 亚洲综合精品二区| av专区在线播放| 天天躁夜夜躁狠狠久久av| 97在线视频观看| 非洲黑人性xxxx精品又粗又长| 国产午夜精品一二区理论片| 91av网一区二区| 亚洲精品久久午夜乱码| 日日啪夜夜爽| ponron亚洲| 男女国产视频网站| 免费看日本二区| 久久久久国产网址| 亚洲av.av天堂| 99久久精品国产国产毛片| 国产日韩欧美在线精品| 国产av在哪里看| 一级毛片久久久久久久久女| 九九爱精品视频在线观看| 欧美日韩综合久久久久久| 爱豆传媒免费全集在线观看| 久久久久精品性色| 伦精品一区二区三区| 五月伊人婷婷丁香| 国产精品熟女久久久久浪| 啦啦啦韩国在线观看视频| 国产永久视频网站| 嫩草影院新地址| 狠狠精品人妻久久久久久综合| 狠狠精品人妻久久久久久综合| 欧美激情国产日韩精品一区| 我的女老师完整版在线观看| 国产精品一区www在线观看| 人人妻人人看人人澡| 2021天堂中文幕一二区在线观| 久久精品久久精品一区二区三区| 精品亚洲乱码少妇综合久久| 免费观看在线日韩| 床上黄色一级片| 亚洲精品第二区| 久久久久免费精品人妻一区二区| 日韩制服骚丝袜av| 99久久精品国产国产毛片| 亚洲美女搞黄在线观看| 免费看不卡的av| 九九在线视频观看精品| 国产av在哪里看| 国产成人精品婷婷| 久久97久久精品| 久久精品夜色国产| 18+在线观看网站| 亚洲欧美日韩无卡精品| 性插视频无遮挡在线免费观看| 午夜久久久久精精品| 边亲边吃奶的免费视频| 天美传媒精品一区二区| 又黄又爽又刺激的免费视频.| av在线蜜桃| 日韩强制内射视频| 极品少妇高潮喷水抽搐| 亚洲精品aⅴ在线观看| 国产高清国产精品国产三级 | 国产亚洲一区二区精品| 精品国产露脸久久av麻豆 | 国产在视频线在精品| 永久网站在线| 天美传媒精品一区二区| 精品国内亚洲2022精品成人| 欧美日韩精品成人综合77777| 一区二区三区免费毛片| 国产亚洲精品av在线| 国产一区二区三区av在线| 一区二区三区免费毛片| 日韩成人伦理影院| 日韩欧美三级三区| 欧美3d第一页| 国产伦一二天堂av在线观看| 亚洲精品,欧美精品| av又黄又爽大尺度在线免费看| 18禁在线无遮挡免费观看视频| 天堂俺去俺来也www色官网 | 男女啪啪激烈高潮av片| 色哟哟·www| 婷婷色av中文字幕| 国产成人精品久久久久久| 国产亚洲最大av| 特大巨黑吊av在线直播| 国产女主播在线喷水免费视频网站 | 国产 一区 欧美 日韩| 又爽又黄无遮挡网站| 成年版毛片免费区| 精品一区在线观看国产| 真实男女啪啪啪动态图| av国产免费在线观看| 禁无遮挡网站| 麻豆成人av视频| 菩萨蛮人人尽说江南好唐韦庄| 男人爽女人下面视频在线观看| 亚洲无线观看免费| 亚洲自偷自拍三级| 亚洲国产成人一精品久久久| 永久免费av网站大全| 欧美一区二区亚洲| 老女人水多毛片| 亚洲精品亚洲一区二区| 性色avwww在线观看| 国产午夜精品一二区理论片| 97超视频在线观看视频| 亚洲精品国产av蜜桃| 成人亚洲精品一区在线观看 | 九色成人免费人妻av| 亚洲精品aⅴ在线观看| 美女cb高潮喷水在线观看| 男人舔女人下体高潮全视频| 亚洲成人精品中文字幕电影| 亚洲色图av天堂| 亚洲精华国产精华液的使用体验| 国产色爽女视频免费观看| 高清毛片免费看| 成人亚洲精品av一区二区| 久久久久久久大尺度免费视频| 狂野欧美白嫩少妇大欣赏| 亚洲综合精品二区| 久久久久九九精品影院| 18禁在线无遮挡免费观看视频| 在线观看免费高清a一片| 日本爱情动作片www.在线观看| 久久久精品94久久精品| 嫩草影院入口| 国产成人精品婷婷| 亚洲熟妇中文字幕五十中出| 亚洲精品色激情综合| 又粗又硬又长又爽又黄的视频| 午夜激情久久久久久久| 色吧在线观看| 亚洲av成人av| 丰满乱子伦码专区| 久久久久久国产a免费观看| 亚州av有码| 纵有疾风起免费观看全集完整版 | 国产高清三级在线| 欧美一级a爱片免费观看看| 久久久久久久亚洲中文字幕| 看黄色毛片网站| 日韩人妻高清精品专区| 国产精品人妻久久久影院| 丝袜美腿在线中文| 三级毛片av免费| 极品少妇高潮喷水抽搐| 十八禁网站网址无遮挡 | 国产成人精品一,二区| 亚洲在线观看片| 久久久久国产网址| 人妻夜夜爽99麻豆av| 自拍偷自拍亚洲精品老妇| 日韩制服骚丝袜av| 天堂√8在线中文| 亚洲精品久久午夜乱码| 国产亚洲av嫩草精品影院| 久久人人爽人人片av| 久久精品国产亚洲av天美| a级一级毛片免费在线观看| 久久鲁丝午夜福利片| 两个人的视频大全免费| av国产免费在线观看| 国产成人精品婷婷| 久久韩国三级中文字幕| 国产精品美女特级片免费视频播放器| 午夜福利成人在线免费观看| 国产淫语在线视频| .国产精品久久| 日本与韩国留学比较| av又黄又爽大尺度在线免费看| 日本一二三区视频观看| 99久久人妻综合| 精品熟女少妇av免费看| 亚洲国产欧美在线一区| 午夜精品在线福利| 少妇熟女欧美另类| 尤物成人国产欧美一区二区三区| 在线播放无遮挡| 九九在线视频观看精品| 国产三级在线视频| 日韩欧美三级三区| 少妇裸体淫交视频免费看高清| 性色avwww在线观看| 最近的中文字幕免费完整| 国产在线一区二区三区精| 国产午夜精品论理片| 高清午夜精品一区二区三区| 婷婷色麻豆天堂久久| 亚洲第一区二区三区不卡| 国产三级在线视频| 久久久国产一区二区| 日韩av在线大香蕉| 51国产日韩欧美| 免费黄网站久久成人精品| 尾随美女入室| 亚洲av日韩在线播放| 免费播放大片免费观看视频在线观看| 丰满乱子伦码专区| 禁无遮挡网站| 狠狠精品人妻久久久久久综合| 国产午夜精品一二区理论片| 全区人妻精品视频| 亚洲精品日韩av片在线观看| 男女边吃奶边做爰视频| 91精品伊人久久大香线蕉| 人妻系列 视频| 国产日韩欧美在线精品| 国产精品.久久久| 亚洲精品,欧美精品| 国产亚洲午夜精品一区二区久久 | 国产高清国产精品国产三级 | 国产精品久久久久久久电影| 精品人妻视频免费看| 夫妻午夜视频| 男人和女人高潮做爰伦理| 丝瓜视频免费看黄片| 91精品一卡2卡3卡4卡| 欧美精品一区二区大全| 七月丁香在线播放| 国产精品久久久久久av不卡| 久久精品国产亚洲网站| 国产伦精品一区二区三区四那| av.在线天堂| av国产免费在线观看| 欧美一区二区亚洲| 最近的中文字幕免费完整| 精品一区二区三卡| 一级毛片黄色毛片免费观看视频| 久久国产乱子免费精品| 青春草亚洲视频在线观看| 成人性生交大片免费视频hd| 精品酒店卫生间| 亚洲国产高清在线一区二区三| 日韩中字成人| av在线天堂中文字幕| 能在线免费观看的黄片| 精品一区二区三卡| 亚洲第一区二区三区不卡| 久久久久久伊人网av| 日韩av在线大香蕉| 晚上一个人看的免费电影| 欧美日本视频| 91午夜精品亚洲一区二区三区| 亚洲av福利一区| 亚洲最大成人手机在线| 午夜久久久久精精品| 国产精品1区2区在线观看.| 欧美日韩精品成人综合77777| 欧美日韩视频高清一区二区三区二| 久久精品国产亚洲网站| 中文字幕av在线有码专区| 日韩欧美 国产精品| 爱豆传媒免费全集在线观看| 久久久久九九精品影院| 天堂影院成人在线观看| 亚洲成人av在线免费| 热99在线观看视频| 大片免费播放器 马上看| 成年av动漫网址| www.av在线官网国产| 3wmmmm亚洲av在线观看| 国精品久久久久久国模美| 国产乱来视频区| 国产又色又爽无遮挡免| 神马国产精品三级电影在线观看| 国产精品三级大全| 欧美xxxx性猛交bbbb| 午夜免费男女啪啪视频观看| 男女边摸边吃奶| 国产国拍精品亚洲av在线观看| 国产精品熟女久久久久浪| 亚洲在线观看片| 国产高潮美女av| 国产精品日韩av在线免费观看| 简卡轻食公司| 美女被艹到高潮喷水动态| 久久精品人妻少妇| 18禁在线播放成人免费| 亚洲精品乱码久久久v下载方式| 国产伦理片在线播放av一区| 久久热精品热| 国产黄a三级三级三级人| 2021少妇久久久久久久久久久| 又爽又黄a免费视频| 欧美激情久久久久久爽电影| 人人妻人人澡欧美一区二区| a级毛片免费高清观看在线播放| 亚洲四区av| av在线老鸭窝| 国产精品久久久久久久电影| 精品一区二区免费观看| 亚洲精品影视一区二区三区av| 亚洲国产成人一精品久久久| 国产熟女欧美一区二区| 综合色av麻豆| 国产乱人偷精品视频| 欧美最新免费一区二区三区| 日韩精品有码人妻一区| 久久综合国产亚洲精品| 麻豆精品久久久久久蜜桃| 日韩在线高清观看一区二区三区| 久久久亚洲精品成人影院| 国产av不卡久久| 久久久色成人| 亚洲在线观看片| 三级国产精品欧美在线观看| 美女黄网站色视频| 高清欧美精品videossex| videos熟女内射| 亚洲成人av在线免费| 亚洲综合色惰| 日本一二三区视频观看| 亚洲天堂国产精品一区在线| 九九在线视频观看精品| 99久久中文字幕三级久久日本| 插阴视频在线观看视频| 亚洲久久久久久中文字幕| 网址你懂的国产日韩在线| 亚洲av成人精品一二三区| 午夜福利在线观看吧| 中文在线观看免费www的网站| 国产男女超爽视频在线观看| 久久久久久伊人网av| 亚洲欧美清纯卡通| 真实男女啪啪啪动态图| 身体一侧抽搐| 亚洲av福利一区| 能在线免费观看的黄片| 99久久九九国产精品国产免费| 久久久国产一区二区| 在线观看人妻少妇| 久久久久精品久久久久真实原创| 免费在线观看成人毛片| 波野结衣二区三区在线| 综合色丁香网| 久久这里有精品视频免费| 久久精品夜夜夜夜夜久久蜜豆| 秋霞在线观看毛片| 国产精品一区二区性色av| 一个人观看的视频www高清免费观看| 少妇熟女aⅴ在线视频| 亚洲国产欧美在线一区| 免费黄色在线免费观看| www.av在线官网国产| 看非洲黑人一级黄片| 久久久久网色| 国产精品1区2区在线观看.| av在线天堂中文字幕| 午夜久久久久精精品| 国产av在哪里看| 亚洲va在线va天堂va国产| 黄色配什么色好看| 日韩欧美三级三区| 51国产日韩欧美| 麻豆成人av视频| 热99在线观看视频| 久久国内精品自在自线图片| 秋霞伦理黄片| 亚洲欧美日韩无卡精品| 国模一区二区三区四区视频| 国产探花在线观看一区二区| 久久久午夜欧美精品| 日本免费a在线| 精品亚洲乱码少妇综合久久| 成年女人看的毛片在线观看| 一级a做视频免费观看| 天堂俺去俺来也www色官网 | 色综合色国产| 色吧在线观看| 两个人视频免费观看高清| 秋霞在线观看毛片| 99久久九九国产精品国产免费| 我的女老师完整版在线观看| 2021少妇久久久久久久久久久| 国产午夜精品一二区理论片| 少妇人妻一区二区三区视频| 一级毛片我不卡| 国产成人精品一,二区| 只有这里有精品99| 男女视频在线观看网站免费| 国产高清三级在线| 亚洲激情五月婷婷啪啪| 久久6这里有精品| 天堂网av新在线| 亚洲成人精品中文字幕电影| 最后的刺客免费高清国语| 欧美 日韩 精品 国产| 网址你懂的国产日韩在线| 免费观看无遮挡的男女| 久久这里有精品视频免费| 日韩制服骚丝袜av| 女人被狂操c到高潮| 国内精品美女久久久久久| 久久99热这里只频精品6学生| 99热这里只有是精品50| 婷婷六月久久综合丁香| 又爽又黄a免费视频| 久久精品国产自在天天线| 麻豆乱淫一区二区| 欧美区成人在线视频| 青青草视频在线视频观看| 成人一区二区视频在线观看| 黑人高潮一二区| 黄色欧美视频在线观看| 久久久久久伊人网av| 日日啪夜夜爽| 日本色播在线视频| 水蜜桃什么品种好| 永久免费av网站大全| 亚洲成人久久爱视频| 国产成人精品久久久久久| 一区二区三区免费毛片| 亚洲成人av在线免费| 最近手机中文字幕大全| 国产男女超爽视频在线观看| 免费观看无遮挡的男女| 欧美激情久久久久久爽电影| 免费观看性生交大片5| 欧美人与善性xxx| 青青草视频在线视频观看| 日韩欧美一区视频在线观看 | 久久久精品欧美日韩精品| 啦啦啦韩国在线观看视频| 精品午夜福利在线看| 欧美97在线视频| 国产成年人精品一区二区| 国产久久久一区二区三区| 美女大奶头视频| 久久草成人影院| 欧美bdsm另类| 男人狂女人下面高潮的视频| 亚洲精品久久久久久婷婷小说| 美女内射精品一级片tv| 成人高潮视频无遮挡免费网站| 久久久久久国产a免费观看| 国产色爽女视频免费观看| 亚洲美女视频黄频| 国产中年淑女户外野战色| 亚洲欧美一区二区三区黑人 | 亚洲在久久综合| 亚洲欧洲日产国产| 成人综合一区亚洲| 国产精品一及| 高清毛片免费看| 国内揄拍国产精品人妻在线| 熟女人妻精品中文字幕| 免费观看在线日韩| 在线观看免费高清a一片| 99re6热这里在线精品视频| 综合色av麻豆| 久久这里有精品视频免费| 国产精品人妻久久久影院| 国产亚洲av片在线观看秒播厂 | 我要看日韩黄色一级片| 大又大粗又爽又黄少妇毛片口| 七月丁香在线播放| 欧美成人午夜免费资源| 欧美日韩精品成人综合77777| 久久精品久久久久久久性| 亚洲精品乱码久久久久久按摩| 国产精品嫩草影院av在线观看| 国产高清不卡午夜福利| 日日干狠狠操夜夜爽| 麻豆成人av视频| 青春草亚洲视频在线观看| 波多野结衣巨乳人妻| 床上黄色一级片| 欧美97在线视频| 亚洲精品乱久久久久久| 亚洲av电影不卡..在线观看| 亚洲精品日韩av片在线观看| 国产精品国产三级国产专区5o| 永久免费av网站大全| 老司机影院成人| av.在线天堂| 婷婷色综合www| 亚洲欧美精品自产自拍| 一区二区三区乱码不卡18| 人人妻人人澡人人爽人人夜夜 | 青春草国产在线视频| 国产黄色免费在线视频| 亚洲国产色片| 国产免费福利视频在线观看| 午夜免费激情av| 夜夜看夜夜爽夜夜摸| 美女cb高潮喷水在线观看| 熟女电影av网| 性色avwww在线观看| 99视频精品全部免费 在线| 久久午夜福利片| 亚洲成人av在线免费| 国产精品久久久久久av不卡| 看免费成人av毛片| 91在线精品国自产拍蜜月| 天天一区二区日本电影三级| 最近中文字幕高清免费大全6| 国产成人一区二区在线| 听说在线观看完整版免费高清| 国产又色又爽无遮挡免| 91久久精品国产一区二区三区| 精品久久久久久久人妻蜜臀av| 精品久久国产蜜桃| 欧美97在线视频| 九色成人免费人妻av| 美女被艹到高潮喷水动态| 久久久久久国产a免费观看| 可以在线观看毛片的网站| 国国产精品蜜臀av免费| 天堂av国产一区二区熟女人妻| 91久久精品国产一区二区三区| 免费看不卡的av| 99九九线精品视频在线观看视频| 国产亚洲精品av在线| 一级毛片久久久久久久久女| 99re6热这里在线精品视频| 男人爽女人下面视频在线观看| 岛国毛片在线播放| 91久久精品国产一区二区成人| 国产精品.久久久| 大片免费播放器 马上看| 久久久久久久久久人人人人人人| 禁无遮挡网站| 人妻夜夜爽99麻豆av| 狂野欧美白嫩少妇大欣赏| 亚洲欧美精品专区久久| 18禁动态无遮挡网站| 日韩中字成人| 99热这里只有精品一区| 久久99热这里只有精品18| 午夜久久久久精精品|