• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Metal-polyphenol-coordinated nanomedicines for Fe(II)catalyzed photoacoustic-imaging guided mild hyperthermia-assisted ferroustherapy against breast cancer

    2022-06-20 06:19:56XinyingYuTongyiShangGuodongZhengHailongYangYuweiLiYanjunCaiGuoxiXieBinYang
    Chinese Chemical Letters 2022年4期

    Xinying Yu,Tongyi Shang,Guodong Zheng,Hailong Yang,Yuwei Li,Yanjun Cai,Guoxi Xie,Bin Yang

    The Sixth Affiliated Hospital,Department of Biomedical Engineering,School of Basic Medical Sciences,Guangzhou Medical University,Guangzhou 511436,China

    1 These authors contribute equally to this work.

    ABSTRACT Ferroustherapy has gained great attention for anti-cancer treatment in recent years.Enlightened by temperature-mediated Fenton reaction in industrial waste water removal,we designed a iron-based polyphenol-coordinated nanomedicines for mild hyperthermia-assisted anti-cancer ferroustherapy.In brief,F(xiàn)e-GA@BSA nanoparticles was synthesized by self-assembly and sorafenib(SRF)was loaded into Fe-GA@BSA to establish Fe-GA@BSA-SRF nanomedicines.The result nanomedicines can induce ferroptosis in cancer cells by accelerating Fenton reaction.And the photothermal effect of Fe-GA@BSA-SRF was used for mild hyperthermia-assisted ferroustherapy.The nanomedicines performs good anti-cancer therapeutic efficacy by inducing the production of ROS and inhibiting glutathione peroxidase 4(GPX4)expression in vitro and in vivo.Besides,the broad absorption of Fe-GA@BSA-SRF in near infrared region endows it with photoacoustic imaging ability.This study provides ideas about rational design on iron-based nanoparticles for anti-cancer ferroustherapy.

    Keywords:Ferroptosis Metal-polyphenol nanomedicines Fenton reaction Mild hyperthermia Photoacoustic imaging

    Ferroptosis is a new type pf programmed cell death with features of accumulative iron,increased reactive oxygen species(ROS)levels and lipid peroxidation products[1,2].Fe2+catalyzes Fenton reaction and Haber-Weiss reaction to produce ROS and lipid peroxides thus results in mitochondrial dysfunction.On the other hand,some ferroptosis inducers inhibit the expression of glutathione peroxidase 4(GPX4),a phospholipid hydroperoxidase reduces intracellular peroxides,hence lead to the occurrence of ferroptosis in some drug-resistant cancer cells[3–5].Since ferroptosis bypasses cell resistance against apoptosis and reduces the multidrug resistance in tumor cells[6]therefore some recently developed anticancer strategies are designed to induce ferroptosis at tumor sites.In recent years,iron-based or ferroptosis inducer-loaded nanoparticles have been constructed and used to kill cancer cells[7].They treat cancer cells by inducing Fenton reaction,depleting endogenous GSH,inhibiting GPX4 expression and increase intracellular peroxidative production[8–12].However,the application of ironbased nanoparticles is limited by its high toxicity and low effi-cacy.It was reported that iron-based nanoparticles may inhibit tumor growth at a high dose(i.v.75 mg/kg)which might cause toxicity and brings side effect in the body[13].There is an urgent requirement to develop efficient ferroustherapy.Until recently,synergistic ferroustherapies have been developed in combination with chemotherapy[14,15],photodynamic therapy(PDT)[16–18],photothermal therapy(PTT)[19],starvation therapy[20]and immunotherapy[21–23].Nevertheless,as a temperature-dependent reaction,the moderate elevation in temperature can accelerate Fenton reaction,thus produces more ROS.Therefore,ferroptosis shows its potential in combination with photothermal therapy for an enhanced anti-cancer therapeutic effect.Up to date,mild hyperthermia has been applied in anti-cancer treatment in combination with other therapeutic methods including but not limited to immunotherapy[24–26].However,there are few reports about mild hyperthermia applied in ferroustherapy for synergistic tumor therapy.

    Fig.1.Schematic illustration of PTT-assisted ferroustherapy and PA-imaging properties of Fe-GA@BSA-SRF(FGB-S).Iron-based polyphenol-coordinated nanomedicines FGB-S is synthesized by self-assembly and SRF-loading.After intravenous injection of FGB-S,the nanomedicines are internalized by tumor cells and disassemble in acidic tumor environment.Fe3+ is reduced to Fe2+ at the presence of GA and the result Fe2+ promotes the production of ·OH by accelerating Fenton reaction.Then ·OH accumulation results in lipid peroxidation in mitochondria,which leads to mitochondrial dysfunction.On the other hand,the photothermal effect of FGB-S facilitates Fenton reaction in cancer cells.In combination of GPX4-inhibitive drug SRF,the nanomedicines performs good anti-cancer therapeutic efficacy.Besides,the photoacoustic imaging properties of FGB-S can make the treatment visualize.

    Metal-polyphenol networks have gained attention from researchers for years owing to its simple fabrication,pH responsiveness,good stability and bioavailability.Polyphenolic compounds are naturally derivatives or artificially modified polymers or drugs[27].The abundant phenol groups endows polyphenolic compounds with reducibility and chelates with metal ions including Fe3+,Cu2+,Gd3+and Zn2+[28–31].In recent years,metalpolyphenol networks have been applied to anti-cancer treatment including but not limited to photothermal,photodynamic and chemodynamic therapy,and imaging including computed tomography(CT)and magnetic resonance imaging(MRI)[32–35].The versatility makes metal-polyphenol networks a promising theranostic agent for anti-cancer therapy.

    Herein,we proposed a rational design of nanoparticles which consists of ferric ions,a naturally derived reductive polyphenol compound,gallic acid(GA),and a ferroptosis inducer,Sorafenib(SRF),to realize photothermal-assisted ferroustherapy for anticancer treatment(Fig.1).The abundant phenol groups also allow GA to couple with transition metal ions Fe3+and form coordinate covalent bond.It is worth noting that,the number of coordination bonds decreases along with the decrease in pH which contributes to the disassembly of metal-polyphenol complexes[36].After disassembly,F(xiàn)e3+can be reduced to Fe2+by GA and initiates Fenton reaction to produce ROS under acidic condition at tumor site.The photothermal effect of the particles provides a mildly higher temperature which contributes to a faster rate of Fenton reaction and increases ROS production,thus induces more effective ferroptosisin situ.In addition,in participation of SRF the particles can induce GPX4 suppression at tumor site and the ROS is thus accumulated at tumor site.With its broad absorption in NIR region,F(xiàn)e-GA@BSA appears to possess photoacoustic imaging function assisting therapy.A series ofin vitroandin vivoexperiments were conducted to examine the ferroptosis-inductive and anti-cancer efficacy of Fe-GA-SRF@BSA.

    Detailed experimental procedures are described in Supporting information.We synthesized Fe-GA@BSA(FGB)by self-assembly of Fe3+,gallic acid and BSA.And ferroptosis inducer sorafenib(SRF)was loaded onto FGB by stirring to obtain the nanomedicines.TEM images show that the Fe-GA@BSA-SRF(FGB-S)possessed a spherical morphology with the size of ~50 nm(Fig.2A).AFM results demonstrate the height of FGB and FGB-S was 4 nm and 40 nm respectively(Fig.2B and Fig.S1 in Supporting information).The hydrodynamic particle size of FGB-S is 88.06±8.42 nm,which is slightly higher than the actual size of the particles(Fig.S2 in Supporting information).The variation of particle size was investigated by dynamic light scattering and the results show that particles size under different conditions was consistent to the size in pure water(Fig.S3 in Supporting information).And the size did not change significantly in water,PBS or culture medium within 7 days(Fig.S4 in Supporting information).The zeta potential of FGB-S was–27.7 mV.As shown in Fig.2C,the increased absorbance of FGB-S at 265 nm suggests the loading of SRF and the concentration of Fe was determined to be 3.7 mmol/L by ICP-AES.

    The release rate of SRF was studied under different pH(Fig.2D).The results indicate a faster release rate of SRF at pH 5.5,which resembles tumor microenvironment and endocytic environment.The metal-coordination ability of GA varies at different pH and the weak stabilizing force at acidic environment accelerates the degradation of nanoparticles[37].To investigate the photothermal effect of FGB,the solutions were irradiated by 808 nm laser and the variation in temperature was recorded.With a density of 1 W/cm2,the temperature of 1 mmol/L FGB was raised by 35.8°C(Fig.2E).With a density of 0.5 or 0.3 W/cm2,the temperature was raised by 12.6°C(Fig.S5 in Supporting information)and 13°C(Fig.S6 in Supporting information),respectively.After repeating the“irradiating-cooling”cycle for ten times,the photothermal effect of FGB did not attenuate(Fig.2F).According to Ding’s work[38],the photothermal conversion efficiency(η)was calculated by performing a“irradiating-cooling”cycle and the temperature was recorded at 10 s intervals(Fig.2G)and system time constant was 417.6 s according to the 540 s cooling profile(Fig.2H).As calculated,ηof FGB is 41.74%.The generation of·OHin vitrowas detected by MB degradation assay.The presence of·OH can oxidize and degrade MB(Fig.S7 in Supporting information).The decrease in absorbance reflects MB degradation,which was up to 88% at pH 5.5(Fig.2I).After laser irradiation,the MB degradation was further elevated to 97%.Fenton-reaction has been applied to removal of industrial waste water due to its oxidization properties.It has been reported that an acidic environment and increased temperature can accelerate the reaction and improve the efficiency of nonylphenol ethoxylates removal[39].Photothermal effect of FGB can induce a higher rate of Fenton-reaction by moderately elevation temperaturein situ,which improves the production of·OH.

    Fig.2.(A)TEM image of FGB-S.Scale bar=100 nm.(B)AFM result of FGB-S.(C)UV spectra of FGB,F(xiàn)GB-S and SRF.(D)Drug release of SRF under different conditions.(E)Temperature variation of FGB at different concentrations for 540 s(808 nm,1 W/cm2).(F)Temperature elevation of FGB(1 mmol/L)for ten cycles of“irradiation-cooling”for 1080 s each time(808 nm,1 W/cm2).(G)Temperature variation of FGB(1 mmol/L)in a“irradiation-cooling”cycle(808 nm,1 W/cm2).(H)Photothermal conversion of FGB(1 mmol/L)with 808 nm laser irradiation at 1 W/cm2.(I)MB degradation rate of FGB with/without laser irradiation at different pH(*P <0.05).

    The cytotoxicity of FGB-S was examined in breast cancer cells and normal cells in comparison with free SRF.Comparing to free drug,F(xiàn)GB-S shows a higher toxicity in 4T1 cells and it was amplified after laser irradiation(Fig.3A).For example,at the SRF concentration of 10 μmol/L,the cell viability was 34.5% for free SRF,28% for FGB-S and 26% for FGB-S+NIR.To figure out how the particles induce cell death,a ferroptosis inhibitor Fer-1 and an apoptosis inhibitor Apo were used to co-culture cells with SRF,F(xiàn)GB-S.The cell viability was partially recovered after ferroptosis inhibitor Fer-1 or apoptosis inhibitor Apo treatment in FGB-S treated groups with or without laser(Fig.3B).With the addition of Apo,relative cell viability of FGB-S treated cells recovered to 130%,which indicates that more cells experienced apoptosis rather than ferroptosis.However,the viability of cells in FGB-S+NIR group greatly recovered to 151%(Fer-1)and 141%(Apo),suggesting that cells experienced both apoptosis and ferroptosis.And the rate of ferroptosis significantly increased after laser irradiation.In normal cells(cos-7)FGB-S and FGB-S+NIR groups show a lower toxicity comparing to SRF group(Fig.3C).The expression of GPX4 was studied in 4T1 cells after different treatments.First we studied the influence of FGB-S in comparison with SRF alone and found that FGBS significantly suppressed the expression of GPX4(Figs.S8 and S9 in Supporting information).Then we carried another experiment to investigate whether FGB has effects on GPX4.As shown in Fig.3D and Fig.S10(Supporting information),F(xiàn)GB can slightly down-regulate GPX4 expression while FGB-S shows stronger suppressive effect.And the co-incubation of FGB-S and Fer-1 partially reverse the suppressive effect on GPX4 expression.Western blotting results suggest that nanoparticles can suppress GPX4 expression with or without SRF and this can be reverted by ferroptosis inhibitor.

    To detect thein vitrogeneration of ROS,a commercial probe DCFH-DA was used.It can be oxidized by free radicals and generate 2′,7′-dichlorofluorescein(DCF)with green fluorescence.In Fig.4A,cells simply treated with acid or H2O2did not trigger the boost of ROS generation.After adding FGB,stronger fluorescence was observed in cells and the positive cells increased up to 79.7%(Figs.S11 and S12 in Supporting information).But the FGB-S group showed less stronger fluorescence which may be due to the high toxicity of SRF.In addition,laser irradiation can also trigger the generation of ROS.After 808 nm laser irradiation,the production of ROS was significantly elevated(Figs.4B and C,F(xiàn)ig.S13 in Supporting information).The results evidence that FGB may cause the increase in ROS production and the PTT-effect further enhance the generation of ROS.

    Fig.3.(A)Cytotoxicity of SRF and FGB-S with/without laser irradiation(808 nm,1 W/cm2)in 4T1 cells for 24 h(*P <0.05,**P <0.01).(B)Cytotoxicity of SRF and FGB-S with/without laser irradiation(808 nm,1 W/cm2)at the presence of different inhibitors in 4T1 cells for 24 h.(C)Cytotoxicity of SRF and FGB-S with/without laser irradiation(808 nm,1 W/cm2)in cos7 cells for 24 h(**P <0.01).(D)Expression of GPX4 in 4T1 cells with different treatment for 24 h.

    Fig.4.(A)CLSM images of DCFH-DA assay detecting intracellular ROS level of 4T1 cells after various treatments.(B,C)CLSM images and flow cytometry results of DCFH-DA assay detecting intracellular ROS level of 4T1 cells treated with FGB-S and FGB with/without laser irradiation.(D)CLSM images of BODIPY581/591-C11 assay detecting lipid peroxides of 4T1 cells after various treatments.(E,F(xiàn))CLSM images and flow cytometry of JC-1 assay detecting mitochondrial membrane potential of 4T1 cells after various treatments.Scale bar=20 μm.

    The generated ROS does not remain in cells for good,it further attacks polyunsaturated fatty acids in mitochondrial membranes by generating lipid peroxides and leads to mitochondrial membrane dysfunction[40,41].We used BODIPY581/591-C11 to detect lipid peroxides,as its excitation wavelength will shift after oxidization by lipid peroxides.In Fig.4D,the prevalence of green fluorescence in cells treated with FGB/FGB-S+H2O2+pH 5.5 indicates a higher amount of lipid peroxides in these groups.Oxidized BODIPY581/591-C11 probe with green fluorescence suggests high concentration of ROS in cells,especially in membranes.Overwhelming ROS tends to attack unsaturated fatty in cell membranes and form lipid peroxides.Lipid oxidization may cause a lot of problems and mitochondria dysfunction is one of them.Lipid peroxides altersΔψm and the changes inΔψm influence functional metabolic status thus result in mitochondrial dysfunction.Variation inΔψm can be investigated by JC-1 probes.As shown in Fig.4E,increased JC-1 monomers suggest the lowerΔψm in cells which is a key signal of mitochondria dysfuntion.The flow cytometry results also reflect the decrease inΔψm after FGB and FGB-S treatment(Fig.4F).Collectively,F(xiàn)GB and FGB-S induce disorder in cancer cells by a series of events,including ROS production,lipid peroxidation,Δψm variation and mitochondrial membrane dysfunction.

    Fig.5.(A)Temperature variation of mice at tumor site with laser irradiation at a density of 0.5 W/cm2 for 5 min,8 h-post injection of FGB-S.(B)Images of 4T1 tumors from different groups.(C)Tumor growth of 4T1 tumors in different groups(**P <0.01).(D)PA signal intensities at tumor site post-injection.(E)PA images at tumor site post-injection.(F)H&E staining of 4T1 tumors from different groups.(G)TUNEL staining of 4T1 tumors from different groups.Scale bar=50 μm.

    Since FGB has a wide absorption from 250 nm to 800 nm and a high absorbance in NIR region,it appears to be a good contrast agent for PA imaging.The PA spectrum of FGB showed a peak of absorbance at 690 nm,which was used for further PA-imaging.The animal experiments were performed according to the guidelines of the Animal Ethics Committee of Guangzhou Medical University.4T1 tumor-bearing mouse received intravenous injection of 200 μL FGB-S(Fe:3.7 mmol/L)to investigatein vivoPA imaging.The PA signal at tumor site was recorded at different time intervals post-injection.The signal increased rapidly from 0 h-post injection to 4 h-post injection and reached maximum at 8 h-post injection(Figs.5D and E).After 24 h,PA signal attenuated a little which indicates the retention of FGB-S at tumor site.The PA imaging properties of FGB-S indicates the potency of PA-guided therapeutic applications.

    A 4T1 tumor-bearing model was chosen to examine the anticancer efficacy of FGB-Sin vivo.Once the tumor volume reached~100 mm3,the mice were randomly allocated into 5 groups and intravenously injected with 100 μL of PBS,free SRF,F(xiàn)GB and FGBS.The treatment was operated with a single dose of free drug or nanoparticles(SRF:2 mg/mL;Fe:3.7 mmol/L)at day 0 and 0.5 W/cm2laser irradiation 8 h-post injection for 5 min.The local temperature was elevated to 38.6°C after irradiation(Fig.5A).Comparing to PBS group,free SRF showed little anti-cancer effi-cacy and so did FGB group(Fig.5B).Nonetheless,the combination of FGB and SRF showed a better inhibition on tumor growth and the introduction of moderate laser irradiation further enhanced its anti-cancer efficacy.The 0.5 W/cm2irradiation slightly increased the local temperature at tumor site,which accelerateinsituFenton-reaction and higher reaction rate brought more·OH and therefore damaged the function of cancer cells.At day 18,relative tumor volume of FGB-S+NIR group was significantly lower than control group(P <0.01,F(xiàn)ig.5C)which reflects the slower growth rate of tumor.It evidenced the elevated effect of FGB-S by slightly increased local temperature.

    The main organs and tumor were harvested for H&E staining.The results showed that the treatment did not cause damages in heart,liver spleen and kidney(Fig.S14 in Supporting information).However,we found obvious metastasis in lung from PBS and FGB groups,while little or no metastasis occurs in other groups(Fig.S15 in Supporting information).Breast cancer is greatly aggressive with a high probability of lung metastasis occurrence which involves chemokine(C–C motif)ligand 2(CCL2)-mediated inflammatory monocytes recruitment.In this study,the occurrence of lung metastasis decreased with the participation of SRF treatment.And some cavities were found in tumors from FGB-S and FGB-S+NIR groups,which is a sign of cancer cell death(Fig.5F).The tumors were also subjected to TUNEL staining and tumor cells from FGBS+NIR group were found to be highly apoptotic comparing to control group(Fig.5G).This finding is consistent with the conclusion that FGB-S caused cell death partially by apoptosis.At the end of animal experiment,there was negligibly significant difference in body weights among these groups(Fig.S16 in Supporting information).

    We have constructed ferric-coordinated polyphenol nanoparticles for triggering PTT-assisted ferroustherapy for anti-cancer treatment.A mild increase in temperature endows faster Fentonreaction and Haber-Weiss reactionin situ.The role which GA plays in this nanomedicine is more than a reductant for ferrous supply,and it is also a switch for acidity-responsive degradation and drug release.We tested the production of ROSin vitroand examined the impact of excessive ROS on biological membranes and mitochondrial function.The results indicate the peroxidation of biological membranes and alteration in mitochondrial membrane potential,thus verified the damages in mitochondrial function.In combination with Sorafenib,the nanomedicine significantly suppressed GPX4 expression.The recovery in cell viability after treatment with different inhibitors suggests that the nanomedicine induced both apoptosis and ferroptosis in 4T1 cells.More importantly,the rate of ferroptosis increased significantly after NIR irradiation.It is noteworthy that the PTT effect of FGB amplified the production of ROS with a moderate hyperthermia by controlling the time and intensity of NIR irradiation,which avoids painful ambustion.In animal experiment the mild hyperthermia-assisted ferroustherapy showed higher anti-cancer effect comparing to using ferroustherapy alone,which has been proved by inhibitive tumor growth and higher apoptotic rate in tumor sites.Moreover,the photoacoustic effect of FGB can facilitatein vivoimaging of tumor during treatment.In summary,F(xiàn)GB-S nanoparticles provide a novel theranostic strategy based on ferroptosis and photoacoustic imaging.It is expected that FGB-S may benefit the development and application of anti-cancer nanoparticles in the future.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by grants from the National Natural Science Foundation of China(No.51903062),Guangdong Basic and Applied Basic Research Foundation(No.2020A1515011320),Science and Technology Projects of Guangzhou(No.202102020757)and Subject Construction Project of Basic Medical Sciences of Guangzhou Medical University(Nos.JCXKJS2021B07,JCXKJS2021D09).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.10.021.

    国产又色又爽无遮挡免| 亚洲欧洲日产国产| 免费在线观看视频国产中文字幕亚洲 | 在线 av 中文字幕| 精品亚洲成a人片在线观看| 亚洲精品一二三| 亚洲性夜色夜夜综合| 波多野结衣一区麻豆| 欧美大码av| 五月天丁香电影| 欧美大码av| 中文字幕色久视频| 丝袜美足系列| 欧美+亚洲+日韩+国产| 午夜福利,免费看| 日韩人妻精品一区2区三区| 欧美黄色淫秽网站| 精品第一国产精品| 精品福利观看| 精品视频人人做人人爽| av超薄肉色丝袜交足视频| e午夜精品久久久久久久| 高潮久久久久久久久久久不卡| 国产亚洲精品一区二区www | 777久久人妻少妇嫩草av网站| 自线自在国产av| 精品少妇黑人巨大在线播放| 国产精品偷伦视频观看了| 国产男女内射视频| 欧美 亚洲 国产 日韩一| 国产精品一区二区精品视频观看| 欧美性长视频在线观看| 日本a在线网址| a在线观看视频网站| 在线观看免费午夜福利视频| 午夜激情久久久久久久| 爱豆传媒免费全集在线观看| 丰满人妻熟妇乱又伦精品不卡| 免费久久久久久久精品成人欧美视频| 免费av中文字幕在线| 美女福利国产在线| 亚洲欧美激情在线| 国产日韩欧美视频二区| 精品人妻1区二区| 欧美日本中文国产一区发布| 亚洲国产精品一区二区三区在线| 精品国产乱码久久久久久男人| 亚洲黑人精品在线| 黄色片一级片一级黄色片| 777米奇影视久久| 99国产精品99久久久久| 亚洲成人免费电影在线观看| 精品人妻一区二区三区麻豆| 久热这里只有精品99| 久久久久精品人妻al黑| 亚洲精华国产精华精| 国产成人av教育| 国产男人的电影天堂91| 老司机福利观看| 亚洲av电影在线观看一区二区三区| 免费av中文字幕在线| 久久久国产一区二区| 日本猛色少妇xxxxx猛交久久| 久久这里只有精品19| 桃花免费在线播放| 一本色道久久久久久精品综合| 亚洲av男天堂| 操美女的视频在线观看| 国产欧美日韩综合在线一区二区| 少妇裸体淫交视频免费看高清 | 美女中出高潮动态图| 成年动漫av网址| 1024香蕉在线观看| 十八禁网站网址无遮挡| 成年人免费黄色播放视频| 国产一区二区三区在线臀色熟女 | 男人操女人黄网站| 中文字幕高清在线视频| 欧美精品高潮呻吟av久久| 国产精品av久久久久免费| 极品人妻少妇av视频| 一区二区三区乱码不卡18| 97在线人人人人妻| av网站免费在线观看视频| 亚洲精品乱久久久久久| 制服人妻中文乱码| 国产又色又爽无遮挡免| 巨乳人妻的诱惑在线观看| 亚洲精品一二三| www.av在线官网国产| 99精品欧美一区二区三区四区| 国产精品麻豆人妻色哟哟久久| 成人国产一区最新在线观看| 狠狠精品人妻久久久久久综合| 欧美成人午夜精品| 一区二区三区激情视频| 人人妻,人人澡人人爽秒播| 日韩电影二区| 久久天堂一区二区三区四区| 久久av网站| 精品人妻熟女毛片av久久网站| 深夜精品福利| 国产黄频视频在线观看| 脱女人内裤的视频| 999久久久国产精品视频| 久久国产精品大桥未久av| 最新在线观看一区二区三区| 黄色视频在线播放观看不卡| 国产精品久久久人人做人人爽| 亚洲欧美一区二区三区黑人| 国产一区二区 视频在线| 蜜桃国产av成人99| 国产亚洲精品久久久久5区| 亚洲国产欧美在线一区| 无限看片的www在线观看| 波多野结衣一区麻豆| 午夜免费鲁丝| 乱人伦中国视频| 最近中文字幕2019免费版| 精品久久蜜臀av无| 亚洲熟女毛片儿| 91精品三级在线观看| 中文字幕人妻熟女乱码| av电影中文网址| 精品国产一区二区三区四区第35| 视频在线观看一区二区三区| 欧美久久黑人一区二区| 欧美 日韩 精品 国产| 色94色欧美一区二区| 最新在线观看一区二区三区| 日韩中文字幕欧美一区二区| 人人妻人人澡人人爽人人夜夜| 日韩制服骚丝袜av| 手机成人av网站| 久久精品国产亚洲av香蕉五月 | 美女午夜性视频免费| 久久精品成人免费网站| 久久久久久久精品精品| 欧美精品高潮呻吟av久久| 精品福利永久在线观看| 91老司机精品| 国产亚洲av片在线观看秒播厂| 90打野战视频偷拍视频| 免费久久久久久久精品成人欧美视频| 色老头精品视频在线观看| 久久亚洲精品不卡| 91国产中文字幕| 中文字幕av电影在线播放| 亚洲少妇的诱惑av| 亚洲精品自拍成人| 亚洲av片天天在线观看| 久久天堂一区二区三区四区| 欧美黄色淫秽网站| 动漫黄色视频在线观看| 国产精品自产拍在线观看55亚洲 | 国产黄频视频在线观看| 午夜日韩欧美国产| av欧美777| 亚洲五月婷婷丁香| 两性午夜刺激爽爽歪歪视频在线观看 | 黄色视频不卡| 国产男人的电影天堂91| 日韩中文字幕欧美一区二区| 久久国产精品大桥未久av| 大码成人一级视频| 亚洲国产欧美日韩在线播放| 欧美激情高清一区二区三区| av一本久久久久| 妹子高潮喷水视频| 天天操日日干夜夜撸| 成人影院久久| 丁香六月天网| 成人手机av| 午夜日韩欧美国产| 国产精品香港三级国产av潘金莲| 在线看a的网站| 欧美大码av| 久久久久久久国产电影| av超薄肉色丝袜交足视频| 亚洲色图综合在线观看| 欧美在线黄色| 女警被强在线播放| 国产精品熟女久久久久浪| 久久久精品免费免费高清| 两性夫妻黄色片| 国产成人精品久久二区二区免费| 亚洲欧美精品综合一区二区三区| 国产一卡二卡三卡精品| 首页视频小说图片口味搜索| 老司机靠b影院| 丝袜美腿诱惑在线| 人人妻人人添人人爽欧美一区卜| 女人被躁到高潮嗷嗷叫费观| 在线天堂中文资源库| 精品国产一区二区久久| 97人妻天天添夜夜摸| 精品人妻熟女毛片av久久网站| 又大又爽又粗| 精品第一国产精品| av天堂在线播放| 美女脱内裤让男人舔精品视频| 香蕉国产在线看| 丰满少妇做爰视频| 一本一本久久a久久精品综合妖精| 美女主播在线视频| 国产精品1区2区在线观看. | 天天躁夜夜躁狠狠躁躁| 免费高清在线观看视频在线观看| 美国免费a级毛片| 国产91精品成人一区二区三区 | 国产av国产精品国产| 久久久国产欧美日韩av| 青草久久国产| 男人爽女人下面视频在线观看| 精品乱码久久久久久99久播| 色综合欧美亚洲国产小说| 亚洲精品在线美女| 免费观看人在逋| 国产一区二区 视频在线| 国产日韩欧美亚洲二区| 美女主播在线视频| 美女国产高潮福利片在线看| 国产精品av久久久久免费| 国产日韩一区二区三区精品不卡| 亚洲成人免费av在线播放| 久久精品成人免费网站| 岛国在线观看网站| 中文字幕人妻丝袜一区二区| 午夜久久久在线观看| 亚洲精品国产区一区二| 国产伦理片在线播放av一区| 久久精品成人免费网站| 国产日韩一区二区三区精品不卡| www.自偷自拍.com| 欧美日韩视频精品一区| 亚洲精品第二区| 国产av精品麻豆| 制服人妻中文乱码| 午夜免费观看性视频| 国产极品粉嫩免费观看在线| 在线观看www视频免费| 狠狠婷婷综合久久久久久88av| 久久ye,这里只有精品| 嫩草影视91久久| 日韩大码丰满熟妇| 美女国产高潮福利片在线看| 久久人妻福利社区极品人妻图片| 精品国内亚洲2022精品成人 | 老司机深夜福利视频在线观看 | 9191精品国产免费久久| 黄色视频不卡| 黄色a级毛片大全视频| 国产xxxxx性猛交| 一进一出抽搐动态| 少妇被粗大的猛进出69影院| 国产区一区二久久| 亚洲全国av大片| 最近最新免费中文字幕在线| 在线观看舔阴道视频| 亚洲成av片中文字幕在线观看| 成人国语在线视频| 老汉色∧v一级毛片| 久久精品国产亚洲av高清一级| 男女国产视频网站| 日本欧美视频一区| 首页视频小说图片口味搜索| 亚洲精品一区蜜桃| bbb黄色大片| 久热爱精品视频在线9| 日韩欧美免费精品| 中文字幕高清在线视频| 亚洲精品粉嫩美女一区| 多毛熟女@视频| 精品亚洲乱码少妇综合久久| 免费在线观看黄色视频的| 秋霞在线观看毛片| 高清黄色对白视频在线免费看| 50天的宝宝边吃奶边哭怎么回事| 国产主播在线观看一区二区| 成人国语在线视频| 狠狠精品人妻久久久久久综合| 纵有疾风起免费观看全集完整版| 免费在线观看日本一区| 99精品欧美一区二区三区四区| 国产成人欧美在线观看 | a级毛片黄视频| 国产男女超爽视频在线观看| 一区二区三区四区激情视频| 99精品欧美一区二区三区四区| 中文精品一卡2卡3卡4更新| 自线自在国产av| 国产精品成人在线| 侵犯人妻中文字幕一二三四区| 久久久国产精品麻豆| 丰满迷人的少妇在线观看| 美女午夜性视频免费| 性少妇av在线| 亚洲伊人色综图| 一区在线观看完整版| 一级a爱视频在线免费观看| 国产有黄有色有爽视频| 久久 成人 亚洲| 国产一卡二卡三卡精品| 亚洲欧洲日产国产| 国产精品久久久av美女十八| 免费不卡黄色视频| 亚洲伊人色综图| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲五月色婷婷综合| 欧美xxⅹ黑人| 欧美 亚洲 国产 日韩一| 90打野战视频偷拍视频| 精品高清国产在线一区| 欧美日韩中文字幕国产精品一区二区三区 | 三级毛片av免费| 天堂俺去俺来也www色官网| 永久免费av网站大全| 午夜91福利影院| 国产欧美亚洲国产| 亚洲精品av麻豆狂野| 亚洲男人天堂网一区| 国产片内射在线| 亚洲国产看品久久| 国产精品亚洲av一区麻豆| 日韩制服丝袜自拍偷拍| 日本wwww免费看| 国产高清视频在线播放一区 | 久久久久久久国产电影| 99香蕉大伊视频| 蜜桃国产av成人99| 久9热在线精品视频| 动漫黄色视频在线观看| tocl精华| 国产精品久久久久久精品古装| 交换朋友夫妻互换小说| 欧美日韩av久久| 日本a在线网址| 无限看片的www在线观看| 免费高清在线观看日韩| 人妻人人澡人人爽人人| 肉色欧美久久久久久久蜜桃| 免费日韩欧美在线观看| 亚洲七黄色美女视频| 亚洲专区字幕在线| 少妇裸体淫交视频免费看高清 | 久久亚洲精品不卡| 各种免费的搞黄视频| 啦啦啦啦在线视频资源| 精品少妇黑人巨大在线播放| 成年动漫av网址| 十八禁人妻一区二区| 精品国产乱子伦一区二区三区 | 免费高清在线观看日韩| 国产精品欧美亚洲77777| 久久久久国产精品人妻一区二区| avwww免费| 欧美日韩一级在线毛片| 精品高清国产在线一区| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品久久久久久人妻精品电影 | 欧美精品一区二区免费开放| 精品国产超薄肉色丝袜足j| 这个男人来自地球电影免费观看| 美女国产高潮福利片在线看| 啪啪无遮挡十八禁网站| 侵犯人妻中文字幕一二三四区| 国产福利在线免费观看视频| 男人爽女人下面视频在线观看| 丝袜美腿诱惑在线| 99国产精品一区二区三区| 国产亚洲精品久久久久5区| 亚洲专区字幕在线| 男女下面插进去视频免费观看| 国产亚洲精品一区二区www | 在线天堂中文资源库| 精品国内亚洲2022精品成人 | 另类精品久久| 久9热在线精品视频| 美女视频免费永久观看网站| 免费在线观看黄色视频的| 久久久久久久国产电影| 日本撒尿小便嘘嘘汇集6| 丝瓜视频免费看黄片| 精品国产一区二区久久| 久久久国产欧美日韩av| 2018国产大陆天天弄谢| 欧美午夜高清在线| 久久热在线av| 久久久水蜜桃国产精品网| 日日爽夜夜爽网站| 日韩熟女老妇一区二区性免费视频| 色视频在线一区二区三区| 精品少妇黑人巨大在线播放| 91精品伊人久久大香线蕉| 成人免费观看视频高清| 天天躁日日躁夜夜躁夜夜| 欧美日韩亚洲综合一区二区三区_| 精品卡一卡二卡四卡免费| 一个人免费在线观看的高清视频 | 亚洲国产精品999| 国产精品一区二区免费欧美 | 99久久99久久久精品蜜桃| 免费高清在线观看日韩| 亚洲欧美清纯卡通| 欧美精品人与动牲交sv欧美| 亚洲成人免费电影在线观看| 久9热在线精品视频| 999久久久国产精品视频| 国产精品秋霞免费鲁丝片| 极品少妇高潮喷水抽搐| 大片电影免费在线观看免费| 在线永久观看黄色视频| 9色porny在线观看| 亚洲国产日韩一区二区| 精品高清国产在线一区| 天堂中文最新版在线下载| 一边摸一边抽搐一进一出视频| 久久精品国产亚洲av高清一级| 超碰成人久久| 啪啪无遮挡十八禁网站| 国产精品久久久久久人妻精品电影 | 色播在线永久视频| 成年美女黄网站色视频大全免费| 国产精品久久久久成人av| 少妇裸体淫交视频免费看高清 | 啦啦啦 在线观看视频| 男男h啪啪无遮挡| 国产精品自产拍在线观看55亚洲 | 久久青草综合色| 成人亚洲精品一区在线观看| 美国免费a级毛片| 国产免费福利视频在线观看| 亚洲五月色婷婷综合| 国产一区二区三区av在线| 亚洲专区中文字幕在线| 狂野欧美激情性xxxx| 国产主播在线观看一区二区| 精品一区二区三区av网在线观看 | 国产精品av久久久久免费| 欧美精品啪啪一区二区三区 | 天天躁日日躁夜夜躁夜夜| 亚洲欧美精品自产自拍| 97精品久久久久久久久久精品| 日韩欧美免费精品| 中文字幕高清在线视频| 亚洲久久久国产精品| svipshipincom国产片| 亚洲av成人不卡在线观看播放网 | 黄色怎么调成土黄色| 欧美日韩亚洲高清精品| 最近最新免费中文字幕在线| 中文字幕精品免费在线观看视频| 考比视频在线观看| 国产成人欧美在线观看 | 50天的宝宝边吃奶边哭怎么回事| 亚洲国产毛片av蜜桃av| 国产一区二区三区av在线| 亚洲专区国产一区二区| 亚洲精华国产精华精| 亚洲一区中文字幕在线| 大香蕉久久网| 91精品国产国语对白视频| 美女高潮到喷水免费观看| 久久国产精品人妻蜜桃| 欧美变态另类bdsm刘玥| 爱豆传媒免费全集在线观看| 丝袜喷水一区| 国产精品亚洲av一区麻豆| 国产精品久久久av美女十八| 久久久久视频综合| 精品亚洲成国产av| 1024视频免费在线观看| 午夜两性在线视频| 亚洲激情五月婷婷啪啪| a 毛片基地| 国产福利在线免费观看视频| 成年人午夜在线观看视频| 国产成人精品在线电影| 午夜免费鲁丝| a级片在线免费高清观看视频| 国产高清videossex| 久热这里只有精品99| 亚洲欧洲日产国产| 国产精品国产av在线观看| 国产精品 欧美亚洲| av视频免费观看在线观看| 亚洲国产中文字幕在线视频| 亚洲国产毛片av蜜桃av| 亚洲伊人久久精品综合| 老汉色∧v一级毛片| 国产精品成人在线| 亚洲精品成人av观看孕妇| av超薄肉色丝袜交足视频| 老司机影院成人| 国产精品av久久久久免费| 99国产精品99久久久久| 一本一本久久a久久精品综合妖精| 大码成人一级视频| 18禁观看日本| 嫁个100分男人电影在线观看| 王馨瑶露胸无遮挡在线观看| 日本黄色日本黄色录像| 国产精品一区二区在线不卡| 青春草视频在线免费观看| 日韩大片免费观看网站| 日韩欧美国产一区二区入口| 国产黄色免费在线视频| 老司机在亚洲福利影院| 亚洲国产精品一区二区三区在线| 黑人操中国人逼视频| 五月开心婷婷网| 久久久久久久精品精品| 久久久水蜜桃国产精品网| 亚洲av电影在线观看一区二区三区| 老熟女久久久| 精品一区二区三区四区五区乱码| 在线十欧美十亚洲十日本专区| 人人妻人人澡人人爽人人夜夜| av在线播放精品| 欧美日韩中文字幕国产精品一区二区三区 | 日本欧美视频一区| 中文精品一卡2卡3卡4更新| 搡老岳熟女国产| 777米奇影视久久| 日本精品一区二区三区蜜桃| 色播在线永久视频| 国产有黄有色有爽视频| 国产精品熟女久久久久浪| av超薄肉色丝袜交足视频| 亚洲精品国产av蜜桃| 欧美另类亚洲清纯唯美| 亚洲精品粉嫩美女一区| 亚洲国产精品成人久久小说| 在线观看免费午夜福利视频| h视频一区二区三区| 一级毛片精品| 国产成人精品久久二区二区91| 天堂俺去俺来也www色官网| 色婷婷av一区二区三区视频| 两个人免费观看高清视频| 91精品伊人久久大香线蕉| 亚洲国产欧美一区二区综合| 嫩草影视91久久| 男女高潮啪啪啪动态图| 亚洲人成77777在线视频| 水蜜桃什么品种好| 日本wwww免费看| 国产精品国产av在线观看| 亚洲av片天天在线观看| 最新的欧美精品一区二区| 十八禁高潮呻吟视频| 国产片内射在线| 国产精品自产拍在线观看55亚洲 | 精品卡一卡二卡四卡免费| 男女边摸边吃奶| 国产深夜福利视频在线观看| 亚洲精品国产色婷婷电影| 大陆偷拍与自拍| 亚洲精品第二区| 亚洲av男天堂| 高清视频免费观看一区二区| 一本大道久久a久久精品| 一区二区三区精品91| 免费黄频网站在线观看国产| 久久人人爽av亚洲精品天堂| 日本a在线网址| 丝袜在线中文字幕| 午夜久久久在线观看| 90打野战视频偷拍视频| 一边摸一边做爽爽视频免费| 首页视频小说图片口味搜索| 十八禁网站网址无遮挡| 9热在线视频观看99| 精品国产一区二区久久| 国产91精品成人一区二区三区 | 老司机福利观看| 19禁男女啪啪无遮挡网站| 777久久人妻少妇嫩草av网站| 麻豆国产av国片精品| 成年动漫av网址| 国产成人免费无遮挡视频| 久久天躁狠狠躁夜夜2o2o| 极品少妇高潮喷水抽搐| 淫妇啪啪啪对白视频 | 免费在线观看日本一区| 亚洲av日韩在线播放| 三上悠亚av全集在线观看| 午夜福利乱码中文字幕| 国产成人免费无遮挡视频| 亚洲av国产av综合av卡| 丝袜喷水一区| 啦啦啦在线免费观看视频4| 精品福利永久在线观看| 国产精品影院久久| 欧美国产精品一级二级三级| 久久国产精品大桥未久av| 亚洲成人免费电影在线观看| 国产黄频视频在线观看| 每晚都被弄得嗷嗷叫到高潮| av福利片在线| 亚洲欧美激情在线| 欧美日韩视频精品一区| 欧美日韩亚洲高清精品| 老司机午夜福利在线观看视频 | 一边摸一边做爽爽视频免费| 日本av免费视频播放| 国产高清视频在线播放一区 | 在线观看www视频免费| 在线观看免费午夜福利视频| 亚洲成人免费av在线播放| 亚洲国产中文字幕在线视频| 亚洲国产精品999| 真人做人爱边吃奶动态| 性色av乱码一区二区三区2| 亚洲专区国产一区二区|