• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Natural lotus root-based scaffolds for bone regeneration

    2022-06-20 06:20:22KeqingHuangJunHuangJinminZhaoZhipengGuJunWu
    Chinese Chemical Letters 2022年4期

    Keqing Huang,Jun Huang,Jinmin Zhao,Zhipeng Gu,Jun Wu

    a School of Biomedical Engineering,Sun Yat-sen University,Shenzhen 518107,China

    b Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation,Sun Yat-sen Memorial Hospital,Sun Yat-sen University,Guangzhou 510120,China

    c Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration,the First Affiliated Hospital of Guangxi Medical University,Nanning 530021,China

    d Research Institute of Sun Yat-sen University in Shenzhen,Shenzhen 518057,China

    e College of Polymer Science and Engineering,State Key Laboratory of Polymer Materials Engineering,Sichuan University,Chengdu 610065,China

    f Guangdong Academy of Sciences,Institute of Biological and Medical Engineering,Guangzhou 510316,China

    1 These authors contributed equally to this work.

    ABSTRACT A high incidence of bone defects and the limitation of autologous bone grafting require 3D scaffolds for bone repair.Compared with synthetic materials,natural edible materials possess outstanding advantages in terms of biocompatibility,bioactivities and low manufacturing cost for bone tissue engineering.In this work,attracted by the natural porous/fabric structure,good biocompatibility and bioactivities of the lotus root,the lotus root-based scaffolds were fabricated and investigated their potential to serve as natural porous bone tissue engineering scaffolds.The results indicated that the lotus root-based scaffolds possess suitable natural microstructure,excellent biocompatibility and promising functions,such as antioxidant capacity and angiogenesis promotion.Remarkably,lotus root scaffolds showed encouraging possibility of bone tissue engineering while the mineralized lotus root could further improve the bone regeneration in vivo.All the results demonstrated the bone regeneration potential of lotus root-based scaffolds equipped with suitable natural architecture,excellent biocompatibility,specific bioactivities and low manufacturing cost.

    Keywords:Bone regeneration Lotus root Porous structure Mineralization

    A high incidence of bone defects and the limitation of autologous bone grafting require the development of bone tissue engineering scaffolds with high efficacy[1,2].It has been well documented that the properties of ideal bone tissue engineering scaffolds are as follows:(1)high porosity microstructure with proper pore size(usually 100–200 μm),which are supposed to support cells attachment and migration with proper mechanical performance during controlled degradation;(2)biocompatibility,which could benefit the proliferation and differentiation of cells;(3)specific functions favorable for the enhanced tissue regeneration[3–8].Currently,many systems,including poly-L-lactic acid(PLLA),polyglycolic acid(PGA),poly(lactic-co-glycolic acid)(PLGA)and collagenbased derivatives,have been widely used to fabricate the bone tissue engineering scaffold,while various methods such as freezedrying,fiber bonding,foaming,and salt soaking have been utilized to create porous architecture[9–13].Compared with synthetic materials,natural materials,especially natural edible materials,might offer new options for the fabrication of scaffolds for improved bone tissue engineering[14–16].Gelatin,alginate or agarose have been investigated as bone tissue engineering scaffolds owing to their excellent biocompatibility and proper biodegradation[17,18].Remarkably,some proteins or carbohydrates derived from animal or plant based edible materials could exert an effect on shaping cell behaviorviachemical signals and biocompatibility[19–23].Nevertheless,only very limited edible materials have been studied for tissue engineering so far,and the previous studies tend to focus on one aspect of structure,composition or function of edible materials rather than the whole,leading to the delayed investigations of edible materials for tissue engineering applications.

    Fig.1.Characterization of lotus root-based scaffolds.(a)The interior morphology of lotus root-based scaffolds.(b)Mechanical properties of lotus root-based scaffolds.(c)Swelling kinetics of lotus root-based scaffolds.(d)The WVTR of lotus root-based scaffolds with thickness at 0.5 mm.*P <0.05 as compared to the lotus root scaffolds.NS:no significant difference.

    Lotus root,the rhizome of the lotus plant,a common vegetable in Asia,possesses a satisfactory natural porous structure with sufficient dietary fibers,vitamins and minerals,such as calcium,phosphorus and iron[24,25].Inspired by the microstructure of lotus root,preliminary experiments have studied the bionics of its unique structurevia3D printing strategies[26,27].The biomimetic materials with lotus root like structures showed improved cell attachment and enhancedin vivoosteogenesis,suggesting good potentiality for bone regeneration[26].Furthermore,it could be noticed that after incision the lotus root was darkened,which could be attributed to the phenolic compounds,the metabolites and natural antioxidants involved in plant growth,suggesting good antioxidant capacity of the lotus root[28].In traditional Chinese herb medicine,processed lotus root have been utilized for adjuvant therapy benefiting from the promising constituents[29].With porous microstructure,good biocompatibility and specific antioxidant bioactivities,the lotus root may do benefit to bone tissue engineering by serving as a natural scaffold with low manufacturing cost.Nevertheless,the potentials of lotus root as tissue engineering scaffolds have not been investigated yet.

    Hence in this study,the lotus root scaffold with simple modification has been prepared for the first time to explore the potential as a natural scaffold for bone regeneration.Taking advantage of the microstructure of lotus root,a simple mineralization was further performed to improve the osteogenesis performance of lotus root.More details on fabrication of lotus root scaffolds could be found in Supporting information.

    The intact lotus root usually possesses 3–5 tubers,and each segment could be about 10–20 cm in length and 5–10 cm in diameter.The internal morphologies of lotus root-based scaffolds have been investigated by scanning electron microscope(SEM).The SEM images revealed that the lotus root scaffolds possessed porous architecture with mean pore diameter at ~100 μm and starch grains at ellipsoidal shape(about 30 μm × 60 μm)(Fig.1a).And magnified 10,000 times by SEM,the surface of the hole wall in the lotus root revealed specific pattern of parallel strips,while the lotus root scaffold with mineralization showed irregular crystals on the surface of the hole wall.The rough texture of the hole wall may benefit the attachment of crystals,as well as cells,indicating promising potential of serving as bone tissue engineering scaffolds.

    The typical stress-strain curve of each group showed that,compared with the lotus root scaffold,the mineralized lotus root scaffold could withstand greater loads with higher compressive modulus(Fig.1b).The mineralization of lotus root scaffold took the advantage of the specific patterns and internal morphologies of lotus root and introduced the bone-like surface apatite to benefit the mechanical behavior.Both the lotus root scaffold and mineralized lotus root scaffold could absorb moisture promptly and reached the swelling equilibrium in less than 2 h,suggesting suitable hydroscopicity for providing enough fluid with nutrition for cells during the bone regeneration(Fig.1c).Moreover,there was no significant difference in water vapor transmission rate(WVTR,g m-2d-1)between lotus root scaffolds and mineralized lotus root scaffolds,suggesting that the mineralization had no obvious effect on the permeability of the scaffolds(Fig.1d).All the characterization indicated that the porous lotus root-based scaffolds possessed unique internal morphologies with low density and high porosity,satisfactory mechanical properties,proper hygroscopicity and permeability,indicating the promising use in bone tissue engineering.

    Fig.2.Cytocompatibility and antioxidant capacity of lotus root-based scaffolds.(a)The live/dead staining assay.Scale bar = 50 μm.(b)MTT assay.(c)DPPH radical scavenging capacity measurement.The percentage of radical scavenging efficiency was described as antioxidant activity(AA).(d)ROS levels of HUVECs cells induced by H2O2 with the treatment of lotus root-based scaffolds.Scale bar = 100 μm.(e)Quantitative analysis of the fluorescence intensity has been performed by imageJ.*P <0.05 as compared to the negative control group.NS:no significant difference.

    During the process of bone regeneration,the implanted lotus root-based scaffolds could obviously affect the viability of cells.Therefore,the cytocompatibility of the lotus root-based scaffolds needs to be determined to ensure that the interaction between the cells and the lotus root-based scaffolds would not lead to the decreased cell viability.The human dental pulp stem cells(hDPSCs)have been employed as a kind of neural crests derived cell with MSC characteristics and the live/dead staining and MTT(3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide)assay were utilized to explore the cytocompatibility of scaffolds.It can be observed that hDPSCs co-cultured with scaffolds exhibited elongated spindles,with green fluorescence,indicating good cell viability(Fig.2a).Moreover,the optical density(OD)values in the MTT analysis also demonstrated that the cells co-cultured with the lotus root scaffolds and mineralized lotus root scaffolds showed no significant difference in cell viability with good proliferation status compared with the control group without treatment during the culture period(Fig.2b).It was worth noting that the cells in the porous lotus root scaffold could grow in a three-dimensional(3D)environment with good morphology(Fig.S1 in Supporting information).

    As a scaffold for bone tissue engineering,the immune responses should also be considered before implantation.The immune response of macrophagesin vitrounder the stimulation of lotus root was investigated(Figs.S2–S4 in Supporting information).The results suggested that lotus root could motivate slight immune response of macrophages at high concentrations.Moreover,the hemolysis of lotus root-based scaffolds could not be observed compared with the group treated with dd water and NaCl(0.9%),suggesting the good hemocompatibility of lotus root-based scaffolds(Fig.S5 in Supporting information).Meanwhile,whole blood clotting test was investigated to evaluate the hemostasis effect of lotus root-based scaffoldsin vitro.The results showed that the lotus root-based scaffolds possessed enhanced hemostasis capability compared with gelatin sponge,which may be conducive to the closure of the trauma site and subsequent tissue regeneration(Fig.S6 in Supporting information).All the results proved that the porous lotus root-based scaffolds possessed excellent biocompatibility to be utilized in bone regeneration.

    The antioxidation of the lotus root-based scaffolds were detected by DPPH(1,1-diphenyl-2-picrylhydrazyl)radical scavenging capacity measurement and intracellular reactive oxygen species(ROS)evaluation.Compared with the lotus root group,the group with mineralized lotus root showed no obvious difference in radical scavenging efficiency(Fig.2c).Compared with the positive control group,the enhanced cell viability could be observed in the groups treated with lotus root-based scaffolds,indicating excellent antioxidation of lotus root-based scaffolds.The ROS levels of human umbilical vein endothelial cells(HUVECs)induced by H2O2were measured by using the probe 2′,7′-dichlorofluorescin diacetate(DCFH-DA)(Figs.2d and e).The positive control group treated with H2O2showed reduced cell number and increased green fluorescence compared to the other groups.Compared with the negative control group,no significant difference could be observed for cells in the groups treated with lotus root-based scaffolds,which could further indicate the good antioxidation of lotus root-based scaffolds.

    To verify the effects of lotus root-based scaffolds on cells migration,in vitroexperiments on the migration of HUVECs were performed by the scratch test assay.As shown in Figs.S7a and b(Supporting information),migration of HUVECs was enhanced under the stimulation of lotus root-based scaffolds compared to the control group in 12 h and no significant difference could be observed among the various treatments.The lotus root-based scaffolds were efficient in inducing the migration of HUVECs,and the coverage of the scratch area by HUVECs could be completed in no more than 24 h.Moreover,the secretion of VEGF showed significant increase with the treatment of lotus root-based scaffold compared with control group(Fig.S7c in Supporting information).Meanwhile,the lotus root-based scaffolds significantly stimulated tube formation of HUVECs compared with control group(Figs.S8 and S5 in Supporting information).Collectively,the results indicated good angiogenesis capacity of lotus root-based scaffolds,suggesting good potentiality in bone tissue regeneration.

    Fig.3. In vitro osteogenic differentiation of hDPSCs co-cultured with lotus rootbased scaffolds.(a–d)The secretion of osteogenesis-related proteins in the culture medium measured by ELISAs.(e–h)Expression of osteogenesis-related genes in hDPSCs evaluated with RT-qPCR and the data was normalized to GAPDH expression.*P <0.05 as compared to the control group.

    Fig.4.Bone formation in vivo.(a)Representative micro-CT images of bone defects.(b)Quantitative analysis of bone mineral density,bone volume and Tb.Th.*P <0.05 as compared to the group treated with lotus root scaffolds.

    As bone regeneration implants,lotus root-based scaffolds are required the appropriate ability to promote osteogenic differentiation of cells.Here,enzyme-linked immunosorbent assay kits(ELISA)and real-time quantitative polymerase chain reaction(RTqPCR)were deployed to confirm the osteogenic related proteins and genes expression in hDPSCs under the stimulation with lotus root-based scaffold.The ELISA results affirmed that the concentrations of type I pro-collagen(Col-1),runt-related transcription factor 2(RUNX2)and bone morphogenetic protein 4(BMP4)in hDPSCs treated with lotus root-based scaffolds significantly increased compared to the control group,especially on day 4(Figs.3a–d).The concentrations of RUNX2 and BMP4 in hDPSCs co-cultured with the lotus root scaffolds increased on day 14,while the concentrations of RUNX2 and BMP4 in hDPSCs under the stimulation of mineralized lotus root scaffolds significantly increased on day 7,indicating that the mineralized lotus root scaffolds could promote the osteogenic differentiation during bone formation.Meanwhile,the RT-qPCR results further showed the expression of corresponding osteogenic differentiation-related genes(Figs.3e–h).The expression of the Col-1 showed an upward trend during the 14-day incubation,while the mineralized lotus root scaffold group possessed a significantly different from the control group.The gene expressions of RUNX2,BMP4,and bone sialoprotein(BSP)were all up-regulated in both the lotus root scaffold group and mineralized lotus root scaffold group on day 4,and the down-regulation trend appeared after 7-day incubation,which may because the stimulation of lotus root-base scaffolds accelerate the process of osteogenic differentiation regulation.Allin vitroresults show that porous lotus root-based scaffolds can promote osteogenic differentiation with promising bone regeneration potential.

    Encouraged by the resultsin vitro,the ability of lotus root-based scaffolds to promote bone regeneration was continuously investigatedin vivo.After 1-or 2-month implantation of lotus rootbased scaffolds in the bone defects(diameter,5 mm)of SD rats,the bone tissue corresponding to the defect areas in each group was collected for further investigation.Since the untreated control group did not survive more than one month after the experiment,no bone tissue has been collected from the control group.New bone formation could be observed both in the lotus root scaffolds groups and mineralized lotus root scaffolds groups,while the significantly increased new bone formation could be found in the mineralized lotus root scaffolds group compared with the group without mineralization(Fig.4a).In addition,statistical analysis including bone mineral density,bone volume,and trabecular thickness(Tb.Th)proved that the mineralized lotus root scaffold could accelerate new bone formation with more mature bone tissue after 1-month implantation(Fig.4b).The specific states of bone regeneration treated with lotus root-based scaffolds were further exploredviahistological and immunohistochemical examinations(Fig.S9 in Supporting information).All the results demonstrated that the natural porous lotus root-based scaffold with satisfactory cytocompatibility,especially the mineralized lotus root scaffold,possessed promising ability to promote osteogenic differentiation and accelerate new bone formation.

    In this work,inspired by the natural porous and fabric structure of the lotus root,the lotus root-based scaffolds were prepared and investigated about their potential to serve as bone tissue engineering scaffolds.The lotus root-based scaffold possesses good natural porous structure,excellent biocompatibility,and bioactivities favorable for bone repairing,such as antioxidant capacity and angiogenesis promotion.Remarkably,after mineralization,the lotus root scaffolds showed further improved bone regeneration performancein vivo.All the results indicated that the lotus root-based scaffolds with natural porous architecture,robust bioactivities and low manufacturing cost possessed high potential for bone regeneration applications.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(No.51503129),Guangdong Innovative and Entrepreneurial Research Team Program(No.2016ZT06S029),F(xiàn)undamental Research Funds for the Central Universities(No.191 gzd35),Shenzhen Basic Research Project(No.JCYJ20190807155801657)and Science and Technology Planning Project of Shenzhen(No.JCYJ20180307163534533),Guangdong Basic and Applied Basic Research Foundation(No.2019A1515110686).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.10.073.

    亚州av有码| 日韩精品青青久久久久久| 国产精品国产三级国产av玫瑰| 欧美激情在线99| 久久久国产成人精品二区| 中文字幕av在线有码专区| 亚洲一区二区三区色噜噜| 高清日韩中文字幕在线| 国产成人影院久久av| 日本三级黄在线观看| 人妻制服诱惑在线中文字幕| 少妇人妻一区二区三区视频| 免费大片18禁| 91麻豆av在线| 亚洲精品一卡2卡三卡4卡5卡| eeuss影院久久| 日本免费a在线| bbb黄色大片| 成人欧美大片| 婷婷精品国产亚洲av在线| 国产一区二区激情短视频| 国产精品嫩草影院av在线观看 | 久久久久久九九精品二区国产| 亚州av有码| 99riav亚洲国产免费| 久久精品国产亚洲av天美| 欧美不卡视频在线免费观看| 午夜福利欧美成人| 中国美女看黄片| 别揉我奶头 嗯啊视频| 看十八女毛片水多多多| 99久久中文字幕三级久久日本| 亚洲精华国产精华精| 内地一区二区视频在线| 全区人妻精品视频| 国产黄a三级三级三级人| 欧美色视频一区免费| 天堂网av新在线| 午夜福利在线观看免费完整高清在 | 亚洲中文日韩欧美视频| 日本与韩国留学比较| 亚洲精品国产成人久久av| 狂野欧美白嫩少妇大欣赏| 亚洲av中文字字幕乱码综合| 午夜影院日韩av| 免费看美女性在线毛片视频| 校园春色视频在线观看| 亚洲人成网站在线播放欧美日韩| 国产成年人精品一区二区| 毛片女人毛片| 十八禁国产超污无遮挡网站| 日本黄大片高清| 十八禁网站免费在线| 午夜精品在线福利| 久久久久久久久中文| 波多野结衣高清无吗| 日韩强制内射视频| 人妻久久中文字幕网| 亚洲国产精品合色在线| 免费电影在线观看免费观看| 国产精品一区www在线观看 | 一区二区三区免费毛片| 中文字幕久久专区| 久久热精品热| 久久久精品欧美日韩精品| 97超级碰碰碰精品色视频在线观看| 身体一侧抽搐| 波多野结衣高清作品| 国产欧美日韩一区二区精品| 亚洲国产日韩欧美精品在线观看| 国产不卡一卡二| 亚洲国产精品成人综合色| 日本在线视频免费播放| 麻豆久久精品国产亚洲av| 99在线人妻在线中文字幕| 在线免费十八禁| a级一级毛片免费在线观看| 国产三级中文精品| 我要看日韩黄色一级片| 日本黄色片子视频| 内射极品少妇av片p| 一级a爱片免费观看的视频| 欧美成人性av电影在线观看| 亚洲精品456在线播放app | 午夜精品在线福利| 日韩一区二区视频免费看| 久久精品人妻少妇| 一区二区三区四区激情视频 | 久久99热6这里只有精品| 成人永久免费在线观看视频| 丰满的人妻完整版| 亚洲人与动物交配视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品成人久久久久久| 少妇猛男粗大的猛烈进出视频 | 久久草成人影院| 国产精品一区二区三区四区免费观看 | 丰满人妻一区二区三区视频av| 免费观看的影片在线观看| 联通29元200g的流量卡| 国产 一区精品| 99久久无色码亚洲精品果冻| 日韩大尺度精品在线看网址| 免费看a级黄色片| 亚洲七黄色美女视频| 欧洲精品卡2卡3卡4卡5卡区| 成人av一区二区三区在线看| 69人妻影院| 国产精品久久电影中文字幕| 国产女主播在线喷水免费视频网站 | 俄罗斯特黄特色一大片| 在线播放国产精品三级| 国产爱豆传媒在线观看| 美女xxoo啪啪120秒动态图| 国产亚洲精品久久久com| 一卡2卡三卡四卡精品乱码亚洲| 91在线观看av| 国产伦精品一区二区三区视频9| 桃红色精品国产亚洲av| 色5月婷婷丁香| 午夜福利欧美成人| 别揉我奶头~嗯~啊~动态视频| 欧美高清成人免费视频www| 日韩欧美精品v在线| 国产精品久久久久久av不卡| 真人做人爱边吃奶动态| 热99在线观看视频| 亚洲成人久久爱视频| 91在线观看av| avwww免费| 日本一二三区视频观看| 国产成人一区二区在线| 免费不卡的大黄色大毛片视频在线观看 | 禁无遮挡网站| 国产精品永久免费网站| 99久久久亚洲精品蜜臀av| 香蕉av资源在线| 欧美成人性av电影在线观看| 99精品在免费线老司机午夜| 少妇丰满av| 一本久久中文字幕| 欧美人与善性xxx| 九九久久精品国产亚洲av麻豆| 给我免费播放毛片高清在线观看| 看片在线看免费视频| 亚洲美女黄片视频| www.www免费av| 国产精品野战在线观看| 九九久久精品国产亚洲av麻豆| 午夜精品在线福利| 亚洲国产精品合色在线| 亚洲国产欧美人成| 老司机福利观看| 亚洲国产高清在线一区二区三| 精品久久国产蜜桃| 别揉我奶头 嗯啊视频| 免费在线观看影片大全网站| 少妇猛男粗大的猛烈进出视频 | 乱码一卡2卡4卡精品| 一区二区三区高清视频在线| 天天躁日日操中文字幕| 韩国av一区二区三区四区| 成人国产麻豆网| 1024手机看黄色片| 网址你懂的国产日韩在线| 亚洲av成人av| 免费看av在线观看网站| 国产老妇女一区| 亚洲av日韩精品久久久久久密| 老司机福利观看| 永久网站在线| 欧美日韩乱码在线| 成人欧美大片| 久久久久久伊人网av| 简卡轻食公司| 在线观看免费视频日本深夜| 在线观看美女被高潮喷水网站| 久久久久久久久久久丰满 | 久久午夜福利片| 国产精品野战在线观看| 少妇丰满av| 成人av在线播放网站| 日本熟妇午夜| 国产国拍精品亚洲av在线观看| 国产单亲对白刺激| ponron亚洲| 岛国在线免费视频观看| 久久久久久久久中文| 热99在线观看视频| 亚洲一区高清亚洲精品| 日韩欧美 国产精品| 日日干狠狠操夜夜爽| 亚洲av成人精品一区久久| av在线观看视频网站免费| 久久久久国内视频| 国产精品乱码一区二三区的特点| 国产精品一区二区三区四区久久| 免费看av在线观看网站| 日本-黄色视频高清免费观看| 超碰av人人做人人爽久久| 男插女下体视频免费在线播放| 看片在线看免费视频| 国内揄拍国产精品人妻在线| 色视频www国产| 国产老妇女一区| 亚洲狠狠婷婷综合久久图片| 国产色婷婷99| 香蕉av资源在线| aaaaa片日本免费| 国产视频一区二区在线看| 色哟哟·www| 99精品久久久久人妻精品| 国产精品电影一区二区三区| 欧美bdsm另类| 国产日本99.免费观看| .国产精品久久| 国产精品爽爽va在线观看网站| 色尼玛亚洲综合影院| 男人舔奶头视频| 成人无遮挡网站| 亚洲精华国产精华液的使用体验 | 亚洲成人中文字幕在线播放| 无人区码免费观看不卡| 国产精品98久久久久久宅男小说| 亚洲av一区综合| 午夜久久久久精精品| 午夜影院日韩av| 国内精品宾馆在线| 三级男女做爰猛烈吃奶摸视频| 亚洲狠狠婷婷综合久久图片| 欧美最黄视频在线播放免费| 亚洲综合色惰| 欧美另类亚洲清纯唯美| 国产爱豆传媒在线观看| 日本一二三区视频观看| 亚洲经典国产精华液单| 日日干狠狠操夜夜爽| 可以在线观看毛片的网站| 草草在线视频免费看| 少妇人妻精品综合一区二区 | 十八禁国产超污无遮挡网站| 国产精品av视频在线免费观看| 中文字幕精品亚洲无线码一区| 国产亚洲精品久久久久久毛片| 少妇裸体淫交视频免费看高清| 人妻丰满熟妇av一区二区三区| 国产不卡一卡二| 美女 人体艺术 gogo| 国产熟女欧美一区二区| 欧美成人性av电影在线观看| 色5月婷婷丁香| 十八禁网站免费在线| 欧美高清性xxxxhd video| 人人妻,人人澡人人爽秒播| 美女cb高潮喷水在线观看| 伊人久久精品亚洲午夜| 深爱激情五月婷婷| 国产精品人妻久久久久久| 在线免费观看的www视频| 久久久国产成人精品二区| 1000部很黄的大片| 国产亚洲av嫩草精品影院| 久久久久国产精品人妻aⅴ院| 九九热线精品视视频播放| 国产大屁股一区二区在线视频| 亚洲乱码一区二区免费版| 亚洲国产色片| 亚洲一区二区三区色噜噜| 亚洲黑人精品在线| 成人高潮视频无遮挡免费网站| 床上黄色一级片| 天堂影院成人在线观看| 亚洲精品成人久久久久久| 午夜激情欧美在线| 日本免费一区二区三区高清不卡| 好男人在线观看高清免费视频| 看十八女毛片水多多多| 女人十人毛片免费观看3o分钟| 免费av观看视频| 国产精品一区二区三区四区久久| 国产在视频线在精品| www日本黄色视频网| 很黄的视频免费| 亚洲一区二区三区色噜噜| 性插视频无遮挡在线免费观看| 国产精品亚洲美女久久久| 色哟哟·www| 国产色爽女视频免费观看| 日韩精品有码人妻一区| 99久国产av精品| 午夜福利在线在线| 午夜激情欧美在线| 男女啪啪激烈高潮av片| 日韩 亚洲 欧美在线| 永久网站在线| 午夜精品在线福利| 国产一区二区三区视频了| 亚洲精品影视一区二区三区av| 搞女人的毛片| 一个人免费在线观看电影| 少妇的逼水好多| 久久精品影院6| 国产aⅴ精品一区二区三区波| 男人舔女人下体高潮全视频| 欧美日韩亚洲国产一区二区在线观看| 一级a爱片免费观看的视频| 久久精品国产亚洲网站| 久久久午夜欧美精品| 久久久国产成人免费| 亚洲中文字幕日韩| 美女cb高潮喷水在线观看| 波野结衣二区三区在线| 最近最新免费中文字幕在线| 婷婷精品国产亚洲av| 校园人妻丝袜中文字幕| 不卡视频在线观看欧美| 一夜夜www| 中国美白少妇内射xxxbb| 久久久久久久午夜电影| 波多野结衣巨乳人妻| 国产av不卡久久| 又黄又爽又刺激的免费视频.| 黄色女人牲交| 天堂影院成人在线观看| 我的女老师完整版在线观看| 国产 一区 欧美 日韩| 草草在线视频免费看| 亚洲av不卡在线观看| 精品人妻视频免费看| 一级黄片播放器| 久久热精品热| 99热6这里只有精品| 久久热精品热| 在线免费观看不下载黄p国产 | 久久久国产成人精品二区| 欧美又色又爽又黄视频| 午夜激情福利司机影院| 精品人妻1区二区| 日韩 亚洲 欧美在线| 日韩欧美 国产精品| 国产精品嫩草影院av在线观看 | 亚洲精品影视一区二区三区av| 黄色配什么色好看| 狠狠狠狠99中文字幕| 熟妇人妻久久中文字幕3abv| 一夜夜www| 国产免费男女视频| 两个人视频免费观看高清| 久久精品国产亚洲av涩爱 | 琪琪午夜伦伦电影理论片6080| 联通29元200g的流量卡| 成年女人永久免费观看视频| 少妇的逼水好多| 久久久久久久午夜电影| 亚洲精华国产精华液的使用体验 | 亚州av有码| 久久国产精品人妻蜜桃| 日本精品一区二区三区蜜桃| 国产精品电影一区二区三区| 成人特级av手机在线观看| 国产av麻豆久久久久久久| 亚洲熟妇熟女久久| 免费一级毛片在线播放高清视频| a级毛片a级免费在线| 真人做人爱边吃奶动态| 中文字幕熟女人妻在线| 欧美激情国产日韩精品一区| 亚洲av熟女| 国产精品国产高清国产av| 亚洲av熟女| 欧美激情久久久久久爽电影| 性插视频无遮挡在线免费观看| 网址你懂的国产日韩在线| 久久亚洲真实| 国产精品久久久久久久电影| 久久久久久伊人网av| 高清在线国产一区| 97超视频在线观看视频| 成人美女网站在线观看视频| 国产一区二区激情短视频| a级一级毛片免费在线观看| 亚洲内射少妇av| 又黄又爽又刺激的免费视频.| 久久久久久久久久黄片| 可以在线观看毛片的网站| 女生性感内裤真人,穿戴方法视频| 日日夜夜操网爽| 国产精品日韩av在线免费观看| 小蜜桃在线观看免费完整版高清| av在线天堂中文字幕| av在线亚洲专区| 少妇裸体淫交视频免费看高清| 国产探花极品一区二区| 欧美黑人巨大hd| 国产高清不卡午夜福利| 国模一区二区三区四区视频| 国产午夜福利久久久久久| 欧美色视频一区免费| 在线观看av片永久免费下载| 最新在线观看一区二区三区| 久久精品久久久久久噜噜老黄 | 国产成人福利小说| 在线观看舔阴道视频| 免费观看人在逋| 日韩,欧美,国产一区二区三区 | 国产高清视频在线播放一区| 亚洲欧美激情综合另类| 五月伊人婷婷丁香| 精品人妻一区二区三区麻豆 | 美女xxoo啪啪120秒动态图| 久久久久久久久久成人| 91久久精品国产一区二区成人| av福利片在线观看| 精品欧美国产一区二区三| 精品人妻偷拍中文字幕| 性欧美人与动物交配| 国产一区二区在线观看日韩| 乱码一卡2卡4卡精品| 亚洲国产欧洲综合997久久,| 午夜日韩欧美国产| 精品免费久久久久久久清纯| 欧美最新免费一区二区三区| 亚洲四区av| 欧美一区二区精品小视频在线| 午夜激情福利司机影院| 亚洲精品成人久久久久久| 九九爱精品视频在线观看| 美女黄网站色视频| 麻豆一二三区av精品| 欧美性感艳星| 亚洲av二区三区四区| 春色校园在线视频观看| 久久热精品热| 老司机午夜福利在线观看视频| 国产高清激情床上av| 久久人妻av系列| 变态另类丝袜制服| 成人永久免费在线观看视频| 亚洲五月天丁香| 国产午夜福利久久久久久| 国产美女午夜福利| 18禁黄网站禁片免费观看直播| 亚洲精品乱码久久久v下载方式| 丰满人妻一区二区三区视频av| 免费在线观看日本一区| 欧美一区二区亚洲| 黄色日韩在线| 国产欧美日韩一区二区精品| 亚洲精品一区av在线观看| 国产单亲对白刺激| 91麻豆精品激情在线观看国产| 免费在线观看日本一区| av黄色大香蕉| 国产av不卡久久| 欧美日本视频| 嫩草影院入口| 色哟哟哟哟哟哟| 免费在线观看成人毛片| 少妇被粗大猛烈的视频| 国产成人a区在线观看| 久久久久久大精品| 国内精品一区二区在线观看| 99久久精品国产国产毛片| 又粗又爽又猛毛片免费看| 成人二区视频| 国产精品免费一区二区三区在线| 看黄色毛片网站| 欧美成人性av电影在线观看| 动漫黄色视频在线观看| 97超级碰碰碰精品色视频在线观看| 一a级毛片在线观看| 日本一本二区三区精品| 国产精品精品国产色婷婷| 成人国产综合亚洲| 1024手机看黄色片| 国产 一区精品| 亚洲天堂国产精品一区在线| 亚洲精品国产成人久久av| 国内精品一区二区在线观看| 男人和女人高潮做爰伦理| av在线观看视频网站免费| 欧洲精品卡2卡3卡4卡5卡区| 国产黄a三级三级三级人| 熟妇人妻久久中文字幕3abv| 一本久久中文字幕| av天堂在线播放| 99热这里只有精品一区| 变态另类丝袜制服| 欧美精品啪啪一区二区三区| 午夜精品在线福利| 国产精品日韩av在线免费观看| 一个人看视频在线观看www免费| 日韩欧美精品免费久久| 波多野结衣高清无吗| 亚洲人成网站在线播| 亚洲av成人av| 亚洲va日本ⅴa欧美va伊人久久| 桃红色精品国产亚洲av| 免费看a级黄色片| 久久精品国产鲁丝片午夜精品 | 亚洲国产精品合色在线| 亚洲欧美日韩高清专用| 日本色播在线视频| 淫妇啪啪啪对白视频| 免费看美女性在线毛片视频| 国产亚洲精品久久久久久毛片| 中文字幕精品亚洲无线码一区| avwww免费| 日日夜夜操网爽| 岛国在线免费视频观看| 12—13女人毛片做爰片一| 男人狂女人下面高潮的视频| 国产成年人精品一区二区| 91狼人影院| 亚洲va在线va天堂va国产| 此物有八面人人有两片| 国产av一区在线观看免费| 欧美性猛交黑人性爽| 一个人看的www免费观看视频| 午夜爱爱视频在线播放| 最新中文字幕久久久久| 看片在线看免费视频| 免费搜索国产男女视频| 男女啪啪激烈高潮av片| 色尼玛亚洲综合影院| 欧美性猛交黑人性爽| 黄色日韩在线| 中文字幕精品亚洲无线码一区| 婷婷六月久久综合丁香| 看黄色毛片网站| 久久天躁狠狠躁夜夜2o2o| 成人国产一区最新在线观看| 国产精品永久免费网站| 中文字幕熟女人妻在线| 中文亚洲av片在线观看爽| 亚洲成a人片在线一区二区| 国产精品一及| 搡老熟女国产l中国老女人| a在线观看视频网站| 男人舔奶头视频| 精品人妻一区二区三区麻豆 | 中国美女看黄片| 欧美又色又爽又黄视频| 老师上课跳d突然被开到最大视频| 舔av片在线| 亚洲成人免费电影在线观看| 免费看av在线观看网站| 欧美精品国产亚洲| 色综合色国产| 午夜激情欧美在线| 高清日韩中文字幕在线| 欧美激情国产日韩精品一区| 1024手机看黄色片| 一区福利在线观看| 天堂av国产一区二区熟女人妻| 天天躁日日操中文字幕| 99国产极品粉嫩在线观看| 老女人水多毛片| 国产黄色小视频在线观看| 身体一侧抽搐| 免费黄网站久久成人精品| 久久久久久大精品| 女同久久另类99精品国产91| 麻豆av噜噜一区二区三区| 日本精品一区二区三区蜜桃| 日韩精品中文字幕看吧| 热99re8久久精品国产| 91麻豆精品激情在线观看国产| 国产成人一区二区在线| 麻豆国产av国片精品| 成人国产麻豆网| 欧美高清成人免费视频www| 久久久久九九精品影院| 97人妻精品一区二区三区麻豆| 欧美最黄视频在线播放免费| 天天躁日日操中文字幕| 人人妻人人澡欧美一区二区| 精品一区二区三区av网在线观看| 久久6这里有精品| 97碰自拍视频| 男女那种视频在线观看| 亚洲欧美日韩卡通动漫| 久久欧美精品欧美久久欧美| 国产高清三级在线| 99国产精品一区二区蜜桃av| 久久欧美精品欧美久久欧美| 日本一本二区三区精品| 久久久久久久精品吃奶| 亚洲精品在线观看二区| 久久久久久久亚洲中文字幕| 日韩av在线大香蕉| av中文乱码字幕在线| 久久久精品大字幕| 男女视频在线观看网站免费| 亚洲精品一区av在线观看| 国内精品久久久久精免费| 男女视频在线观看网站免费| 国产三级在线视频| 国产精品电影一区二区三区| 一边摸一边抽搐一进一小说| 国产 一区精品| 精品久久久久久久人妻蜜臀av| 嫁个100分男人电影在线观看| 日韩中字成人| netflix在线观看网站| 精品人妻偷拍中文字幕| 国产综合懂色| 女人十人毛片免费观看3o分钟| 久久久午夜欧美精品| 天堂网av新在线| 色精品久久人妻99蜜桃| 国产 一区精品| 少妇的逼水好多| 亚洲av免费高清在线观看| 婷婷六月久久综合丁香|