• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A photopatterned SERS substrate with a sandwich structure for multiplex detection

    2022-06-18 10:53:40YuanXueDuoLiuXuebinWangYanxinXiangShengjieDuKaiYeChunyanBaoLinyongZhu
    Chinese Chemical Letters 2022年3期

    Yuan Xue,Duo Liu,Xuebin Wang,Yanxin Xiang,Shengjie Du,Kai Ye,Chunyan Bao,Linyong Zhu

    Shanghai Key Laboratory of Functional Materials Chemistry,School of Chemistry &Molecular Engineering,East China University of Science &Technology,Shanghai 200237,China

    Keywords:SERs detection Photopatterning Sandwich structure Multiplex detection Quantitative detection

    ABSTRACT Substrate photopatterning has provided versatile applications in biomedical fields.Herein,an universal and efficient photoligation reaction has been used to prepare a patterned capture substrate for a sandwich SERS immunoassay.Photoirradiation induces mild and efficient immobilization of antibodies at the desired region of a gold surface,and the antibody-antigen interaction helps the substrate to capture the antigens in solution specifically.After exposing to SERS probes,i.e.,the gold nanoparticles labelled with both antibodies and intrinsically strong Raman reporters,multiple quantitative SERS determination of antigens can be achieved with high sensitivity and specificity.The limit of detection can be as low as 10?12 mol/L for four kinds of cancer biomarkers,which provides a promising method for the construction of highly sensitive and high-throughput SERS detection chip and the application of in vitro diagnosis.

    Surface-enhanced Raman scattering (SERS) has become a promising analytical tool because of its strong fingerprint recognition ability,non-destructive performance and much higher sensitivity than fluorescence or UV–vis spectroscopy [1-4].Combining to immunoassays,SERS has been probed to have great potential in a high-throughput and trace detection of biomolecules,and gained a special interest in early detection and diagnostics of human diseases [5-7].At present,in addition to improving the sensitivity of SERS immunoassay,the research focus in this field also includes the following two aspects.One is whether the SERS labeled immunoprobe can form specific adsorption on the substrate.The other is how to realize simultaneous detection from single component to multiple components.

    Numerous techniques have been introduced to design and fabricate various SERS-active sensors and substrates [8-14],among which the SERS-based sandwich immunoassay reported by Lipertet al.represents a simple and effective strategy [15,16].There are two key components in their platform: (1) the immune substrate,a flat gold substrate modified with capture antibodies,which can specifically extract and concentrate antigens from solution;and (2)the SERS immunoprobe,a kind of gold nanoparticles labeled with antibodies and Raman reporters,which can generate strong SERS signal when it is close to the gold substrate.The target antigens are therefore selectively captured on the substrate and subsequently recognized by the gold nanoparticlesviaantibody-antigen interaction to form a SERS-based sandwich immunoassay.By this strategy,they have realized the detection of immunoglobulin G (IgG)[17],free prostate specific antigen (f-PSA) [18],virus [19],bacteria[20],and potential pancreatic cancer markers [21]at low levels and even at single-binding events.With the great success in sensitivity and specificity,there is a growing demand for multiplex and highthroughput analysis of large quantities of analytes in a single sample,especially in the fields of clinical diagnosis,biochemical analysis and environmental monitoring [22].Although the characteristic SERS signal of analytes can be directly used to realize multiplex detection [23],it is not applicable in most cases due to the low scattering cross section and spectra overlap of most analytes.In an effort to address these limitations,SERS-based encoding protocols have been developed for multiplex detection [24-26],in which complex preparation and operation are often required.An alternative strategy to obtain multiplex detection is spatially controllable patterning of the substrate,in which antibodies are located in different areas [27-29].Compared to traditional microcontact printing,photopatterning represents a more facile and powerful tool for substrate modification because it allows remote control in a high spatiotemporal resolution [30,31].After sequentially photopatterning different antibodies in the defined areas of a SERS substrate,multiple SERS detection can be achieved.

    Keeping this perspective in mind,we herein demonstrate a photopatterned SERS substrate with a sandwich structure for multiplex detection of biomolecules simultaneously (Scheme 1).A bifunctional molecule SNB was synthesized and modified on the gold substrate by Au-S bond (Au-SNB),which can pattern antibodies through a mild photoligation reaction [32,33].With the help of a mask,different antibodies can be patterned on the gold substrate by repeating the steps of irradiation (LED 365 nm),antibody soaking and washing up.Then,the patterned substrate can be used as the capture substrate for a sandwich SERS immunoassay,which involves two steps: capture of target biomarker from solution and indirect Raman detectionviathe recognition of gold nanoparticles labelled with both antibodies and intrinsically strong Raman reporters (the SERS probes).Thanks to the precise location of the antibodies on the substrate,each target biomarker in the analyte can be specifically captured at each region.Finally,the sensitive and concentration dependent SERS signal can be generated in the specific region after recognizing with the SERS probes,and only one Raman reporter is required to achieve multiple and noninterferences signal.

    Scheme 1.Schematic representation of a sandwich SERS active substrate for multiplex detection prepared by sequential photopatterning of the capture substrate.

    Considering the instability of mercapto groups,bifunctional molecule SNB is preserved in the form of disulfide precursor 2SNB(Figs.S1 and S2 in Supporting information).2SNB can be reduced to SNB in the presence of tris(2-carboxyethyl)phosphine(TCEP) (Fig.S3 in Supporting information).The introduction of two tetraethylene glycol groups to SNB is attributed to two aspects.One is to improve the water-solubility of SNB and the other is to have antifouling character to reduce the unspecific adsorption of biomolecules.Time resolved UV–vis absorption spectra confirm the efficient photolysis of SNB upon irradiation by a 365 nm lightemitting diode (LED) light source (10 mW/cm2) (Fig.S4 in Supporting information).Based on the photolysis mechanism of theonitrobenzyl group,the irradiation would induce the generation of 2-nitroso-5-benzaldehyde (Fig.S5 in Supporting information) and the active aldehyde can bind to amine-containing biomolecules by imine-ligation [32-34].As illustrated in Fig.1a,after the gold substrate (Au) was immersed in SNB solution,a self-assembled monolayer was formed on the substrate through Au-S bond (Au-SNB),which could be confirmed by the changed surface water contact angels (CAs) from 88.3° to 51.9°.Bovine serum albumin (BSA) was then selected as the model to evaluate the photoligation action between SNB and biomolecules.The reduced CA (38.1°) indicates the successful binding of BSA on the substrate (Au-BSA).X-ray photoelectron spectroscopy (XPS) was further carried out to characterize the substrates.As shown in Fig.1b (i),comparing to bare Au substrate,the signals of C 1s and O 1s for Au-SNB increase and a signal attributed to N 1s appears at 400 eV.For Au-BSA,these signals are greatly enhanced accompanied by the weakening of Au signals.Fig.1b (ii-v) shows are fine spectrograms of C 1s and S 2p of Au-SNB and Au-BSA by Gussian curve fitting,in which the C 1s spectrum can be deconvoluted into three subpeaks located at~289.0,286.2,and 284.8 eV,which are,respectively,attributed to O-(C=O)-N,C-O and C-C bonds.After BSA binding,the contribution of C-C bond increases,and the main composition of S 2p changes from Au-S (162.0 eV) to S-S (163.5 and 162.3 eV) bond.All these results indicate that SNB and BSA are successfully deposited on the gold substrate as expected.

    Fig.1.Preparation and characterization of capture substrates.(a) The preparation process of capture substrates and the corresponding CAs.Au: Au substrate,Au-SNB:SNB modified substrate,and Au-BSA: BSA modified substrate.(b) XPS survey spectra for Au,Au-SNB and Au-BSA (i): XPS high-resolution spectrum for C 1s (ii) and S 2p(iii) of Au-SNB,C 1s (iv) and S 2p (v) of Au-BSA,respectively.

    Fig.2a shows the design and synthesis of SERS probes,which were prepared based on the optimized conditions as reported previously [35].Also shown are their transmission electron microscopy (TEM) structures (Fig.2b),UV-vis absorption and hydrodynamic size data by dynamic light scattering (DLS) (Fig.2c).The original gold nanoparticles (AuNPs) were prepared by sodium citrate aqueous solution system and have uniform size distribution with an average size of 38 nm (a maximum absorption at 532 nm).After sequentially labelled with Raman reporters (4-mercaptobenzoic acid,MBA) and linkers (NHS-PEG-SH,MW=2.0 kDa),AuNPs were stabilized with a layer of PEG molecules (mPEGSH,MW=3.0 kDa) with increased hydrodynamic diameter at 57 nm (AuNPs-PEG).Then,proteins or antibodies were chemically attached onto their surface by the action ofN-hydroxyl succinimide(NHS) to form SERS probes.Here,BSA was selected as the model,and the hydrodynamic diameter increases to 75 nm (Table S1 in Supporting information),accompanying with the broadening of the UV absorption peak of the SERS probes.In addition,FTIR?ATR spectra were used to characterize the nanoparticles (Fig.S6 in Supporting information).The appeared peaks at 1105 and 2885 cm?1,assigned to the C–O–C and CH2stretching vibration of PEG,respectively,confirm PEGylation of AuNPs,and the peak at 1659 cm?1assigned to the C=O stretching vibration of peptide bonds confirms BSA binding on the SERS probes.

    Fig 2.Preparation of SERS probes for the sandwich SERS immunoassay.(a) Schematic representation for the structures of an original gold colloids (AuNPs),a particle encoded with a Raman reporter and stabilized with a layer of mPEG-SH (AuNPs-PEG),and a particle modified with antibodies (SERS probe).(b) TEM images for the nanoparticles,which were negatively stained by phosphotungstic acid.(c) Optical absorption and DLS size data obtained from the particles as shown in (a).BSA was selected as the antibody model.

    Fig 3.The sandwich SERS immunoassay.(a) Scanning electron microscope (SEM) of the capture substrate after PSA capture and SERS probes recognition,right is the enlarged image for the patterned area.(b) Comparison of SERS spectra for the different substrates.(c) Raman mapping image of anti-PSA patterned sandwich SERS substrate.The PSA concentration used in (a-c) is 0.5 μg/mL.(d) SERS spectra of sandwich SERS immunoassay of PSA at various concentrations.(e) Standard curve for PSA detection during 0.5-50.0 ng/mL with corresponding peak intensities at 1075 cm?1.

    Firstly,to investigate the advantage of photopatterning,a representative antibody of prostate specific antigen (anti-PSA) was selected to be patterned on the capture substrate (Au-PSA) and labelled on the AuNPs for preparation of SERS probes.As expected,the sandwich based immunoresponse is confined to the desired areas (Fig.3a),that is,the SERS probes are evenly distributed in the irradiated area (a 1 mm × 1 mm square) of Au-PSA.It indicates that we can confine the SERS detection in patterned areas,which provides the possibility to realize simultaneous and multiplex SERS detection on the same substrate.Fig.3b shows the sandwich SERS spectrum of PSA (5 μL,0.5 μg/mL) in the patterned area and two distinct Raman bands,one at 1075 cm?1and the other at 1585 cm?1assigned to MBA ring-breathing vibration modes,are observed under 633 nm excitation.However,there is almost no detectable SERS signal in the same spectral region for the substrates without PSA or SERS probes.We also preformed Raman mapping to visualize the photopatterned sandwich test system (10 μm × 10 μm).As illustrated in Fig.3c,signals came from MBA at 1075 cm?1are localized in the patterned area with high fidelity,which further confirms the success and effectiveness of our photopatterning methodology.

    Fig 4.SERS response to specific (a) PSA and (b) CEA and non-specific antigens.

    Then,the sensitivity of the singlet SERS sensing system was evaluated,in which the capture substrate and SERS probes were prepared with corresponding antibodies.Fig.3d shows the SERS spectra recorded for various concentrations of PSA and indicates that the Raman signal increases with the increase of concentrations.As illustrated in Fig.3e,a linear standard curve based on 1075 cm?1frequency of MBA was established by plotting SERS signal intensity against corresponding concentrations of PSA in the range of 0.5-50.0 ng/mL,and the limit of detection (LOD) of PSA was 0.19 ng/mL (6.7 pmol/L).It is significantly below the clinical cut-off value for the diagnosis of prostate cancer,since the normal value of PSA is usually less than 4 ng/mL in healthy people [36].In addition,sandwich SERS immunoassays of alpha fetoprotein (AFP),carcinoembryonic antigen (CEA) and neuron specific enolase (NSE) were also performed (Fig.S7 in Supporting information).All of them show obvious MBA Raman signals,and the signal intensity gradually increases with the increase of analyte concentrations.The LODs were 0.60 ng/mL (8.8 pmol/L),0.13 ng/mL (1.8 pmol/L),and 0.26 ng/mL (5.5 pmol/L) with a detection range of 1.0–100.0,0.5–50.0 and 1.0–100.0 ng/mL for AFP,CEA,and NSE,respectively,enabling SERS detection of biomarkers in human blood serum [37,38].To verify the specificity of our immunoassay,we have carried out cross reaction SERS detection.As shown in Fig.4,PSA and CEA can cause significant increase in SERS signal for anti-PSA (Fig.4a) and anti-CEA (Fig.4b) patterned substrates,respectively,while other non-specific antigens have only a weak response signal (≤8%).All these results confirm the sensitivity and specificity of our photopatterned sandwich SERS detection.

    Fig 5.SERS multiplex immunoassay based on a capture substrate photopatterned with anti-PSA,anti-AFP,anti-CEA and anti-NSE in different areas (10 μm × 10 μm squares).(a) SERS spectra from different areas by adding of a mixture of four antigens at 5.0 ng/mL each.(b) SERS spectra detection of an analyte with two antigens(PSA and CEA) at 5.0 ng/mL.

    In a final assessment,the multiplex SERS detection was explored by adding a combination of four kinds of antigens (PSA,AFP,CEA and NSA at 5.0 ng/mL each).A capture substrate photopatterned with their antibodies (anti-PSA,anti-AFP,anti-CEA and anti-NSE) in different areas (1 mm × 1 mm squares) and a mixture of SERS probes labelled with their antibodies were used for the sandwich multiplex SERS detection.As shown in Fig.5a,MBA Raman signals with different intensities are detected in the four patterned areas,and the intensities match the SERS signals corresponding to antigens at 5.0 ng/mL in the standard curves (Fig.3e,Figs.S7d-f in Supporting information).Meanwhile,an analyte containing PSA and CEA (5.0 ng/mL) was detected by using above SERS immunoassay.Fig.5b shows that SERS signals with comparable intensities appear in the areas patterned with anti-PSA and anti-CEA.However,no detectable signal is obtained in other two areas patterned with anti-AFP and anti-NSA.These results suggest that our SERS immunoassay has high specificity for different antigens and can achieve multiplex SERS detection without interference.Based on the fine spatial and temporal controllability of light,it can be imagined that our photoligation reaction can be used to construct SERS active microarray chips.

    In conclusion,we have developed a novel sandwich SERS immunoassay substrate by using a photopatterned capture substrate.Combining with the SERS probes labelled with MBA Raman reporters and antibodies,the assay brings about the simultaneous,multiple,and quantitative determination of antigens with a limit of detection less than 1.0 ng/mL.The high sensitivity,specificity and spatiotemporal controllability provide a promising route for developing innovative early disease diagnosis and high-throughput biomarker screening assays.

    Declaration of competing interest

    There are no conflicts to declare.

    Acknowledgments

    This work is supported by Shanghai Science and Technology Commission (No.21ZR1415500) and the National Nature Science Foundation of China (NSFC,Nos.21907029,22171085).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.09.016.

    在线观看人妻少妇| 男女免费视频国产| 亚洲无线观看免费| 美女脱内裤让男人舔精品视频| 全区人妻精品视频| 日韩人妻高清精品专区| 午夜免费男女啪啪视频观看| 色网站视频免费| 成人毛片60女人毛片免费| 久久精品人妻少妇| www.色视频.com| 最近最新中文字幕免费大全7| 大码成人一级视频| 成人18禁高潮啪啪吃奶动态图 | 午夜精品国产一区二区电影| 美女中出高潮动态图| 91狼人影院| 夫妻性生交免费视频一级片| 2022亚洲国产成人精品| 一本色道久久久久久精品综合| 亚洲精品国产成人久久av| 亚洲,一卡二卡三卡| 18禁裸乳无遮挡免费网站照片| 熟女人妻精品中文字幕| 又爽又黄a免费视频| 男女无遮挡免费网站观看| 99国产精品免费福利视频| 免费av不卡在线播放| www.av在线官网国产| 欧美xxⅹ黑人| 日韩伦理黄色片| 国产精品国产三级国产av玫瑰| av线在线观看网站| 青春草视频在线免费观看| 亚洲国产精品999| 肉色欧美久久久久久久蜜桃| 26uuu在线亚洲综合色| 最新中文字幕久久久久| 国产精品爽爽va在线观看网站| av国产精品久久久久影院| 日本欧美国产在线视频| 精品亚洲乱码少妇综合久久| 国产在线男女| 一级毛片黄色毛片免费观看视频| 日本午夜av视频| 国产欧美另类精品又又久久亚洲欧美| 国产av国产精品国产| 热99国产精品久久久久久7| 99热这里只有是精品在线观看| 人妻系列 视频| 久久精品国产鲁丝片午夜精品| 一级毛片aaaaaa免费看小| 伦精品一区二区三区| 亚洲精品乱码久久久久久按摩| 亚洲欧美成人综合另类久久久| 黄色怎么调成土黄色| 性色avwww在线观看| 久久99热6这里只有精品| 熟妇人妻不卡中文字幕| 欧美+日韩+精品| 全区人妻精品视频| 五月伊人婷婷丁香| 日韩不卡一区二区三区视频在线| videossex国产| 精品人妻熟女av久视频| 国产久久久一区二区三区| 国产在线男女| 亚洲,欧美,日韩| 日日啪夜夜撸| 久久久久视频综合| 丰满少妇做爰视频| 欧美成人一区二区免费高清观看| 91精品伊人久久大香线蕉| 在线观看免费高清a一片| 性色avwww在线观看| 男人爽女人下面视频在线观看| 丰满少妇做爰视频| 免费观看无遮挡的男女| 国国产精品蜜臀av免费| 亚洲美女黄色视频免费看| 91午夜精品亚洲一区二区三区| 成人毛片60女人毛片免费| 免费观看av网站的网址| 黄色日韩在线| www.av在线官网国产| 色综合色国产| 亚洲成色77777| 成人免费观看视频高清| 看免费成人av毛片| 丝瓜视频免费看黄片| 男人狂女人下面高潮的视频| 丝袜脚勾引网站| 内地一区二区视频在线| 免费大片黄手机在线观看| 成人毛片a级毛片在线播放| 最新中文字幕久久久久| 亚洲,一卡二卡三卡| 国产精品国产三级国产专区5o| 超碰97精品在线观看| 男人添女人高潮全过程视频| av视频免费观看在线观看| 免费观看在线日韩| 国产一区亚洲一区在线观看| 日韩欧美精品免费久久| 丝瓜视频免费看黄片| 欧美+日韩+精品| 男女边摸边吃奶| 久久久久视频综合| videossex国产| 如何舔出高潮| 日韩国内少妇激情av| 亚洲一区二区三区欧美精品| 在线观看三级黄色| 国产免费一区二区三区四区乱码| 99热这里只有精品一区| 国产成人精品福利久久| 一级a做视频免费观看| 51国产日韩欧美| 午夜视频国产福利| 国产黄频视频在线观看| 一级毛片电影观看| 亚洲国产色片| 18+在线观看网站| 成人高潮视频无遮挡免费网站| 插逼视频在线观看| 99热网站在线观看| 日日摸夜夜添夜夜爱| 国产视频内射| 人人妻人人看人人澡| av.在线天堂| 国内揄拍国产精品人妻在线| 国产高清有码在线观看视频| 51国产日韩欧美| 国产精品伦人一区二区| 亚洲欧美日韩无卡精品| 日韩av免费高清视频| 国产淫片久久久久久久久| 男女无遮挡免费网站观看| 日韩av在线免费看完整版不卡| 成人特级av手机在线观看| 亚洲精品成人av观看孕妇| 日韩电影二区| 欧美激情国产日韩精品一区| 人妻一区二区av| 午夜福利在线观看免费完整高清在| 在线看a的网站| 国产一区二区三区av在线| 九九久久精品国产亚洲av麻豆| 精品久久国产蜜桃| 一级a做视频免费观看| 久久人人爽av亚洲精品天堂 | 国产大屁股一区二区在线视频| 国产成人午夜福利电影在线观看| 久久国产精品大桥未久av | 纵有疾风起免费观看全集完整版| av免费在线看不卡| 欧美xxxx黑人xx丫x性爽| 干丝袜人妻中文字幕| 最近2019中文字幕mv第一页| 日韩欧美一区视频在线观看 | 国产精品一及| 久久午夜福利片| 欧美成人精品欧美一级黄| 亚洲久久久国产精品| 国内揄拍国产精品人妻在线| 91精品伊人久久大香线蕉| 在线观看人妻少妇| 免费观看av网站的网址| 欧美日韩视频高清一区二区三区二| 国产精品三级大全| 人妻少妇偷人精品九色| 免费看光身美女| 久久精品久久久久久噜噜老黄| a级毛片免费高清观看在线播放| 久久久久网色| 插阴视频在线观看视频| 国产日韩欧美亚洲二区| 免费人妻精品一区二区三区视频| 在线观看国产h片| 极品教师在线视频| 日韩视频在线欧美| 久久99精品国语久久久| 丰满迷人的少妇在线观看| 国产成人a∨麻豆精品| 啦啦啦啦在线视频资源| 国产午夜精品一二区理论片| 亚洲伊人久久精品综合| 欧美日韩国产mv在线观看视频 | 免费高清在线观看视频在线观看| 午夜福利视频精品| av在线app专区| 成人毛片60女人毛片免费| 十分钟在线观看高清视频www | 亚洲美女视频黄频| 久久精品久久精品一区二区三区| 国产91av在线免费观看| 国产免费一级a男人的天堂| 亚洲国产精品专区欧美| 久久国产亚洲av麻豆专区| 老师上课跳d突然被开到最大视频| 国产精品一区二区三区四区免费观看| 亚洲一级一片aⅴ在线观看| 亚洲欧美清纯卡通| 韩国高清视频一区二区三区| 国产精品人妻久久久久久| 男女边摸边吃奶| 男女边吃奶边做爰视频| 女的被弄到高潮叫床怎么办| 国产成人精品福利久久| 亚洲av.av天堂| av卡一久久| 乱系列少妇在线播放| 一个人看视频在线观看www免费| freevideosex欧美| 一本久久精品| 精品久久久噜噜| 欧美最新免费一区二区三区| 美女xxoo啪啪120秒动态图| 欧美xxxx性猛交bbbb| 国产一区二区三区综合在线观看 | 国产视频首页在线观看| 韩国av在线不卡| 18+在线观看网站| 国内揄拍国产精品人妻在线| 婷婷色综合www| 日韩成人伦理影院| 免费人妻精品一区二区三区视频| 亚洲精品国产成人久久av| 亚洲美女搞黄在线观看| 亚洲第一区二区三区不卡| 成人特级av手机在线观看| 久久久久性生活片| 黄色一级大片看看| 伦理电影免费视频| 美女视频免费永久观看网站| 久久久久久九九精品二区国产| 有码 亚洲区| 狠狠精品人妻久久久久久综合| 国产一区二区三区综合在线观看 | 免费黄频网站在线观看国产| 啦啦啦中文免费视频观看日本| 午夜福利视频精品| 国产淫片久久久久久久久| 免费黄网站久久成人精品| 亚洲欧美日韩东京热| 国产免费一级a男人的天堂| 精品久久久久久久久亚洲| 国产男女内射视频| 午夜免费鲁丝| 亚洲综合精品二区| 亚洲国产精品成人久久小说| 欧美精品亚洲一区二区| 91精品伊人久久大香线蕉| 99久久精品国产国产毛片| 国产久久久一区二区三区| 日韩av在线免费看完整版不卡| 久久久久人妻精品一区果冻| 精品亚洲成国产av| av网站免费在线观看视频| 亚洲,一卡二卡三卡| 国产乱人偷精品视频| 制服丝袜香蕉在线| 国产免费视频播放在线视频| 在线观看人妻少妇| 一区在线观看完整版| 久久 成人 亚洲| av专区在线播放| 国产精品国产三级专区第一集| 亚洲av电影在线观看一区二区三区| 观看免费一级毛片| 国产黄频视频在线观看| 国产片特级美女逼逼视频| 久久婷婷青草| 少妇丰满av| 97热精品久久久久久| 一级av片app| 欧美激情国产日韩精品一区| 少妇人妻久久综合中文| 卡戴珊不雅视频在线播放| 亚洲av中文字字幕乱码综合| 一区在线观看完整版| 国产精品99久久99久久久不卡 | 日本vs欧美在线观看视频 | 晚上一个人看的免费电影| 国产在线视频一区二区| 国产成人免费观看mmmm| 国产欧美日韩一区二区三区在线 | 婷婷色av中文字幕| 制服丝袜香蕉在线| 亚洲av电影在线观看一区二区三区| 狂野欧美白嫩少妇大欣赏| 亚洲美女搞黄在线观看| 欧美日韩在线观看h| 亚洲精品国产av成人精品| 久久亚洲国产成人精品v| 3wmmmm亚洲av在线观看| 舔av片在线| 国产色婷婷99| av国产免费在线观看| 99热6这里只有精品| 伦精品一区二区三区| 亚洲一级一片aⅴ在线观看| 乱系列少妇在线播放| 国产在线男女| 亚洲欧洲日产国产| 欧美日韩亚洲高清精品| 日日啪夜夜撸| 亚洲成人手机| 伦精品一区二区三区| 搡女人真爽免费视频火全软件| 国产乱来视频区| 黄色日韩在线| 成人国产av品久久久| 亚洲精品,欧美精品| 国产精品嫩草影院av在线观看| 免费看不卡的av| 免费观看a级毛片全部| 久久人人爽人人片av| 日韩,欧美,国产一区二区三区| 黑人猛操日本美女一级片| 啦啦啦啦在线视频资源| 亚洲欧美成人精品一区二区| 丰满乱子伦码专区| 99久久人妻综合| 欧美精品一区二区免费开放| av不卡在线播放| 欧美日本视频| 国产男人的电影天堂91| 国产久久久一区二区三区| av网站免费在线观看视频| 日韩免费高清中文字幕av| 日韩成人伦理影院| 黄片wwwwww| 三级国产精品片| 人人妻人人澡人人爽人人夜夜| 搡老乐熟女国产| 亚洲精品乱码久久久v下载方式| 街头女战士在线观看网站| 黄色视频在线播放观看不卡| 纵有疾风起免费观看全集完整版| av卡一久久| 久久久久性生活片| 国产永久视频网站| 久久久久久伊人网av| 嘟嘟电影网在线观看| av.在线天堂| 丰满少妇做爰视频| 亚洲性久久影院| 狂野欧美激情性xxxx在线观看| 99热这里只有精品一区| 欧美日韩精品成人综合77777| 国产亚洲精品久久久com| 黄色一级大片看看| 噜噜噜噜噜久久久久久91| 免费人成在线观看视频色| 观看av在线不卡| 天堂俺去俺来也www色官网| 九草在线视频观看| 黄色怎么调成土黄色| 夜夜爽夜夜爽视频| 国产成人精品婷婷| 欧美成人午夜免费资源| 国产极品天堂在线| 亚洲精品成人av观看孕妇| 人人妻人人澡人人爽人人夜夜| 97超视频在线观看视频| 国产乱人偷精品视频| 男人舔奶头视频| 丰满迷人的少妇在线观看| kizo精华| 一本—道久久a久久精品蜜桃钙片| 中文字幕亚洲精品专区| 午夜福利网站1000一区二区三区| 嫩草影院新地址| 国产成人a区在线观看| 深夜a级毛片| 欧美3d第一页| 亚洲激情五月婷婷啪啪| 久久精品夜色国产| 亚洲电影在线观看av| 能在线免费看毛片的网站| 少妇的逼水好多| 亚洲欧美日韩无卡精品| 特大巨黑吊av在线直播| 久久久久久九九精品二区国产| 国产人妻一区二区三区在| 伦理电影大哥的女人| 久久国产亚洲av麻豆专区| 久热这里只有精品99| 九色成人免费人妻av| 中文字幕制服av| 亚洲成人中文字幕在线播放| 最近2019中文字幕mv第一页| 欧美激情国产日韩精品一区| 免费观看无遮挡的男女| 看十八女毛片水多多多| 91在线精品国自产拍蜜月| 免费大片黄手机在线观看| 色哟哟·www| 国产爽快片一区二区三区| 男的添女的下面高潮视频| 国模一区二区三区四区视频| 十八禁网站网址无遮挡 | 久久影院123| 国产久久久一区二区三区| 久久99热这里只有精品18| 最近手机中文字幕大全| 日本黄大片高清| 亚洲国产欧美人成| 国产日韩欧美亚洲二区| 久久久久久九九精品二区国产| 99久久中文字幕三级久久日本| 水蜜桃什么品种好| 十八禁网站网址无遮挡 | av在线app专区| 在线观看免费日韩欧美大片 | 乱系列少妇在线播放| 亚洲色图av天堂| 少妇人妻久久综合中文| 亚洲av免费高清在线观看| 国产在线免费精品| 国产欧美另类精品又又久久亚洲欧美| 亚洲精品国产av蜜桃| 久久国产精品大桥未久av | 国产精品国产三级专区第一集| 亚洲va在线va天堂va国产| 久久久久久久亚洲中文字幕| 少妇丰满av| 人妻系列 视频| 尤物成人国产欧美一区二区三区| 五月伊人婷婷丁香| av在线app专区| 最黄视频免费看| 九九爱精品视频在线观看| 亚洲美女黄色视频免费看| 中文字幕亚洲精品专区| 中文欧美无线码| 国产v大片淫在线免费观看| av在线蜜桃| 国产美女午夜福利| 亚洲国产成人一精品久久久| 亚洲国产av新网站| 联通29元200g的流量卡| 久久ye,这里只有精品| 亚洲人成网站在线观看播放| 一区二区av电影网| 亚洲国产成人一精品久久久| 中国三级夫妇交换| 国产91av在线免费观看| 国产欧美另类精品又又久久亚洲欧美| 久久精品国产a三级三级三级| av免费在线看不卡| 成人综合一区亚洲| 日韩三级伦理在线观看| av视频免费观看在线观看| xxx大片免费视频| 秋霞伦理黄片| 一级片'在线观看视频| 最近最新中文字幕大全电影3| 草草在线视频免费看| 国产久久久一区二区三区| 日韩伦理黄色片| 中文字幕免费在线视频6| 最近中文字幕2019免费版| 日韩欧美精品免费久久| 欧美区成人在线视频| 亚洲欧美中文字幕日韩二区| 亚洲电影在线观看av| 狂野欧美白嫩少妇大欣赏| 1000部很黄的大片| 麻豆精品久久久久久蜜桃| 两个人的视频大全免费| 超碰97精品在线观看| 亚洲av国产av综合av卡| 欧美成人精品欧美一级黄| .国产精品久久| 美女cb高潮喷水在线观看| 国产精品.久久久| 最近手机中文字幕大全| 国产精品一区二区在线观看99| 在现免费观看毛片| 九九在线视频观看精品| 简卡轻食公司| 国产精品久久久久久久电影| 少妇熟女欧美另类| 精品人妻偷拍中文字幕| 嘟嘟电影网在线观看| 久久99精品国语久久久| 欧美成人精品欧美一级黄| 亚洲av欧美aⅴ国产| 老司机影院成人| 日日啪夜夜撸| 日韩一区二区三区影片| 久久99热这里只有精品18| 超碰97精品在线观看| 亚洲av.av天堂| 国产91av在线免费观看| 国产国拍精品亚洲av在线观看| 免费看av在线观看网站| 一本色道久久久久久精品综合| 亚洲美女搞黄在线观看| 国产精品免费大片| 男人爽女人下面视频在线观看| 91午夜精品亚洲一区二区三区| 亚洲av免费高清在线观看| 在线观看免费日韩欧美大片 | 3wmmmm亚洲av在线观看| 少妇精品久久久久久久| 精品国产乱码久久久久久小说| 国产日韩欧美在线精品| 成人18禁高潮啪啪吃奶动态图 | 成人毛片a级毛片在线播放| 狂野欧美白嫩少妇大欣赏| 哪个播放器可以免费观看大片| 婷婷色av中文字幕| 久久99精品国语久久久| 蜜桃久久精品国产亚洲av| 少妇的逼好多水| 久久精品熟女亚洲av麻豆精品| 国产精品女同一区二区软件| 中文字幕制服av| 亚洲怡红院男人天堂| 中文字幕制服av| 又粗又硬又长又爽又黄的视频| tube8黄色片| 激情 狠狠 欧美| 精品视频人人做人人爽| 久久6这里有精品| 亚洲国产精品999| 最后的刺客免费高清国语| 亚洲av欧美aⅴ国产| 热99国产精品久久久久久7| 国产女主播在线喷水免费视频网站| 能在线免费看毛片的网站| 这个男人来自地球电影免费观看 | 精品久久久久久久久亚洲| 成人二区视频| 中文精品一卡2卡3卡4更新| 人人妻人人爽人人添夜夜欢视频 | 国产真实伦视频高清在线观看| 秋霞在线观看毛片| 久久久久久伊人网av| 国产欧美日韩一区二区三区在线 | 国产成人a区在线观看| 国产成人91sexporn| 蜜桃在线观看..| 国产视频首页在线观看| 最近中文字幕2019免费版| 日本av手机在线免费观看| 亚洲国产高清在线一区二区三| a级毛片免费高清观看在线播放| 女人久久www免费人成看片| 一本一本综合久久| 亚洲精品视频女| 最近2019中文字幕mv第一页| 色综合色国产| 一级毛片我不卡| 亚洲第一区二区三区不卡| 一级二级三级毛片免费看| 人人妻人人爽人人添夜夜欢视频 | 97超视频在线观看视频| 亚洲国产毛片av蜜桃av| 在线观看美女被高潮喷水网站| 成人亚洲精品一区在线观看 | 婷婷色av中文字幕| av又黄又爽大尺度在线免费看| 国产乱人偷精品视频| 在线观看国产h片| 日韩欧美一区视频在线观看 | 一级毛片电影观看| 亚洲成色77777| 91在线精品国自产拍蜜月| 亚洲色图av天堂| 国产淫片久久久久久久久| 久久久亚洲精品成人影院| 亚洲人成网站在线播| 成人国产av品久久久| 美女福利国产在线 | 五月玫瑰六月丁香| 亚洲国产日韩一区二区| 亚洲色图综合在线观看| 免费av不卡在线播放| 五月天丁香电影| 日产精品乱码卡一卡2卡三| 亚洲av不卡在线观看| 亚洲国产精品专区欧美| 欧美人与善性xxx| 少妇人妻一区二区三区视频| 国产色爽女视频免费观看| 欧美日韩精品成人综合77777| 成人午夜精彩视频在线观看| 久久午夜福利片| 两个人的视频大全免费| 久久精品国产鲁丝片午夜精品| 国产一区亚洲一区在线观看| 少妇高潮的动态图| av在线播放精品| 国产黄色免费在线视频| 国产成人a区在线观看| 欧美另类一区| 亚洲国产高清在线一区二区三| 亚洲精品日本国产第一区| 99热国产这里只有精品6| 成年av动漫网址| 我的女老师完整版在线观看| 伦精品一区二区三区| 2021少妇久久久久久久久久久| 久久久久精品久久久久真实原创| 另类亚洲欧美激情| 国产高清有码在线观看视频| 亚洲一区二区三区欧美精品| 国产精品一区www在线观看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲性久久影院| 欧美成人一区二区免费高清观看|