• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Triphenylamines consisting of bulky 3,5-di–tert–butyl–4-anisyl group:Synthesis,redox properties and their radical cation species

    2022-06-20 06:19:44ManfeiZhouLijunMaoYanFeiNiuXiaoLiZhaoXueliangShiHaiBoYang
    Chinese Chemical Letters 2022年4期

    Manfei Zhou,Lijun Mao,Yan-Fei Niu,Xiao-Li Zhao,Xueliang Shi,Hai-Bo Yang

    Shanghai Key Laboratory of Green Chemistry and Chemical Processes,School of Chemistry and Molecular Engineering,East China Normal University,Shanghai 200062,China

    ABSTRACT Triphenylamine(TPA)derivatives have been widely used as useful building blocks for diverse functional materials because of their excellent redox activity.Most of the molecular structures of TPA-based organic functional materials contain 4-anisyl groups,which on one hand could reduce their oxidation potential and on the other hand significantly delocalize the spin density of the resultant TPA radical cation species and enhance their stability.However,molecular-level investigation of the redox behavior of triphenylamines consisting of 4-anisyl group and the electronic structures of their radical cation species has not been reported in the literature.Herein,we design a series of triphenylamines consisting of one,two,or three 3,5-di–tert–butyl–4-anisyl groups and investigate their redox behaviors and corresponding radical cation species.We disclose that the resonance hybrid and steric protection could both contribute to the stability of triphenylamine radical cations.Moreover,further oxidation leads to an unexpected oxidative demethylation.The findings in this work may reveal new insights for the understanding of the unique redox properties of 4-anisyl substituted triphenylamines.

    Keywords:Triphenylamine Radical cation Stability Redox Steric protection

    Triphenylamine(TPA)together with its derivatives and their radical cation counterparts are well known for their excellent optical[1–3],electric[4–5],and magnetic properties[6–9],which renders TPA core as one of the most extensively utilized building blocks in many organic functional materials[10–22].For example,TPA derivatives have been widely employed as the hole-transport layers(HTLs)for dye sensitized solar cells(DSSCs)and perovskite solar cells(PSCs)because of their excellent redox activity[23–26].Most of the molecular structures of TPA-based HTLs contain 4-anisyl group,which on one hand could reduce their oxidation potential and facilitate the hole injection process,and on the other hand significantly delocalize the spin density of the resultant TPA radical cation species and enhance their stability[27–30].Therefore,the investigation of the redox behavior of TPA consisting of 4-anisyl group is of great interest.

    Triphenylamine-based radical cation is reasonable persistent when thepara-position of TPA core is properly protected[31–45].Thepara–methoxy substituted TPA radical cations in principle exhibit enhanced persistence because such species could be represented by a resonance hybrid wherein the spin density is overall delocalized in the 4-anisyl group(Scheme 1)[46].Besides,the dication of thepara–methoxy substituted TPA was also speculated[47].However,such resonance hybrid has rarely been directly confirmed experimentally,especially in characterizing electronic structures through X-ray crystallographic analysis.Moreover,thepara–methoxy substituted TPA radical cations might still suffer significant issue in chemical instability if theortho-position is not adequately protected.Recently,we demonstrated that 3,5-di–tert–butyl–4-methoxyphenyl group at the nitrogen atom of the carbazole could effectively reduce the ionization energy of carbazole and enhance the stability of its radical cation[48].In this scenario,we anticipate that the bulky 3,5-di–tert–butyl–4-anisyl group may have a profound effect on the stability of TPA radical cation species because of the additional steric protection,which meanwhile would give a detailed insight into the resonance structures.

    Scheme 1.The major resonance structures of TPA radical cation consisting of 4-anisyl group,the proposed steric protecting strategy and the target molecules in this work.

    Herein we design and synthesize a series of TPA molecules(1,2 and 3)consisting of one,two,or three 3,5-di–tert–butyl–4-anisyl groups(Scheme 1),and systematically investigate the substitution effect on their redox behavior and the stability of the resultant radical cations.Cyclic voltammetry experiment demonstrated that the introduction of anisyl groups significantly reduced the oxidation potential of TPA molecules and simultaneously enhanced the stability of the TPA radical cations.Consequently,the radical cation species of 1·+-3·+were successfully obtained and their structures were unambiguously determined by X-ray crystallographic analysis.The photophysical properties of 1·+-3·+and their electronic structures were systematically investigated by UV–vis-NIR spectroscopy and electron paramagnetic resonance spectroscopy(EPR),assisted by density functional theory(DFT)calculations.The results implied that the resonance hybrid and steric protection could both contribute to the stability of triphenylamine radical cations 1·+-3·+.Moreover,an unexpected oxidative demethylation was observed when 1 was further oxidized by a stronger oxidant,resulting in a quinone like structure of 1-Q as confirmed by X-ray crystallographic analysis.We anticipate the findings in this work will shed some light on the design of novel triphenylamine-based radical cations and related materials.

    As shown in Scheme 1,a series of TPA molecules(1,2 and 3)consisting of one,two,or three 3,5-di–tert–butyl–4-anisyl groups were designed and synthesized.Compound 1 was synthesized through a facile one-step Pd-catalyzed amination reaction[49]from 1–bromo-3,5-di–tert–butyl–4-methoxybenzene and urea which is serving as ammonia equivalent in moderate yield(75%)(Experimental section and Scheme S1 in Supporting information).Compounds 2 and 3 were prepared through Buchwald-Hartwig amination of 1–bromo-3,5-di–tert–butyl–4-methoxybenzene with phenylamine followed by the bromination reaction withNbromosuccinimide.The structures of compound 1–3 were thoroughly characterized by1H and13C NMR,HR-MS measurements as well as single crystal X-ray crystallography(Supporting information).

    The redox properties of triphenylamines 1–3 were then evaluated by cyclic voltammetry(CV)in CH2Cl2at 298 K with 0.1 mol/L tetrabutylammonium hexafluorophosphate as supporting electrolyte(Fig.1a).Triphenylamines 1–3 all exhibited two oxidation waves,and the half-wave potentials(Eox1/2,potentials are referredvs.Fc/Fc+)of 1–3 were determined to be+0.01 V,+0.20 V,and+0.41 V,respectively.No reduction wave was observed for 1–3.The oxidation potentials significantly decreased in an order from 3,2 to 1,indicating that the 3,5-di–tert–butyl–4-anisyl group could remarkably reduce the oxidation potential of TPA core.Notably,in all cases,the first oxidation wave was reversible while the second one was irreversible,implying the formation of radical cation was feasible but might be difficult in achieving the dication species(vide infra).

    Motivated by the results of cyclic voltammetry,we tried to synthesize the radical cation species and investigate their electronic structures,and compare the difference between each radical cation species,as well as between the neutral triphenylamines and triphenylamine radical cations.The radical cation species of 1·+-3·+were obtained by single electron oxidation of 1–3 in the presence of AgSbF6in nearly quantitative yield(Scheme S2 in Supporting information).The UV–vis-NIR spectra of 1–3 and 1·+-3·+were surveyed and compared.The UV–vis-NIR absorption profiles of 1–3 in CH2Cl2were nearly identical,all showing intense absorption in the 260–350 nm range with the maxima at 300,299 and 302 nm for 1,2 and 3,respectively(Fig.1b,dash line).The almost same absorption onset of 1–3 implied that their energy gaps remained unchanged in spite of their different oxidation potential.The density functional theory(DFT)calculations revealed the substitution of 3,5-di–tert–butyl–4-anisyl groups obviously altered the HOMO/LUMO alignment of TPA core but without changing their energy gaps(Fig.S7 in Supporting information),which was consistent with the above CV and UV–vis-NIR analysis.The radical cation species 1·+-3·+exhibited obvious absorption in the visible and near-infrared region compared with the absorption of their neutral molecules(Fig.1b,solid line).The observed long wavelength absorption bands could be assigned to the HOMO →SOMO transitions based on the time-dependent density functional theory(TDDFT)(Tables S1-S3 in Supporting information).

    The EPR spectra of radical cation species 1·+-3·+all exhibited three main peaks due to the nitrogen hyperfine splitting(mI=0,±1)with agtensor around 2.004,indicating the efficient spin delocalization on the N atom(Fig.2a,solid line).Each of the three peaks in 1·+further split into seven peaks due to the six equivalentortho-protons.Because of the existence of multiple inequivalentortho-protons,hyperfine structures of 2·+and 3·+were not fully resolved.The EPR spectra of 1·+-3·+can be roughly simulated through ORCA program at the UB3LYP/TZVP level of theory(Figs.S10-S12 in Supporting information).The spin density maps of 1·+-3·+were also calculated at the UB3LYP/6–311G(d,p)level of theory,and the spin density distribution disclosed some interesting information(Fig.2b and Fig.S7 in Supporting information).The results revealed that the spin densities were considerably delocalized on the anisyl groups in 1·+-3·+,even on the oxygen atom.Moreover,the spin densities on the anisyl groups were more prominent than those on thepara-bromophenyl groups,implying the main resonance structures in Scheme 1 were valid.

    Fig.1.(a)Cyclic voltammograms of 1–3 measured in CH2Cl2(at 1.0× 10-3 mol/L)containing 0.1 mol/L n-Bu4NPF6 at 298 K(scan rate:20 mV/s).(b)UV–vis-NIR spectra of 1–3(dash line)and radical cations 1·+-3·+(solid line).

    Fig.2.(a)EPR spectra and the simulations via EPR simulation programs of 1·+-3·+ in CH2Cl2 solution.(b)Spin density distributions of 1·+-3·+ at the UB3LYP/6–311G(d,p)level of theory.

    Fig.3.Evaluation of the stability of radical cation species of 1·+(black line),2·+(red line),and 3·+(blue line) via UV–vis-NIR spectroscopy.

    In order to investigated the stability of the three triphenylamine radical cations 1·+-3·+,we measured the time-dependent absorption spectra of 1·+-3·+in CH2Cl2(Fig.3).Radical cations 1·+with three 3,5-di–tert–butyl–4-anisyl was found to be very stable after 48 h in ambient environmental conditions because its absorbance in CH2Cl2solution remained almost constant(Fig.3 and Fig.S1 in Supporting information).In contrast,radical cations 2·+and 3·+exhibited obvious decrease in their absorbances in CH2Cl2,especially for 3·+that was found to remain only 70% after 48 h(Fig.3,F(xiàn)igs.S2 and S3 in Supporting information).Therefore,the introduction of more bulky 3,5-di–tert–butyl–4-anisyl groups could significant enhance the stability of the TPA radical cations,mainly due to the effectively kinetic protection,which is also consistent with our recent study[48].

    Fig.4.X-ray crystallographic structures of 1–3 and 1·+-3·+ and their selective bond lengths.Hydrogen atoms and SbF6- anions are omitted for clarity.

    The structures of 1–3 and 1·+-3·+were unambiguously confirmed by X-ray crystallographic analysis(Fig.4).Their single crystals revealed the distinct propeller-shaped configuration of TPA core,wherein thepara-position on anisyl rings were properly protected by the bulkytert–butyl group.Such configuration and the kinetic protection reasonably elucidated the increased stability of TPA radical cation consisting of more 3,5-di–tert–butyl–4-anisyl groups.Interestingly,the N–C bonds(red numbers in Fig.4)between the N atom and anisyl group in radical cation species became consistently shorter than in the neutral species.Besides,such N–C bond lengths were also much shorter than those between the N atom andpara-bromophenyl group(black numbers in Fig.4).In addition,the C–O bond lengths(blue numbers in Fig.4)were also becoming shorter than in the neutral species.Therefore,the bond length analysis results might provide insight into the electronic structures of thepara–methoxy substituted TPA radical cation,i.e.,its electronic structure was more like a resonance hybrid wherein spin densities could be efficiently delocalized on the anisyl rings(Scheme 1).These findings were also consistent with the aforementioned spin density distributions of 1·+-3·+and the reported theoretical results[46].

    Fig.5.(a)Reaction of 1 with one and two equivalent Cu(ClO4)2·6H2O in acetonitrile.Insert are the photos of the solutions of 1(colorless),1·+(blue)and 1-Q(red).(b)X-ray crystallographic structure of 1-Q(ClO4- anion and hydrogen were omitted for clarity).(c)EPR spectra of 1 after adding 1 equiv.(blue line)and 2 equiv.(red line)Cu(ClO4)2·6H2O in acetonitrile.(d)UV–vis-NIR spectra of 1 and TAA,and their oxidation species in the presence of Cu(ClO4)2·6H2O.

    According the results of CV,triphenylamine 1 exhibited two oxidation waves,so it could theoretically be further oxidized to dication species,which was also surveyed in the literature[41].Thus,the stronger oxidizing agent Cu(ClO4)2·6H2O was employed to investigate the second oxidation process since 1 could only be oxidized to radical cation even in the presence of excess AgSbF6.1 could be efficiently oxidized to 1·+by precisely adding one equivalent Cu(ClO4)2·6H2O in its acetonitrile solution,accompanying the formation of a blue solution(Fig.5a)which featured the same UV–vis-NIR and EPR profiles as those of pure 1·+(Figs.5c and d).When adding two equivalent Cu(ClO4)2·6H2O to 1,a new species in red color was generated(Fig.5a),which was EPR silent(Fig.5c,red line)in acetonitrile.Notably,the redox behavior of 1 was virtually the same as that of its analogue tris(4-anisyl)amine(TAA)based on the previous report[47]and our control experiment(Fig.5d and Fig.S4 in Supporting information),appearing to justify the formation of dication species.However,X-ray crystallographic analysis revealed a quinone like structure of 1-Q accompanying demethylation of 1(Fig.5b).Thus,the second oxidation process of 1 was likely to involve an unexpected oxidative demethylation reaction[50,51]rather than dication formation as claimed by Gopidaset al.[47],which was also consistent with its irreversible redox behavior of the second oxidation wave.In order to demonstrate that the changed UV–vis-NIR spectra stemmed from 1-Q,we performed TD-DFT calculation on the 1-Q at the wB97XD/def2-TZVP level of theory,and the results implied that the UV–vis-NIR absorption was really derived from 1-Q(Table S4 in Supporting information).What is more,triphenylamines 2 and 3 can be oxidized to form demethylation product by adding two equivalent Cu(ClO4)2·6H2O as well,whose spectra profiles resembled those of 1(Fig.S5 in Supporting information).The findings may suggest that 4-anisyl substituted TPA and related materials might also undergo such decomposition/degradation when applied at high voltages.

    In conclusion,we have synthesized a series of TPA molecules consisting of one,two,or three 3,5-di–tert–butyl–4-anisyl groups and investigated their redox behaviors and corresponding radical cation species.The introduction of anisyl groups significantly reduces the oxidation potential of TPA molecules and enhances the stability of the TPA radical cations.As a consequence,all TPA molecules exhibited low oxidation potentials and could be oxidized to radical cations,wherein 1·+was found to be most stable among them because of the properly steric protection.X-ray crystallographic analysis together with the DFT calculation results disclosed that the electronic structure of 4-anisyl substituted TPA radical cation species was more like a resonance hybrid wherein spin densities could be efficiently delocalized on the anisyl rings,which goes some way to explain why these species are relatively stable.Moreover,an unexpected oxidative demethylation was observed when 1 was further oxidized by a stronger oxidant.These findings are valuable for the understanding of the redox behaviors of 4-anisyl substituted triphenylamines.We hope that our study will shed some light on the design of novel organic functional materials based on triphenylamine derivatives and their radical cation species.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China(Nos.22071061 and 52003081),Shanghai Sailing Pro-gram(No.19YF1412900)and Microscale Magnetic Resonance Platform of ECNU.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.11.054.

    日本一二三区视频观看| 亚洲人成网站在线播| 99热全是精品| 久久久国产成人免费| 欧美在线一区亚洲| 91久久精品国产一区二区成人| 日韩av在线大香蕉| 免费人成视频x8x8入口观看| 亚洲欧美日韩高清专用| 国产中年淑女户外野战色| 中出人妻视频一区二区| 亚洲国产精品久久男人天堂| 一级av片app| 成人二区视频| 尤物成人国产欧美一区二区三区| 国产精品野战在线观看| 成人永久免费在线观看视频| 在线观看66精品国产| 日韩人妻高清精品专区| 欧美又色又爽又黄视频| 国产女主播在线喷水免费视频网站 | 俄罗斯特黄特色一大片| 亚洲av免费高清在线观看| 亚洲人与动物交配视频| 久久人人爽人人爽人人片va| 精品久久国产蜜桃| 最近视频中文字幕2019在线8| 听说在线观看完整版免费高清| 超碰av人人做人人爽久久| 两个人视频免费观看高清| 69人妻影院| 国产亚洲av嫩草精品影院| 三级毛片av免费| 成年女人毛片免费观看观看9| 国产视频内射| 欧美另类亚洲清纯唯美| 九九爱精品视频在线观看| 亚洲第一电影网av| 亚洲不卡免费看| 色尼玛亚洲综合影院| 男女那种视频在线观看| a级一级毛片免费在线观看| 婷婷精品国产亚洲av| 日本免费一区二区三区高清不卡| 欧美人与善性xxx| 中国美白少妇内射xxxbb| 小说图片视频综合网站| 日本免费一区二区三区高清不卡| 丰满的人妻完整版| 欧美日韩乱码在线| av视频在线观看入口| 91久久精品国产一区二区成人| 美女内射精品一级片tv| 亚洲精品久久国产高清桃花| 久久久久国内视频| 中国美女看黄片| 国产亚洲av嫩草精品影院| 国产人妻一区二区三区在| 最近的中文字幕免费完整| 啦啦啦啦在线视频资源| 国产精品伦人一区二区| 秋霞在线观看毛片| 欧美3d第一页| 最新在线观看一区二区三区| 91精品国产九色| 蜜桃久久精品国产亚洲av| 亚洲图色成人| 国产精品一区二区免费欧美| 99热精品在线国产| 精品久久久噜噜| 日日摸夜夜添夜夜添小说| 日韩在线高清观看一区二区三区| 久久亚洲国产成人精品v| 欧美绝顶高潮抽搐喷水| 内射极品少妇av片p| 国产黄片美女视频| 国产亚洲精品久久久久久毛片| 永久网站在线| 日韩一本色道免费dvd| 亚洲自拍偷在线| 男女下面进入的视频免费午夜| 日本 av在线| 国产精品,欧美在线| 国产高清视频在线观看网站| av在线天堂中文字幕| 亚洲欧美清纯卡通| 国产成人aa在线观看| 日本在线视频免费播放| 亚洲中文日韩欧美视频| 成人特级黄色片久久久久久久| 亚洲精品成人久久久久久| 国产 一区精品| 在线免费观看的www视频| 日韩欧美免费精品| 99在线视频只有这里精品首页| 性欧美人与动物交配| 亚洲不卡免费看| 日本熟妇午夜| 午夜激情欧美在线| 综合色av麻豆| 99riav亚洲国产免费| 在现免费观看毛片| 亚洲av电影不卡..在线观看| 99久久精品一区二区三区| 亚洲专区国产一区二区| 自拍偷自拍亚洲精品老妇| 精品午夜福利在线看| 丝袜美腿在线中文| 国产黄色视频一区二区在线观看 | 午夜a级毛片| 亚洲成人中文字幕在线播放| 国产三级在线视频| 精品人妻视频免费看| 热99在线观看视频| 日韩一本色道免费dvd| 国产 一区精品| a级毛片a级免费在线| 精品久久久久久成人av| 国产精品人妻久久久久久| 日本黄色视频三级网站网址| 色噜噜av男人的天堂激情| 村上凉子中文字幕在线| 亚洲av中文av极速乱| 国产精品,欧美在线| 有码 亚洲区| 亚洲最大成人av| 99久国产av精品国产电影| 最近手机中文字幕大全| 久久久久九九精品影院| 狠狠狠狠99中文字幕| 久久久久国内视频| 免费看美女性在线毛片视频| 久久6这里有精品| 日本黄色片子视频| 精品不卡国产一区二区三区| 欧美高清性xxxxhd video| 91在线观看av| 免费在线观看影片大全网站| 日日撸夜夜添| 美女内射精品一级片tv| 中国国产av一级| 亚洲欧美日韩高清专用| 国产淫片久久久久久久久| 别揉我奶头~嗯~啊~动态视频| 国模一区二区三区四区视频| 久久99热6这里只有精品| 丝袜喷水一区| av在线老鸭窝| 久久精品国产亚洲av天美| 国产色爽女视频免费观看| 亚洲,欧美,日韩| 欧美最黄视频在线播放免费| 国产成人a区在线观看| 日本在线视频免费播放| 国产大屁股一区二区在线视频| 亚洲图色成人| 国语自产精品视频在线第100页| 在线天堂最新版资源| 精品国内亚洲2022精品成人| 国产视频一区二区在线看| 一区二区三区高清视频在线| 婷婷亚洲欧美| av国产免费在线观看| 亚洲成人精品中文字幕电影| 久久久成人免费电影| 岛国在线免费视频观看| 久久久精品欧美日韩精品| 亚洲五月天丁香| 女人十人毛片免费观看3o分钟| 啦啦啦啦在线视频资源| 日本在线视频免费播放| 成人综合一区亚洲| 特级一级黄色大片| 国产成人一区二区在线| 国产精品一区二区性色av| 亚洲精品一区av在线观看| 天堂√8在线中文| 精品久久久久久久久亚洲| 久久久午夜欧美精品| 亚洲一级一片aⅴ在线观看| 亚洲高清免费不卡视频| 别揉我奶头~嗯~啊~动态视频| 一区二区三区免费毛片| 91在线精品国自产拍蜜月| 91精品国产九色| 亚洲国产精品国产精品| 国产老妇女一区| 一区二区三区高清视频在线| 日韩中字成人| 黑人高潮一二区| 午夜福利18| 国产一区二区亚洲精品在线观看| 日本爱情动作片www.在线观看 | 国产又黄又爽又无遮挡在线| 国产精品久久久久久久电影| 免费观看在线日韩| 色综合亚洲欧美另类图片| 春色校园在线视频观看| 成人av在线播放网站| 亚洲美女搞黄在线观看 | 午夜福利18| 中文字幕熟女人妻在线| 亚洲精品久久国产高清桃花| 成年女人毛片免费观看观看9| 99热这里只有精品一区| 欧美最新免费一区二区三区| 国产午夜精品久久久久久一区二区三区 | 成人高潮视频无遮挡免费网站| 午夜福利高清视频| 在线观看一区二区三区| 日日干狠狠操夜夜爽| 又爽又黄无遮挡网站| 1024手机看黄色片| 午夜福利成人在线免费观看| 啦啦啦观看免费观看视频高清| 国产精品一区二区性色av| 啦啦啦观看免费观看视频高清| 免费av观看视频| 国产 一区 欧美 日韩| 日韩欧美在线乱码| 三级国产精品欧美在线观看| 村上凉子中文字幕在线| 亚洲av.av天堂| 亚洲性夜色夜夜综合| 国产成年人精品一区二区| 日本一二三区视频观看| 欧美成人免费av一区二区三区| 欧美日韩国产亚洲二区| 国产又黄又爽又无遮挡在线| 人人妻人人澡人人爽人人夜夜 | 伦理电影大哥的女人| 精品少妇黑人巨大在线播放 | 亚洲欧美中文字幕日韩二区| 精品一区二区三区av网在线观看| 日韩亚洲欧美综合| 免费一级毛片在线播放高清视频| 国产伦在线观看视频一区| 国产爱豆传媒在线观看| 亚洲经典国产精华液单| 久久99热这里只有精品18| 欧美一区二区亚洲| 国产真实乱freesex| 久久精品夜色国产| 国产高清三级在线| 中国美白少妇内射xxxbb| 欧美日韩在线观看h| 久久精品夜夜夜夜夜久久蜜豆| 综合色丁香网| 99国产精品一区二区蜜桃av| 欧洲精品卡2卡3卡4卡5卡区| 国产精品不卡视频一区二区| 精品少妇黑人巨大在线播放 | 久久精品国产鲁丝片午夜精品| 亚洲国产日韩欧美精品在线观看| 99久久久亚洲精品蜜臀av| 国产高清视频在线观看网站| 亚洲av免费在线观看| 精品欧美国产一区二区三| 一本精品99久久精品77| 欧美不卡视频在线免费观看| 成年版毛片免费区| 男女下面进入的视频免费午夜| 岛国在线免费视频观看| 少妇人妻精品综合一区二区 | 亚洲av免费高清在线观看| 成年免费大片在线观看| 99久久精品一区二区三区| 国产免费一级a男人的天堂| 九九久久精品国产亚洲av麻豆| 禁无遮挡网站| aaaaa片日本免费| 国产在线男女| 一级毛片aaaaaa免费看小| 欧美日本亚洲视频在线播放| 欧美zozozo另类| 国产亚洲av嫩草精品影院| 亚洲国产精品久久男人天堂| 国产在视频线在精品| 91久久精品电影网| 菩萨蛮人人尽说江南好唐韦庄 | 欧美高清性xxxxhd video| 国产精品亚洲一级av第二区| 99热只有精品国产| 精品无人区乱码1区二区| 久久久久久久久久久丰满| 黄色日韩在线| 国产精品久久久久久亚洲av鲁大| 在线观看美女被高潮喷水网站| 少妇熟女欧美另类| 天天一区二区日本电影三级| 色综合亚洲欧美另类图片| av在线播放精品| 久久精品国产99精品国产亚洲性色| 老司机影院成人| 日日摸夜夜添夜夜添av毛片| 无遮挡黄片免费观看| 99久久无色码亚洲精品果冻| 久久国内精品自在自线图片| 亚洲在线自拍视频| 国产白丝娇喘喷水9色精品| 国产午夜福利久久久久久| 我要看日韩黄色一级片| 99热6这里只有精品| 大香蕉久久网| 国产精品av视频在线免费观看| 成人午夜高清在线视频| 亚洲美女搞黄在线观看 | 嫩草影院精品99| 国产精品嫩草影院av在线观看| 真人做人爱边吃奶动态| 国产一级毛片七仙女欲春2| 美女大奶头视频| 97热精品久久久久久| 91久久精品国产一区二区成人| 欧美另类亚洲清纯唯美| 最近最新中文字幕大全电影3| 男人舔奶头视频| 长腿黑丝高跟| 69人妻影院| 久久久精品大字幕| 日韩人妻高清精品专区| 偷拍熟女少妇极品色| 女的被弄到高潮叫床怎么办| 日韩精品中文字幕看吧| 欧美精品国产亚洲| 91在线精品国自产拍蜜月| 最近最新中文字幕大全电影3| 亚洲电影在线观看av| 亚洲av.av天堂| 一级黄片播放器| 熟妇人妻久久中文字幕3abv| 欧美bdsm另类| 一个人免费在线观看电影| 久久久久精品国产欧美久久久| 看十八女毛片水多多多| 日韩人妻高清精品专区| 色播亚洲综合网| 亚洲四区av| 欧美潮喷喷水| 99久久精品热视频| av卡一久久| 亚洲中文日韩欧美视频| 久久精品久久久久久噜噜老黄 | 亚洲最大成人中文| 一区二区三区高清视频在线| 99久久无色码亚洲精品果冻| 亚洲欧美日韩无卡精品| 一夜夜www| 99久久精品国产国产毛片| 亚洲精华国产精华液的使用体验 | 国产国拍精品亚洲av在线观看| 三级毛片av免费| 国产乱人偷精品视频| 久久欧美精品欧美久久欧美| 美女xxoo啪啪120秒动态图| 精品欧美国产一区二区三| 免费看光身美女| 精品国产三级普通话版| 狂野欧美白嫩少妇大欣赏| 91狼人影院| 人人妻,人人澡人人爽秒播| 精品久久久久久久久av| 一卡2卡三卡四卡精品乱码亚洲| 一个人看的www免费观看视频| 九九热线精品视视频播放| 亚洲图色成人| 免费观看在线日韩| 日韩欧美一区二区三区在线观看| 一本一本综合久久| 亚洲最大成人中文| 亚洲熟妇熟女久久| 内地一区二区视频在线| 国产精品久久久久久亚洲av鲁大| 插阴视频在线观看视频| 亚洲精华国产精华液的使用体验 | 国产一区二区在线av高清观看| 级片在线观看| 搡老岳熟女国产| 最近的中文字幕免费完整| 国产精品久久久久久久电影| 嫩草影院入口| 欧美绝顶高潮抽搐喷水| 中文字幕熟女人妻在线| 午夜精品一区二区三区免费看| 成人国产麻豆网| 久久久国产成人精品二区| 国内少妇人妻偷人精品xxx网站| 嫩草影院新地址| 成人精品一区二区免费| 香蕉av资源在线| 中出人妻视频一区二区| 91午夜精品亚洲一区二区三区| 一级毛片我不卡| 天堂av国产一区二区熟女人妻| 久久精品国产清高在天天线| 久久精品国产99精品国产亚洲性色| 日韩欧美 国产精品| 久久久久九九精品影院| 国产精品1区2区在线观看.| 日韩欧美免费精品| 午夜免费男女啪啪视频观看 | 亚洲美女搞黄在线观看 | 麻豆国产av国片精品| 大香蕉久久网| 嫩草影院精品99| 99精品在免费线老司机午夜| 欧美日韩精品成人综合77777| 男人狂女人下面高潮的视频| 搡老岳熟女国产| 成年av动漫网址| 男女做爰动态图高潮gif福利片| av黄色大香蕉| 亚洲自偷自拍三级| 国产欧美日韩精品一区二区| 国产精品爽爽va在线观看网站| 久久亚洲国产成人精品v| 午夜亚洲福利在线播放| 久久鲁丝午夜福利片| 久久韩国三级中文字幕| 精品福利观看| videossex国产| 熟女电影av网| 国产精品嫩草影院av在线观看| 国产精品综合久久久久久久免费| 中文字幕精品亚洲无线码一区| 国产av在哪里看| 国产v大片淫在线免费观看| 男女下面进入的视频免费午夜| 直男gayav资源| 色吧在线观看| 国产色婷婷99| 久久久久久大精品| 久久久久久久久久成人| 91久久精品国产一区二区成人| 波野结衣二区三区在线| 久久久久九九精品影院| 亚洲成人久久性| 亚洲欧美清纯卡通| 免费无遮挡裸体视频| 日日摸夜夜添夜夜爱| av天堂中文字幕网| av视频在线观看入口| 中文资源天堂在线| 综合色丁香网| 伦理电影大哥的女人| 久久久久九九精品影院| 一区二区三区高清视频在线| 日本撒尿小便嘘嘘汇集6| www日本黄色视频网| 国产91av在线免费观看| 国产精品免费一区二区三区在线| 可以在线观看毛片的网站| 久久久精品欧美日韩精品| 少妇熟女aⅴ在线视频| 欧美成人一区二区免费高清观看| 日本-黄色视频高清免费观看| 国产真实乱freesex| 最好的美女福利视频网| 99热这里只有精品一区| 久久九九热精品免费| 免费在线观看影片大全网站| 美女高潮的动态| 最新中文字幕久久久久| 男女那种视频在线观看| 中文字幕熟女人妻在线| 网址你懂的国产日韩在线| 亚洲四区av| 久久久午夜欧美精品| 亚洲av不卡在线观看| 一进一出好大好爽视频| 免费一级毛片在线播放高清视频| 一夜夜www| 国产老妇女一区| 国产精品一区www在线观看| 国产男靠女视频免费网站| 亚洲久久久久久中文字幕| 国产一区亚洲一区在线观看| 亚洲成av人片在线播放无| 亚洲七黄色美女视频| 国产亚洲精品久久久久久毛片| 精品人妻熟女av久视频| 亚洲精品日韩av片在线观看| 乱码一卡2卡4卡精品| 亚洲国产欧美人成| 日本熟妇午夜| 日本欧美国产在线视频| 村上凉子中文字幕在线| 亚洲天堂国产精品一区在线| a级毛片a级免费在线| 日韩,欧美,国产一区二区三区 | 搡老妇女老女人老熟妇| 欧美区成人在线视频| 欧美xxxx性猛交bbbb| 国产一区二区在线观看日韩| 又黄又爽又刺激的免费视频.| 91久久精品国产一区二区三区| 大香蕉久久网| 别揉我奶头~嗯~啊~动态视频| 国产一区二区三区av在线 | 国产熟女欧美一区二区| 非洲黑人性xxxx精品又粗又长| 少妇丰满av| 精品久久久久久久久久免费视频| 偷拍熟女少妇极品色| 在线观看免费视频日本深夜| 51国产日韩欧美| 少妇被粗大猛烈的视频| 成人美女网站在线观看视频| 欧美日韩乱码在线| 免费观看在线日韩| 成人鲁丝片一二三区免费| 久久久成人免费电影| 国产激情偷乱视频一区二区| 欧美激情在线99| 国产精品一区二区性色av| 久久久国产成人精品二区| 久久中文看片网| 久久亚洲国产成人精品v| 97热精品久久久久久| 男人舔奶头视频| 国产久久久一区二区三区| 女生性感内裤真人,穿戴方法视频| 久久鲁丝午夜福利片| 久久人人爽人人片av| 村上凉子中文字幕在线| 久久精品国产99精品国产亚洲性色| 美女大奶头视频| 亚洲久久久久久中文字幕| 久久久久久伊人网av| 大又大粗又爽又黄少妇毛片口| 亚洲国产欧美人成| 国产伦一二天堂av在线观看| 一区二区三区四区激情视频 | 91午夜精品亚洲一区二区三区| 久久久久性生活片| 精品人妻视频免费看| 免费黄网站久久成人精品| 99热网站在线观看| 亚洲三级黄色毛片| 亚洲精品国产成人久久av| 国产精品亚洲美女久久久| 欧美激情在线99| 国产老妇女一区| 最近在线观看免费完整版| 在线观看av片永久免费下载| 日本撒尿小便嘘嘘汇集6| www日本黄色视频网| 亚洲国产精品国产精品| 免费电影在线观看免费观看| 精品久久久噜噜| 国国产精品蜜臀av免费| 中文资源天堂在线| 欧美在线一区亚洲| 插逼视频在线观看| av女优亚洲男人天堂| 此物有八面人人有两片| 日本黄色片子视频| 久久精品夜夜夜夜夜久久蜜豆| 天堂影院成人在线观看| 亚洲自偷自拍三级| 久久鲁丝午夜福利片| 成人性生交大片免费视频hd| 国产高清激情床上av| 成人一区二区视频在线观看| 99国产精品一区二区蜜桃av| 大型黄色视频在线免费观看| 久久久久精品国产欧美久久久| av在线天堂中文字幕| 精品熟女少妇av免费看| 久久久国产成人精品二区| 欧美精品国产亚洲| 免费无遮挡裸体视频| 非洲黑人性xxxx精品又粗又长| 91麻豆精品激情在线观看国产| 成人永久免费在线观看视频| 在现免费观看毛片| 国内揄拍国产精品人妻在线| 免费av观看视频| 禁无遮挡网站| 黄片wwwwww| 成人精品一区二区免费| 18禁裸乳无遮挡免费网站照片| 国产一区二区三区av在线 | 国内少妇人妻偷人精品xxx网站| 亚洲不卡免费看| 日韩强制内射视频| 欧美日韩一区二区视频在线观看视频在线 | 欧美zozozo另类| 欧美+亚洲+日韩+国产| 老师上课跳d突然被开到最大视频| 一个人免费在线观看电影| 一进一出抽搐gif免费好疼| 欧洲精品卡2卡3卡4卡5卡区| 亚洲性夜色夜夜综合| 午夜福利在线观看免费完整高清在 | 国内久久婷婷六月综合欲色啪| 俄罗斯特黄特色一大片| 麻豆久久精品国产亚洲av| 亚洲国产精品久久男人天堂| 深爱激情五月婷婷| 99久久久亚洲精品蜜臀av| 国产久久久一区二区三区| 偷拍熟女少妇极品色| 国产高潮美女av| 在线播放国产精品三级| 俄罗斯特黄特色一大片| 日韩欧美 国产精品| 级片在线观看| 91在线精品国自产拍蜜月| 国产三级中文精品| 最近最新中文字幕大全电影3| 女人十人毛片免费观看3o分钟| 欧美又色又爽又黄视频| 国内精品久久久久精免费| 久久午夜福利片|