• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Precisely engineering a dual-drug cooperative nanoassembly for proteasome inhibition-potentiated photodynamic therapy

    2022-06-20 06:20:14FujunYngQingyuJiRuiLioShumengLiYuequnWngXunoZhngShenwuZhngHotinZhngQimingKnJinSunZhongguiHeBingjunSunCongLuo
    Chinese Chemical Letters 2022年4期

    Fujun Yng,Qingyu Ji,Rui Lio,Shumeng Li,Yuequn Wng,Xuno Zhng,Shenwu Zhng,Hotin Zhng,Qiming Kn,Jin Sun,Zhonggui He,Bingjun Sun,*,Cong Luo,*

    a Department of Pharmaceutics,Wuya College of Innovation,Shenyang Pharmaceutical University,Shenyang 110016,China

    b Department of Pharmacology,School of Life Science and Biopharmaceutics,Shenyang Pharmaceutical University,Shenyang 110016,China

    ABSTRACT Photodynamic therapy(PDT)has been widely investigated for cancer therapy.The intracellular accumulation of reactive oxygen species(ROS)-damaged protein facilitates tumor cell apoptosis.However,there is growing evidence that the ubiquitin-proteasome pathway(UPP)significantly impedes PDT by preventing the enrichment of ROS-damaged proteins in tumor cells.To tackle this challenge,we report a facile dual-drug nanoassembly based on the discovery of an interesting co-assembly of bortezomib(BTZ,a proteasome inhibitor)and pyropheophorbide a(PPa)for proteasome inhibition-mediated PDT sensitization.The precisely engineered nanoassembly with the optimal dose ratio of BTZ and PPa demonstrates multiple advantages,including simple fabrication,high drug co-loading efficiency,flexible dose adjustment,good colloidal stability,long systemic circulation,favorable tumor-specific accumulation,as well as significant enrichment of ROS-damaged proteins in tumor cells.As a result,the cooperative nanoassembly exhibits potent synergistic antitumor activity in vivo.This study provides a novel dual-drug engineering modality for multimodal cancer treatment.

    Keywords:Bortezomib Pyropheophorbide a Precisely cooperative nanoassembly Proteasome inhibition Photodynamic therapy Multimodal cancer therapy

    Reactive oxygen species(ROS)generated from photosensitizers(PSs)under laser irradiation induce oxidative damages to intracellular proteins,resulting in cell apoptosis or necrosis[1,2].However,the ubiquitin-proteasome pathway(UPP)has been found to help clear away the ROS-damaged proteins[3,4].Given the crucial role in clearing up the intracellular oxidation-damaged proteins,UPP has been implicated as one of the main barriers in PDT[3,5].Various proteasome inhibitors have been developed for cancer therapy[6].Among them,bortezomib(BTZ),as the first proteasome inhibitor approved for myeloma,has also revealed potent antineoplastic activity against various human cancer cell lines[7].

    There is growing evidence that BTZ-mediated proteasome inhibition has synergy effect with photodynamic PSs[3].Based on this rationale,a precise combination of BTZ and PSs would significantly improve the sensitization of tumor cells to PDT.However,efficient co-delivery of two or more therapeutic agents remains challenging[8].Biomedical nanotechnology has been widely applied in drug delivery[9–12].Rational design of nanocarriers not only effectively improves the unfavorable physicochemical properties of drugs,but also achieves tumor-specific drug accumulation and ondemand drug release[13–16].Thus,multitudinous nanocarriers such as micelles and liposomes have been designed over the past few decades.However,there are still many challenges for these conventional co-delivery nano-vehicles,including poor encapsulation stability,low co-loading efficiency,inconvenient adjustion of drug proportions and as well as premature drug leakage due to the affinity difference between carrier materials and drugs[17–19].Therefore,carrier-free nanoassembly formed by drugs themselves has emerged as a potential nanoplatform for efficient drug delivery.In such unique nanosystems,drug molecules act as both cargos and vehicles,contributing to high drug loading efficiency and low excipient-induced side effects.More importantly,rational design of hybrid nanosystems co-assembled by two or more drugs themselves is expected to provide a versatile nanoplatform for combined drug delivery and multimodal cancer therapy[9–19].

    Fig.1.Schematic representation of BTZ/PPa nanoassembly and proteasome inhibition-sensitized PDT.

    Fig.2.Screening of co-assembly drug pair.(A)Molecular structures of five photodynamic PSs(yellow)and BTZ(purple).(B)Schematic illustration of the co-assembly process.(C)Appearance photos of the nanoassemblies at a molar ratio of 1:1.(D)Appearance photos of BTZ@Hy nanoassembly and BTZ@PPa nanoassembly at a molar ratio of 1:1 after incubation at 37 °C for 12 h.

    To address these challenges,we aimed to develop a precisely chemical drug-engineered nanoassembly of BTZ and PSs for proteasome inhibition-mediated PDT sensitization(Fig.1).Several commonly used PSs were utilized to co-assemble with BTZ(Fig.2),including a BODIPY dye(3-bodipy-propanoic acid,BDP),two porphyrin derivatives(Ce6 and PPa),a phthalocyanine(zinc phthalocyanine,ZnPc)and a hypericum derivative(hypericin,Hy).As shown in Figs.2A-C and Table S1(Supporting information),only Hy and PPa formed nanoassemblies with PPa,while BDP,Ce6 and ZnPc immediately precipitated under the same conditions.Notably,Ce6 demonstrated inferior co-assembly ability with BTZ when compared to PPa with the same porphyrin ring,due to the higher hydrophilicity of Ce6 with three carboxyl groups,resulting in weak hydrophobic force between Ce6 and BTZ.After preliminarily screening out the potential candidate PSs(PPa and Hy),we further compared the storage and colloidal stability of BTZ@PPa nanoassembly and BTZ@Hy nanoassembly.As shown in Fig.2D,drugs precipitated from BTZ@Hy nanoassembly after incubation in a shaking table(37 °C)for 12 h.By contrast,BTZ/PPa nanoassembly revealed excellent colloidal stability under the same conditions(Fig.2D).Based on the modular assembly optimization results,PPa and BTZ stood out as a favorable co-assembly pair for further investigation.

    Moreover,the optimal synergistic dose ratio of BTZ and PPa was evaluated in 4T1 and CT26 cells at various molar ratios(5:1,4:1,3:1,2:1,1:1,1:2,1:3,1:4 and 1:5).As shown in Fig.S1 and Table S2(Supporting information),the nanoassembly of BTZ and PPa at a molar ratio of 1:4(BTZ/PPa)exhibited the most potent cytotoxicity,with CI values of 0.38 and 0.54 in 4T1 and CT26 cells,respectively.Afterwards,the non-PEGylated nanoassembly(BTZ@PPa NPs)and PEGylated nanoassembly(BTZ@PPa PEG2kNPs)were fabricated by one-step nano-precipitation approach at the optimal synergy dose ratio of 1:4(BTZ/PPa).As shown in Fig.3A and Table S3(Supporting information),the mean diameter and zeta potential of BTZ@PPa NPs were approximately 88 nm and–15 mV,with impressively high drug loading capacity of BTZ(15.2 wt%)and PPa(84.8 wt%),respectively.Notably,the EEBTZand EEPPain the PEGylated nanoassembly(BTZ@PPa NPs)were up to 97.9% and 99.2%(Table S3).After PEGylation modification,the mean diameter of BTZ@PPa PEG2kNPs slightly increased(103 nm,F(xiàn)ig.3B).And its zeta potential reduced from around–15 mV to–22 mV,which could contribute to colloidal stability[20–22].Moreover,BTZ@PPa PEG2kNPs had a high co-loading rate for BTZ(12.2 wt%)and PPa(67.8 wt%).As expected,PEGylation decoration significantly improve the stability of BTZ@PPa nanoassembly.As illustrated in Fig.3C,the particle size of BTZ@PPa PEG2kNPs did not significantly change during the incubation with PBS supplemented with 10% FBS for 12 h,while the particle size of BTZ@PPa NPs significantly increased under the same conditions.

    Fig.3.Characterization of the co-assembled NPs.(A and B)Intensity size distribution profiles,TEM images and appearance photographs.Scale bar:100 nm.(C)Colloidal stability(n = 3).(D)Molecular dynamics simulation results.(E)The particle size changes of NPs treated with urea,SDS and KCl(200 mmol/L).(F)UV absorption spectra at 300–800 nm.(G)The PPa fluorescence spectra from 250 nm to 650 nm.(H)The PPa fluorescence spectra of PPa Sol,BTZ@PPa NPs and BTZ@PPa PEG2k NPs from 600 nm to 800 nm.

    We then explored the intermolecular interactions using computational docking simulation technique.As shown in Fig.3D,there were four interactions or forces found between BTZ and PPa,includingπ-cation interaction,π-πstacking interaction,hydrophobic force and hydrogen bond.We further validated these intermolecular interactions by utilizing three destructive agents(KCl,urea and SDS),which have been widely employed to break intermolecularπ-cation interaction,hydrogen bond and hydrophobic force,respectively[23–25].Moreover,π-πstacking interaction was verified by scanning the UV absorbance spectra of PPa before and after co-assembly with BTZ.As illustrated in Fig.3E,the particle size of both BTZ@PPa NPs and BTZ@PPa PEG2kNPs increased after the incubation with these destructive agents,confirming a comprehensive contribution ofπ-action interaction,hydrogen bond and hydrophobic force to the co-assembly process.In addition,obvious red-shift was observed in the UV spectra of PPa in nanoassemblies when compared with PPa solution(Fig.3F),indicating the existence of theπ-πstacking interaction in the nanoassembly.Moreover,significant fluorescence spectra changes of PPa were observed before and after co-assembly with BTZ.As shown in Figs.3G and H,the fluorescence intensity of PPa decreased after co-assembly with BTZ,which should be ascribed to the aggregation caused quench(ACQ)effect of PPa in the state of aggregation[26–28].

    We then explored thein vitrorelease patterns of BTZ with or without light treatment(660 nm,50 mW/cm2,5 min).As shown in Fig.S2(Supporting information),the PEGylated nanoassembly(BTZ@PPa PEG2kNPs)demonstrated sustained release behaviors in contrast to BTZ Sol and BTZ@PPa NPs,with less than 30% of BTZ released from the nanoassemblies.Notably,owing to the disintegration of nanostructures following the photobleaching damage on PPa,laser irradiation significantly accelerated BTZ release from BTZ@PPa PEG2kNPs.The sustained-release behavior of nanoassembly favor safe drug delivery,and the tumor-localized rapid release of BTZ promoted by laser irradiation could certainly potentiate synergistic therapeutic effect.

    The cellular uptake of nanoassemblies was investigated in 4T1 cells.As shown in Figs.4A-D,PPa Sol,BTZ@PPa NPs and BTZ@PPa PEG2kNPs were internalized into tumor cells in a time-dependent way.Notably,BTZ@PPa PEG2kNPs demonstrated much higher cellular uptake efficiency than that of PPa Sol and BTZ@PPa NPs under the same conditions,especially at 4 h.The favorable cellular uptake of BTZ@PPa PEG2kNPs could be attributed to its good colloidal stability(Fig.3C).By contrast,there’s no significant difference observed in the cellular uptake of PPa Sol and BTZ@PPa NPs.The inferior cellular internalization of the non-PEGylated BTZ@PPa NPs should be ascribed to its poor stability(Fig.3C).

    We then explored the cellular ROS generation ability of nanoassemblies with/no laser irradiation(660 nm)in 4T1 cells.As depicted in Fig.4E,the cells treated with PPa Sol,BTZ@PPa NPs and BTZ@PPa PEG2kNPs showed much stronger fluorescence signals under laser irradiation(50 mW/cm2,5 min)than that of the cells without laser treatment,suggesting the excellent cellular ROS generation ability of PPa under laser irradiation.Notably,there is almost no significant fluorescence difference among the cells receiving PPa Sol,BTZ@PPa NPs and BTZ@PPa PEG2kNPs,suggesting the comparable cellular ROS generation capacity of PPa Sol and nanoassemblies(Fig.4E).Given that the nanostructure of BTZ@PPa NPs would be rapidly disintegrated by salts and FBS in cell culture media,it is understandable that BTZ@PPa NPs revealed similar cellular uptake and cellular ROS generation efficiency with PPa Sol.By contrast,despite the ACQ effect of PPa in BTZ@PPa PEG2kNPs(Figs.3G and H),favorable colloidal stability and efficient cellular uptake endowed the PEGylated nanoassembly with high cellular ROS generation capacity.

    Fig.4.Cellular uptake,ROS generation,synergistic cytotoxicity and proteasome inhibition of nanoassemblies.(A-C)Cellular uptake at a PPa equivalent dose of 2.5 μg/mL by CLSM at 1,2 and 4 h.Scale bar:50 nm.(D)Quantitative analysis of cellular fluorescence intensity.(E)Cellular ROS generation in 4T1 cells at an equivalent PPa dose of 100 nmol/L with/without laser irradiation(660 nm,50 mW/cm2,5 min).(F)Synergistic cytotoxicity of various formulations in 4T1 cells with/without laser irradiation(660 nm,50 mW/cm2,5 min).(G)Immunofluorescence(Scale bar:50 nm)and(H)quantitative analysis of the ubiquitinated proteins in 4T1 cells at a PPa equivalent of 100 nmol/L with/no laser irradiation(660 nm,50 mW/cm2,5 min),a,b,c,d,e,f,g and h represent saline,PPa/L,BTZ,BTZ@PPa NPs,BTZ@PPa PEG2k NPs,BTZ@PPa NPs/L,BTZ/PPa/L and BTZ@PPa PEG2k NPs/L,respectively.n.s.,no significance;*P <0.05,**P <0.01.

    The favorable colloidal stability,cellular uptake and ROS generation of BTZ@PPa PEG2kNPs inspired us to further study the synergistic cytotoxicity of BTZ and PPa.As shown in Fig.4F and Fig.S3(Supporting information),the laser irradiated groups revealed higher cytotoxicity than that of the groups without laser treatment,suggesting the proteasome inhibition-sensitized photodynamic cytotoxicity.Notably,BTZ@PPa PEG2kNPs with laser irradiation exhibited the strongest synergistic cytotoxicity,which could be ascribed to the rational dose ratio,good colloidal stability,efficient cellular uptake,as well as favorable ROS generation capacity of the PEGylated nanoassembly.

    We then investigated thein vitrosynergistic mechanisms of proteasome inhibition-mediated PDT sensitization by evaluating the enrichment of ubiquitinated proteins in 4T1 cells.As shown in Figs.4G and H,laser-irradiated groups significantly facilitated the enrichment of the ubiquitinated proteins in tumor cells.BTZ alone also induce the production of the ubiquitinated proteins.These results indicated that the ROS generated by PPa under laser irradiation exerted oxidative damages on proteins,and BTZ synergistically prevented the clearance of these destructed proteins.Notably,BTZ@PPa PEG2kNPs induced significant accumulation of the ubiquitinated proteins in tumor cells under laser irradiation,which was in consist with the cytotoxicity outcomes(Fig.4F).These results confirmed our hypothesis that precise integration of BTZ and PPa into one nanosystem could realize proteasome inhibition-mediated PDT sensitization.

    All the animal experiments were approved by the Animal Ethics Committee of Shenyang Pharmaceutical University.The pharmacokinetic profiles of PPa Sol,BTZ@PPa NPs and BTZ@PPa PEG2kNPs were investigated in SD rats.As depicted in Fig.S4(Supporting information),PPa Sol was rapidly cleared from the blood after intravenous administration,owing to the short half-life of free drugs.Moreover,the non-PEGylated BTZ@PPa NPs revealed similar pharmacokinetics behavior with PPa Sol,due to its poor colloidal stability.Notably,the C0.5value(850.6 ± 70.8 ng/mL)of BTZ@PPa NPs was less than that of PPa Sol(1370.5 ± 142.5 ng/mL),indicating the rapid clearance of the non-PEGylated nanoassembly by the RES system in the body.As expected,BTZ@PPa PEG2kNPs significantly extended the circulation time in the blood(Fig.S4 and Table S3).Long circulation of NPs certainly facilitates the tumorspecific accumulation via the enhanced permeability and retention(EPR)effect[29].As shown in Figs.S4 and S5(Supporting information),the accumulation of PPa Sol,BTZ@PPa NPs and BTZ@PPa PEG2kNPs in the major organs(heart,liver,spleen,lung and kidney)and tumors presented an earlier increase and later decrease trend from 2 h to 24 h,and the peak drug accumulation in tumors was found at around 4 h post-injection for all these formulations.Moreover,the fluorescent signals in the major organs and tumors significantly decreased at 12 and 24 h after intravenous administration,which was consistent with the pharmacokinetics results(Fig.S4).Notably,BTZ@PPa PEG2kNPs showed much higher tumor accumulation when compared with PPa Sol and BTZ@PPa NPs(Fig.S4),which should be attributed to its excellent colloidal stability and long circulation time in the blood

    Fig.5. In vivo proteasome inhibition-potentiated PDT against 4T1 breast cancer(n = 6).(A)Experimental design.(B)Tumor growth curves.(C)Tumor burden.(D)Western blot results of the ubiquitinated proteins expression in tumor tissues.(E)Quantification of the relative ubiquitinated proteins.(F)Body weight changes.(G)Hepatorenal function evaluation(AST:aspartate aminotransferase(U/L);ALT:alanine aminotransferase(U/L),BUN:blood urea nitrogen(mg/dL),CREA:creatinine(μmol/L)).The a,b,c,d,e,f,g and h represent BTZ Sol,saline,BTZ@PPa NPs,PPa/L,BTZ@PPa NPs/L,BTZ@PPa PEG2k NPs,BTZ@PPa PEG2k NPs/L and BTZ/PPa/L,respectively.

    Thein vivoproteasome inhibition-potentiated PDT was evaluated against a triple-negative breast cancer xenograft tumor model(Fig.5A).According to theex vivobiodistribution results(Figs.S5 and S6 in Supporting information),the laser-treated groups were exposed to laser irradiation(660 nm,50 W/cm2)for 5 min at 4 h post-administration.As shown in Figs.5B and C,the tumor growth of laser-treated groups was slower than that of the groups without laser irradiation.BTZ/PPa/L(g)group showed stronger antitumor activity than that of BTZ Sol(a)and PPa Sol/L(d),suggesting the synergy effect of BTZ-mediated chemotherapy and PPa-based PDT.Notably,the non-PEGylated BTZ@PPa NPs(c and e)showed inferior antitumor activity even with laser treatment,which should be ascribed to its poor colloidal stability and rapid clearance from the body after administration(Table S4 in Supporting information).As expected,BTZ@PPa PEG2kNPs demonstrated the most potent antitumor activity under laser irradiation(Figs.5B and C,and Fig.S7 in Supporting information),due to the prominent advantages in the whole drug delivery process,including good colloidal stability,long systemic circulation(Fig.S4),high tumor accumulation(Fig.S5),favorable cellular uptake(Figs.4A-C),as well as efficient ROS generation(Fig.4E).After the final treatment,the cellular apoptosis of tumor was assessed by TUNEL and Ki67 assay.As shown in Figs.S8A and B(Supporting information),BTZ@PPa PEG2kNPs caused large apoptosis and small proliferation.Additionally,the expression of ubiquitinated proteins in tumor tissues after treatments was further evaluated to investigate proteasome inhibitionin vivo.As shown in Figs.5D and E,BTZ@PPa PEG2kNPs significantly increased the ubiquitinated proteins in tumors under laser irradiation when compared with other therapeutic modalities.

    As previously mentioned,despite the potent cytotoxicity of BTZ against multiple tumor cell lines,it also causes serious off-target toxicity[30,31].We expected that precisely formulating BTZ and PSs into one nanosystem would not only achieve synergistic antitumor effect,but also is expected to significantly reduce the offtarget toxicity of BTZ.As shown in Fig.5F,obvious weight loss was found in the groups of BTZ Sol and BTZ/PPa/L,indicating the severe systemic toxicity of BTZ.Besides,notable reduction of the spleen size provided further evidence of BTZ-induced organ toxicity(Fig.S9 in Supporting information).Moreover,the hepatic and renal function indicators also revealed the obvious toxicity of BTZ/PPa/L to liver(Fig.5G).By contrast,precisely formulating BTZ and PPa into dual-drug hybrid nanoassembly(BTZ@PPa PEG2kNPs)show almost no systemic toxicity during the treatment process(Figs.5F and G).Moreover,there was no distinct histological variation found in the H&E staining sections of heart,liver,spleen,lung and kidney(Fig.S10 in Supporting information).

    In summary,inspired by the synergy between ubiquitinproteasome pathway and ROS-induced protein destruction,we developed a facile nanoassembly of BTZ and PPa after modular assembly and synergistic cytotoxicity optimization.Multiple intermolecular interactions and forces were found to drive the dualdrug co-assembly.The PEGylated nanoassembly(BTZ@PPa PEG2kNPs)with an optimal dose ratio of 1:4(BTZ/PPa)demonstrated distinct advantages throughout the whole drug delivery process,resulting in potent synergistic antitumor effect in a triple-negative breast tumor xenograft mouse model.Proteasome inhibitionsensitized PDT was observed in cellular and whole-animal levels.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was financially supported by the Liaoning Revitalization Talents Program(No.XLYC1907129),the Excellent Youth Science Foundation of Liaoning Province(No.2020-YQ-06),and the China Postdoctoral Science Foundation(No.2020M670794).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.11.056.

    91精品国产九色| 精品一区二区免费观看| 欧美另类一区| 日韩 亚洲 欧美在线| 九九爱精品视频在线观看| 免费人成在线观看视频色| 久久女婷五月综合色啪小说| 一区在线观看完整版| 亚洲精品色激情综合| 啦啦啦中文免费视频观看日本| 国产 精品1| 亚洲少妇的诱惑av| 免费高清在线观看日韩| 日产精品乱码卡一卡2卡三| 黑人高潮一二区| 99九九在线精品视频| 国产精品国产三级国产专区5o| 精品亚洲成国产av| 国产有黄有色有爽视频| 亚洲天堂av无毛| 国产高清国产精品国产三级| 满18在线观看网站| 大码成人一级视频| 91久久精品国产一区二区三区| 国产视频首页在线观看| 简卡轻食公司| 国产精品不卡视频一区二区| 欧美xxⅹ黑人| 国产精品免费大片| 国产精品一区www在线观看| 伊人久久国产一区二区| 国产精品一区二区在线观看99| 欧美亚洲 丝袜 人妻 在线| 亚洲综合色网址| 免费观看的影片在线观看| 亚洲av不卡在线观看| 久久毛片免费看一区二区三区| 日本免费在线观看一区| 亚洲一级一片aⅴ在线观看| 一二三四中文在线观看免费高清| 亚洲精品中文字幕在线视频| 欧美+日韩+精品| 男的添女的下面高潮视频| 免费看光身美女| 好男人视频免费观看在线| 在线观看国产h片| 亚洲成人手机| 建设人人有责人人尽责人人享有的| 纯流量卡能插随身wifi吗| 国产日韩欧美亚洲二区| 国产一区有黄有色的免费视频| 久久精品国产鲁丝片午夜精品| 久久婷婷青草| 欧美日韩综合久久久久久| 国产黄频视频在线观看| 欧美精品国产亚洲| 午夜老司机福利剧场| 亚洲精品第二区| 久久精品国产a三级三级三级| 国产精品不卡视频一区二区| 99re6热这里在线精品视频| 精品国产露脸久久av麻豆| 国产精品偷伦视频观看了| 国产精品国产三级国产av玫瑰| 亚洲av福利一区| 人人澡人人妻人| 久久午夜福利片| 最近的中文字幕免费完整| 18禁观看日本| 亚洲人成网站在线观看播放| a级片在线免费高清观看视频| 性高湖久久久久久久久免费观看| 精品熟女少妇av免费看| 国产熟女午夜一区二区三区 | 中文字幕av电影在线播放| 国语对白做爰xxxⅹ性视频网站| 亚洲av免费高清在线观看| 99久久综合免费| 成年人午夜在线观看视频| 麻豆精品久久久久久蜜桃| 午夜激情福利司机影院| 国产片特级美女逼逼视频| 亚洲四区av| 国产精品国产三级国产专区5o| 日本欧美国产在线视频| 大片免费播放器 马上看| 免费观看无遮挡的男女| 多毛熟女@视频| 亚洲国产精品一区三区| 久久 成人 亚洲| 日韩 亚洲 欧美在线| 在线亚洲精品国产二区图片欧美 | 日本午夜av视频| 2018国产大陆天天弄谢| 人人澡人人妻人| 中文乱码字字幕精品一区二区三区| 欧美3d第一页| 在线观看免费视频网站a站| 欧美激情 高清一区二区三区| 久久免费观看电影| 国产成人免费无遮挡视频| 三上悠亚av全集在线观看| 国产毛片在线视频| 美女国产视频在线观看| 一本久久精品| kizo精华| 亚洲伊人久久精品综合| 国模一区二区三区四区视频| 一边摸一边做爽爽视频免费| 免费黄频网站在线观看国产| 欧美xxⅹ黑人| 色视频在线一区二区三区| 99热这里只有是精品在线观看| 精品一品国产午夜福利视频| 国产精品 国内视频| 夫妻午夜视频| 中文字幕制服av| 久久国产精品大桥未久av| 少妇人妻 视频| 午夜福利影视在线免费观看| 一区二区日韩欧美中文字幕 | 久久99精品国语久久久| 人人妻人人添人人爽欧美一区卜| 国产爽快片一区二区三区| 亚洲经典国产精华液单| xxx大片免费视频| 简卡轻食公司| 日韩,欧美,国产一区二区三区| 美女主播在线视频| 大香蕉97超碰在线| 亚洲,欧美,日韩| 少妇丰满av| 能在线免费看毛片的网站| 乱码一卡2卡4卡精品| 九九在线视频观看精品| 中文精品一卡2卡3卡4更新| 色婷婷久久久亚洲欧美| 亚洲欧美成人精品一区二区| 欧美亚洲 丝袜 人妻 在线| 国产精品久久久久久久久免| 波野结衣二区三区在线| 欧美精品国产亚洲| 中文乱码字字幕精品一区二区三区| 国产成人aa在线观看| tube8黄色片| 高清午夜精品一区二区三区| 色吧在线观看| a级毛色黄片| 五月开心婷婷网| 我的女老师完整版在线观看| 精品一区二区三区视频在线| 久久久欧美国产精品| 国产精品成人在线| av电影中文网址| 久久狼人影院| 亚洲美女黄色视频免费看| av国产精品久久久久影院| 三上悠亚av全集在线观看| 免费av不卡在线播放| 桃花免费在线播放| 国产精品国产三级国产专区5o| 99re6热这里在线精品视频| 少妇丰满av| 久久国内精品自在自线图片| 欧美变态另类bdsm刘玥| 久久精品国产自在天天线| 精品国产国语对白av| 老女人水多毛片| 亚洲激情五月婷婷啪啪| 91精品伊人久久大香线蕉| 精品亚洲成国产av| 欧美日韩视频精品一区| 国产免费一区二区三区四区乱码| 午夜免费观看性视频| 久久久亚洲精品成人影院| 一级毛片电影观看| 狠狠精品人妻久久久久久综合| 国产精品一区二区在线观看99| 成人国语在线视频| 特大巨黑吊av在线直播| 午夜福利在线观看免费完整高清在| 日韩av免费高清视频| 51国产日韩欧美| 人人妻人人爽人人添夜夜欢视频| 最近最新中文字幕免费大全7| 精品一区二区三区视频在线| 欧美日本中文国产一区发布| 亚洲精品乱久久久久久| 三级国产精品片| 久久久国产精品麻豆| 成人国产av品久久久| 免费高清在线观看日韩| 久久久精品94久久精品| 自线自在国产av| 欧美精品一区二区大全| 中文字幕最新亚洲高清| 中文字幕制服av| 免费看光身美女| 亚洲色图 男人天堂 中文字幕 | 国产成人a∨麻豆精品| 国产日韩欧美亚洲二区| 免费av不卡在线播放| 日本-黄色视频高清免费观看| 中文字幕制服av| 热99久久久久精品小说推荐| 国产成人freesex在线| 亚洲图色成人| 国产熟女欧美一区二区| 国产熟女午夜一区二区三区 | 黑人巨大精品欧美一区二区蜜桃 | 久久热精品热| 只有这里有精品99| 久久久久视频综合| 激情五月婷婷亚洲| av卡一久久| 免费黄网站久久成人精品| 成年人免费黄色播放视频| 久久久欧美国产精品| 夜夜看夜夜爽夜夜摸| 女人精品久久久久毛片| 黑人猛操日本美女一级片| 九色亚洲精品在线播放| 精品一区二区三卡| 99国产综合亚洲精品| 观看av在线不卡| 视频中文字幕在线观看| 色婷婷久久久亚洲欧美| 欧美97在线视频| 五月伊人婷婷丁香| 97精品久久久久久久久久精品| 亚洲在久久综合| av又黄又爽大尺度在线免费看| 一级黄片播放器| 亚洲成人av在线免费| 精品久久久久久久久av| 成年av动漫网址| 男女边摸边吃奶| 午夜老司机福利剧场| 久久久欧美国产精品| 日韩精品有码人妻一区| 国产日韩欧美视频二区| 一级毛片黄色毛片免费观看视频| 国产日韩一区二区三区精品不卡 | 这个男人来自地球电影免费观看 | 我的老师免费观看完整版| 搡老乐熟女国产| 久久久a久久爽久久v久久| av在线观看视频网站免费| 热re99久久国产66热| 亚洲丝袜综合中文字幕| 亚洲av成人精品一二三区| av女优亚洲男人天堂| 亚洲久久久国产精品| 成人国产av品久久久| 边亲边吃奶的免费视频| 国产免费一区二区三区四区乱码| 亚洲国产精品999| 成人国产av品久久久| 国产一区二区三区av在线| 插阴视频在线观看视频| 亚洲国产精品999| 777米奇影视久久| 女的被弄到高潮叫床怎么办| freevideosex欧美| 高清在线视频一区二区三区| 满18在线观看网站| 午夜91福利影院| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 狂野欧美激情性bbbbbb| 日韩一区二区视频免费看| av福利片在线| 黄色视频在线播放观看不卡| 亚洲中文av在线| 99九九线精品视频在线观看视频| 日韩电影二区| 亚洲国产欧美在线一区| 美女视频免费永久观看网站| 国产免费一级a男人的天堂| 亚洲欧美日韩卡通动漫| 久久亚洲国产成人精品v| 日日撸夜夜添| 丝瓜视频免费看黄片| 三级国产精品欧美在线观看| 黄色毛片三级朝国网站| 亚洲精华国产精华液的使用体验| 精品久久蜜臀av无| 国产高清三级在线| 亚洲综合色惰| 精品99又大又爽又粗少妇毛片| 欧美精品一区二区大全| 日韩强制内射视频| 免费看av在线观看网站| 一级a做视频免费观看| 日韩成人av中文字幕在线观看| 超碰97精品在线观看| 伦精品一区二区三区| 午夜福利在线观看免费完整高清在| 国产男女内射视频| 18禁动态无遮挡网站| 少妇高潮的动态图| 视频区图区小说| 老司机亚洲免费影院| 三上悠亚av全集在线观看| 日本黄色日本黄色录像| 伦理电影免费视频| 国产成人午夜福利电影在线观看| xxx大片免费视频| 97在线人人人人妻| 少妇人妻久久综合中文| 晚上一个人看的免费电影| 22中文网久久字幕| 曰老女人黄片| 全区人妻精品视频| 久久ye,这里只有精品| 欧美日韩国产mv在线观看视频| 久久久久人妻精品一区果冻| 亚洲国产精品成人久久小说| 免费黄频网站在线观看国产| 高清黄色对白视频在线免费看| 爱豆传媒免费全集在线观看| 欧美日韩av久久| 久久精品夜色国产| 免费观看在线日韩| 久久韩国三级中文字幕| 一级爰片在线观看| 欧美日韩在线观看h| 一本一本综合久久| 午夜影院在线不卡| 欧美日韩精品成人综合77777| 欧美日韩国产mv在线观看视频| 人妻夜夜爽99麻豆av| 一级毛片电影观看| 亚洲不卡免费看| 中文天堂在线官网| 啦啦啦中文免费视频观看日本| 日日啪夜夜爽| 国产黄色免费在线视频| 最近中文字幕高清免费大全6| 亚洲人成网站在线播| 人体艺术视频欧美日本| 2018国产大陆天天弄谢| 韩国高清视频一区二区三区| 久久鲁丝午夜福利片| 少妇丰满av| 精品人妻熟女av久视频| 免费大片黄手机在线观看| 亚洲国产av新网站| 午夜激情av网站| 伊人久久精品亚洲午夜| 亚洲国产av影院在线观看| 国产精品熟女久久久久浪| 欧美变态另类bdsm刘玥| 亚洲精品日韩av片在线观看| 大片免费播放器 马上看| 久久精品熟女亚洲av麻豆精品| 日韩一本色道免费dvd| 最近中文字幕高清免费大全6| 亚洲国产毛片av蜜桃av| 免费高清在线观看视频在线观看| 一区二区三区免费毛片| 欧美变态另类bdsm刘玥| 菩萨蛮人人尽说江南好唐韦庄| 国语对白做爰xxxⅹ性视频网站| tube8黄色片| 久久久午夜欧美精品| 夫妻午夜视频| 成年av动漫网址| 亚洲精品日韩在线中文字幕| 亚洲精品久久午夜乱码| 老女人水多毛片| 欧美日韩在线观看h| 丰满少妇做爰视频| 亚洲欧美成人精品一区二区| 日本色播在线视频| 亚洲欧美清纯卡通| 91精品三级在线观看| 国产精品秋霞免费鲁丝片| 在线 av 中文字幕| 国产在线免费精品| 国产精品三级大全| 日日啪夜夜爽| 成人黄色视频免费在线看| 午夜福利影视在线免费观看| 少妇的逼水好多| 99久久中文字幕三级久久日本| 欧美成人精品欧美一级黄| 18在线观看网站| 免费黄色在线免费观看| a级毛片在线看网站| 国产片特级美女逼逼视频| 高清午夜精品一区二区三区| 婷婷色综合www| 制服丝袜香蕉在线| 熟女人妻精品中文字幕| 日本黄大片高清| 一本一本综合久久| 亚洲精品乱码久久久久久按摩| a 毛片基地| 亚洲激情五月婷婷啪啪| 水蜜桃什么品种好| 国产精品偷伦视频观看了| 秋霞在线观看毛片| 五月伊人婷婷丁香| 高清在线视频一区二区三区| 成人国产av品久久久| 两个人的视频大全免费| a级毛片黄视频| 母亲3免费完整高清在线观看 | 日韩中文字幕视频在线看片| 天天影视国产精品| 成人亚洲精品一区在线观看| 夫妻午夜视频| 久久久久久久久久成人| 亚洲精品久久午夜乱码| 国产在线视频一区二区| 亚洲欧美日韩卡通动漫| av视频免费观看在线观看| 日本午夜av视频| 黄色视频在线播放观看不卡| 肉色欧美久久久久久久蜜桃| 最近手机中文字幕大全| 国产成人精品久久久久久| 插阴视频在线观看视频| 天堂中文最新版在线下载| 一本大道久久a久久精品| 国产av精品麻豆| 在现免费观看毛片| 超色免费av| 欧美 日韩 精品 国产| 亚洲色图 男人天堂 中文字幕 | 啦啦啦啦在线视频资源| 日本色播在线视频| 日日啪夜夜爽| 有码 亚洲区| 日日摸夜夜添夜夜添av毛片| 观看美女的网站| 九草在线视频观看| 性色avwww在线观看| 夫妻性生交免费视频一级片| 亚洲综合精品二区| 久久久久久久久久久久大奶| 曰老女人黄片| 亚洲美女黄色视频免费看| 亚洲精品中文字幕在线视频| 少妇丰满av| 日本91视频免费播放| 成人国产av品久久久| av福利片在线| 久久99热6这里只有精品| 国产一区二区三区综合在线观看 | 人人妻人人澡人人看| 精品人妻熟女av久视频| 最新的欧美精品一区二区| 青春草国产在线视频| av在线观看视频网站免费| 一级,二级,三级黄色视频| av女优亚洲男人天堂| 久久久久久久久久久久大奶| 久久人人爽人人片av| 欧美亚洲 丝袜 人妻 在线| 热re99久久精品国产66热6| 亚洲精品日韩av片在线观看| 亚洲精品国产av蜜桃| 亚洲国产av新网站| 精品99又大又爽又粗少妇毛片| 国产精品99久久久久久久久| 99视频精品全部免费 在线| √禁漫天堂资源中文www| 特大巨黑吊av在线直播| 全区人妻精品视频| 高清不卡的av网站| 国产一区二区三区综合在线观看 | 成人国语在线视频| 老熟女久久久| 五月伊人婷婷丁香| 少妇熟女欧美另类| 午夜福利网站1000一区二区三区| 国产高清有码在线观看视频| 亚洲图色成人| av福利片在线| 久久99热6这里只有精品| 人妻夜夜爽99麻豆av| 精品卡一卡二卡四卡免费| 精品少妇黑人巨大在线播放| 国产精品三级大全| 午夜免费观看性视频| 亚洲精品色激情综合| 乱人伦中国视频| www.色视频.com| 中文字幕人妻熟人妻熟丝袜美| 日韩精品有码人妻一区| 欧美3d第一页| av播播在线观看一区| 青春草国产在线视频| 91午夜精品亚洲一区二区三区| 中文乱码字字幕精品一区二区三区| 肉色欧美久久久久久久蜜桃| 亚洲成人av在线免费| 狂野欧美激情性xxxx在线观看| 又黄又爽又刺激的免费视频.| 一级毛片 在线播放| 九九爱精品视频在线观看| 亚洲天堂av无毛| 成年人午夜在线观看视频| 亚洲国产日韩一区二区| 综合色丁香网| 久久久久久久亚洲中文字幕| 国产极品天堂在线| 97精品久久久久久久久久精品| 交换朋友夫妻互换小说| 性色avwww在线观看| videosex国产| 亚洲欧美日韩卡通动漫| 免费人成在线观看视频色| 久久精品久久久久久噜噜老黄| 韩国高清视频一区二区三区| 男女啪啪激烈高潮av片| 男人爽女人下面视频在线观看| 亚洲国产精品一区二区三区在线| 最近手机中文字幕大全| 成人亚洲欧美一区二区av| 最近中文字幕高清免费大全6| kizo精华| 男女高潮啪啪啪动态图| 亚洲av成人精品一区久久| 少妇人妻久久综合中文| 亚洲人成网站在线播| 亚洲熟女精品中文字幕| 国产片特级美女逼逼视频| 大话2 男鬼变身卡| 久久久久网色| 18在线观看网站| 国产精品蜜桃在线观看| 男人操女人黄网站| 亚洲国产成人一精品久久久| 亚洲色图 男人天堂 中文字幕 | 国产白丝娇喘喷水9色精品| 亚洲av日韩在线播放| 狂野欧美激情性xxxx在线观看| 欧美丝袜亚洲另类| 欧美三级亚洲精品| 黄色怎么调成土黄色| 欧美日韩av久久| 夫妻性生交免费视频一级片| 日本午夜av视频| 超碰97精品在线观看| 日韩在线高清观看一区二区三区| 中文天堂在线官网| 天堂8中文在线网| 午夜免费观看性视频| 亚洲精品自拍成人| 精品少妇久久久久久888优播| 欧美精品高潮呻吟av久久| 边亲边吃奶的免费视频| 大片免费播放器 马上看| 亚洲人成网站在线观看播放| 国产精品秋霞免费鲁丝片| 三上悠亚av全集在线观看| 亚洲美女视频黄频| 一级爰片在线观看| 久久久精品94久久精品| 高清视频免费观看一区二区| av在线播放精品| 波野结衣二区三区在线| 亚洲欧美清纯卡通| 国产精品 国内视频| 少妇人妻精品综合一区二区| 男女啪啪激烈高潮av片| 在线免费观看不下载黄p国产| 91午夜精品亚洲一区二区三区| 久久久久国产精品人妻一区二区| 日韩av不卡免费在线播放| 亚洲五月色婷婷综合| 日本av手机在线免费观看| 尾随美女入室| 啦啦啦视频在线资源免费观看| 免费高清在线观看日韩| 最近手机中文字幕大全| 免费观看在线日韩| 久久久久精品性色| 蜜臀久久99精品久久宅男| 性色av一级| 亚洲国产av影院在线观看| 亚洲国产毛片av蜜桃av| 国产精品三级大全| 亚洲在久久综合| 插阴视频在线观看视频| 人妻夜夜爽99麻豆av| 51国产日韩欧美| 久久精品国产自在天天线| 成人黄色视频免费在线看| 亚洲成人一二三区av| 国产熟女午夜一区二区三区 | 视频在线观看一区二区三区| 久久99热6这里只有精品| 亚洲成色77777| 高清欧美精品videossex| 欧美xxⅹ黑人| 亚洲欧美一区二区三区国产| 亚洲精品久久久久久婷婷小说| 啦啦啦啦在线视频资源| 美女主播在线视频| 精品亚洲成国产av| 伦理电影免费视频| 亚洲国产日韩一区二区| 久久97久久精品| 一级毛片黄色毛片免费观看视频| 一本久久精品| 女性生殖器流出的白浆| 伦理电影免费视频| 国产精品99久久久久久久久| 亚洲av电影在线观看一区二区三区| 欧美激情 高清一区二区三区| 久久影院123| 亚洲无线观看免费|