• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Chirality and chiral functional composites of bicontinuous cubic nanostructured cubosomes

    2022-06-18 10:53:22DeyinWangHongkaiLiuWeiWang
    Chinese Chemical Letters 2022年3期

    Deyin Wang,Hongkai Liu,Wei Wang

    Center for Synthetic Soft Materials,Key Laboratory of Functional Polymer Materials of Ministry of Education and Institute of Polymer Chemistry,College of Chemistry,Nankai University,Tianjin 300071,China

    Keywords:Chirality Self-assembly Nanostructure Composite

    ABSTRACT Molecular self-assembly is the most important strategy for the development of chiral aggregates and chiral functional materials.In this study,we rationally designed and synthesized chiral fluorescent heteroclusters that were self-assembled into microscale cubosomes with a three-dimensional (3D) bicontinuous cubic phase nanostructure.The cubosomes exhibited chirality,indicating that chirality is transferred from the molecules to the 3D nanostructure.Therefore,we confirmed the formation of a chiral bicontinuous cubic phase nanostructure for the first time.We also showed that this chirality originates from the continuous change in the saddle-splay distortion of the molecules within the curved bilayer.At the same time,transparent films of chiral composites were prepared by mixing the chiral cubosomes with an epoxy resin and then curing the mixture.Therefore,we demonstrated an effective method for preparing chiral composites.

    Lipids are biological molecules composed of a hydrophilic head group and hydrophobic fatty acid tails.Their amphiphilic nature allows them to self-assemble into nano-objects or nanostructures,such as micelles,and vesicles,and complex three-dimensional (3D)bicontinuous cubic networks through intermolecular noncovalent interactions [1].Experimental and theoretical studies [1?8]on the self-assembly principle of lipids provide guidance not only on the formation of complex biological nanostructures,such as biophotonic crystals with 3D cubic networks [9–12],but also on their applications in the fabrication of advanced materials with 3D cubic nanostructures,such as artificial photonic crystals for metamaterials [13,14]and nanoporous particles [15,16]for catalyst supports[17]and controlled drug release [18].

    The self-assembly principle of lipids has been also used to develop self-assembled systems with supramolecular chirality [19–23]and supramolecular chiral functional materials[24,25].Through rational molecular design,chiral building blocks self-assemble intoquasi-one-dimensional supramolecular aggregates,such as twisted or helical ribbons,and nanotubes.These supramolecular aggregates usually exhibit left- or right-handed superstructures,in which the molecules are persistently twisted along the axis of the aggregate.In this way,the chirality of the molecules is transferred to the supramolecular chirality through self-assembly.

    Studies on the chirality of self-assembled systems with a 3D bicontinuous cubic structures are extremely limited.Chiral bicontinuous cubic structures were first observed in the lyotropic liquid phase of two chiral lipids in water [26,27].Recently,they were found in thermotropic bicontinuous cubic phases of bolaamphiphiles and rod molecules [28–30].This work aimed to further study chirality of 3D bicontinuous cubic structures.In our previous studies,we designed and subsequently synthesized a series of the dumbbell-shaped Janus heteroclusters composed of a polyoxometalate (POM) cluster,a polyhedral oligomeric silsesquioxane(POSS),and different organic linkers [31?34].These heteroclusters then self-assembled into cubosomes with a bicontinuous double diamond (DD) cubic nanostructure in solution [34].In this study,we inserted the L- and D-enantiomers of a chiral amino acid and a fluorescent naphthalene dianhydride into the organic linkers of the heteroclusters,which were then self-assembled them into cubosomes.These cubosomes were confirmed to have the DD cubic nanostructure by scanning and transmission electron microscopy(SEM and TEM) and small-angle X-ray scattering (SAXS) analysis.The chirality of the cubosomes were characterized by circular dichroism (CD) spectroscopy.We discussed the correlation between molecular chirality and the chirality of the DD cubic nanostructure constructed by non-twisted or non-helical self-assembled bilayers.In addition,chiral functional composites were also prepared by curing mixtures of chiral cubosomes and an epoxy resin.

    Fig.1.Chemical structures of (a) chiral heteroclusters in L- and D-forms and (b) an achiral heterocluster.The organic linkers between the polyoxometalate (POM) and polyhedral oligomeric silsesquioxane (POSS) clusters are composed of 1,4,5,8-naphthalenetetracarboxylic dianhydride (NDI) and L- or D-phenylalanine or β-alanine.

    Fig.1 shows the chemical structures of the heteroclusters used in this study.The formulas and molecular weights are (Bu4N)6H3(P2W15V3O62),5422.2 Da for the POM cluster and C31H71Si8O12,874.6 Da for 1-aminopropyl-3,5,7,9,11,13,15-heptaisobutyl POSS.To endow them with molecular chirality,we inserted a chiral unit,specifically,an enantiomer of theα-amino acid,that is,L- and D-phenylalanine (L- and D-Phe) into the organic linker.Concurrently,we added 1,4,5,8-naphthalenetetracarboxylic dianhydride (NDI) as a light-absorbing group to the organic linker for the detection of the chirality of the self-assembled cubosomes by CD spectroscopy.The dumbbell-shaped enantiomers are designated as POSS-NDI-L-Phe-POM (or L-heterocluster) and POSS-NDID-Phe-POM (or D-heterocluster),as shown in Fig.1a.The specific optical rotations of L- and D-heteroclusters are+8.0?and?8.0?,we also prepared an achiral heterocluster in which phenylalanine is substituted byβ-alanine,denoted as POSS-NDIAla-POM (or Ala-heterocluster).

    The general synthetic route for these molecules is the same as that reported in our previous works [31]and the details are available in Supporting information.The experimentally determined molecular weights of L-,D- and Ala-heteroclusters are 6743.10,6743.19,and 6667.17 Da,respectively,which are the same as the theoretical values (6743.14,6743.14 and 6667.07 Da).The UV–vis absorption spectra of the three heteroclusters in acetone solution show typical UV–vis absorption peaks atλ=345,364 and 384 nm,and the fluorescence emission peaks atλ=402,426 and 457 nm,which are the characteristic peaks of the NDI unit(Fig.S1 in Supporting information).We also measured the UV–vis absorption and fluorescence emission spectra of POSS-NDI-LPhe-COOH (Fig.S2 in Supporting information).The inserted table lists the peak positions of the UV–vis absorption and fluorescence emission spectra of POSS-NDI-L-Phe-COOH and POSS-NDIL-Phe-POM.Clearly,the spectral differences between POSS-NDI-LPhe-COOH and POSS-NDI-L-Phe-POM are negligible.

    To study the chirality of cubosomes with a bicontinuous DD cubic nanostructure,we implemented the dynamic process used in our previous study [34]for the self-assembly of these newly synthesized heteroclusters.Here,we briefly introduce the selfassembly process.The POM and POSS clusters dissolve well in acetone andn-decane,respectively.Therefore,the resulting heteroclusters possess a Janus nature and are well soluble in a 3:2 acetone/n-decane mixture (v/v) at room temperature.Because the evaporation of acetone is ~80 times faster than that ofn-decane(Table S1 in Supporting information),the gradual evaporation of acetone from the mixture increases the proportion ofn-decane in the mixture,which is a selective solvent for the POSS block.During this process,the L-,D- and Ala-heteroclusters self-assemble into cubosomes,which are referred to as L-,D- and Ala-cubosomes,respectively,for convenience.Under the same condition,we also coassembled mixtures of the L- and D-heteroclusters with L/D ratios of 25/75,50/50,and 75/25 (mol/mol) into cubosomes.Hereafter,these cubosomes are referred to as D/L-cubosomes.

    To confirm that the heteroclusters form cubosomes with bicontinuous DD cubic nanostructures,we characterized the cubosomes using scanning electron microscopy (SEM),transmission electron microscopy (TEM),and small angle X-ray scattering (SAXS).We observed similar results for all cubosomes formed by self-assembly and co-assembly,as summarized in Figs.S3?S5 (Supporting information).The SEM and TEM images for the L-cubosomes are shown in Fig.2.The SEM observation shows truncated octahedral cubosomes (Figs.2a and b) with an average diameter of 1406 ± 288 nm(Figs.2c).For the TEM characterization,we selected a cubosome with a size less than 400 nm to view the internal nanostructure.The TEM images in Figs.2d and f exhibit the nanostructure of the bicontinuous DD cubic phase viewed along the [111]and [100]zone axes [34].In the bright field mode,the dark regions are POMrich because the POM cluster contains 15 tungsten atoms,while the bright regions are POSS-rich.The close-up images in Fig.2e and g and the corresponding fast Fourier transform patterns (insets) reveal the symmetry andd-spacing of the two projections in reciprocal space: the hexagonal symmetry of the white dots with an observed lattice spacing ofd111=8.6 ± 0.2 nm (Fig.2d) and the cubic symmetry of the white (or dark) dots with an observed lattice spacing ofd100=7.8 ± 0.2 nm (Fig.2f).

    The SAXS characterization provides the critical evidence of the identity of the inner nanostructure.Fig.3a is the SAXS spectra of the cubosomes withinq=0.2–2.0 nm?1,whereqis the scattering vector.We can identify one strong peak and two to three weak peaks or shoulder peaks from the enlarged SAXS spectra (Fig.S5).The √2:√3:√4:√6 spacing ratio of these peaks index them to the [110],[111],[200]and [211]reflections of the bicontinuous DD cubic phase [34–36],indicating the space group of the bicontinuous cubic phase isPnˉ3m.The reciprocal spacingqhklof the cubic phase is associated with lattice constantaby the equationqhkl=whereh,k,andlare the Miller indices.Theavalues are 12.3,11.6,and 13.1 nm,respectively,for L-,Dand Ala-cuobsomes,as determined from the slopes of the regression lines passing through the origin (Fig.3b).On the other hand,a=11.9,12.5,and 11.2 nm for the D/L-cubosomes with molar ratios of L/D=25/75,50/50 and 75/25 (mol/mol),respectively (Fig.S5).Hence,we conclude that a DD nanostructure formes inside the cubosomes,as shown in Fig.3c.The drawing of the unit cell depicts the symmetry of the DD structure: 2 equiv.but independent diamonds are constructed by the nodes and channels,which are differentiated by purple and sky-blue colour [34,37].

    Fig.2.(a) Low-magnification SEM image of the L-cubosomes.(b) Close-up SEM image of a truncated octahedral cubosome.(c) Size distribution of the L-cubosomes in A.(d)to (g) TEM images of the L-cubosomes and close-up images viewed along the [111],and [100]zone axes of the double diamond structure.The insets are the corresponding fast Fourier transform pattern.

    Fig.3.(a) SAXS spectra of the L-,D-,Ala- and D/L-cubosomes (q is the scattering vector).(b) Linear relationship between qhkl and (h2+k2+l2)1/2 (qhkl is the reciprocal spacing of the cubic phase and h,k and l are the Miller indices of the corresponding planes).(c) Skeletal drawing of a cubic unit cell with two sets of diamond nanostructures differentiated by purple and sky-blue colors.Lattice constant a is indicated.For interpretation of the references to color in this figure legend,the reader is referred to the web version of this article.

    Fig.4.(a) CD spectra of the cubosomes self-assembled and co-assembled by the heteroclusters and of mixtures of the cubosomes at different ratios in n-decane(c=0.5 mg/mL).The symbols “+”and “/” denote the co-assembly of L- and Dheteroclusters and the mixture of the L- and D-cubosomes,respectively.(b) Linear relationship between the CD intensity and chiral unit content.

    Fig.5.(a) Cubic unit cell of the double diamond structure described using a minimal surface.(b) Saddle surface of a hyperbolic paraboloid containing a saddle point (green)and r1 and r2 as the two principal radii of the curvature.(c) Water channel with a radius (rw).(d) Suggested mirror arrangement of the chiral L- and D-heteroclusters in bilayer with saddle-splay distortion following Bouligand’s drawing [42].

    We studied the chirality of the cubosomes by obtaining their CD spectra of then-decane suspensions with a concentration of 0.5 mg/mL.We examined the following suspensions: (1) L-,D-,and Ala-cubosomes,(2) L/D-cubosomes with L/D ratios of 25/75,50/50 and 75/25 (mol/mol),(3) mixtures of L-,D-,and Ala-cubosomes with ratios of 25/75,50/50 and 75/25 (mol/mol),which are referred to as L/D-,L/Ala-,and D/Ala-mixtures,respectively.We also examined the molecular solution of L- and D-heteroclusters in acetone and then-decane suspensions of the L- and D-heterocluster powders that were prepared by rapidly injecting their tetrahydrofuran solutions into the water.Fig.4a shows the CD signals in the wavelength range from 300 nm to 500 nm.First,the L- and Dcubosomes exhibit Cotton effects in the 350–425 nm region,which are typical of the CD spectra of self-assembled systems containing NDI units and are corresponding with the UV-vis absorption bands of the cubosomes (Fig.S6 in Supporting information).The two spectra are mirror images of each other and show the positive and negative Cotton effects for the D- and L-cubosomes,respectively.Second,depending on the ratio content of the chiral heteroclusters,the absolute intensities of the CD signals of the L/Dcubosomes and the L/D,L/Ala- and D/Ala cubosome mixtures linearly decreases with increasing net ratio of 50/50 (Fig.4b).We did not observe the chiral enhancement [38]possibly due to the larger diameters of POM and POSS in the heteroclusters resulting in a large distance between NDI units.Third,the Ala-cubosome suspensions inn-decane (Fig.4a),the acetone solutions of the Lor D-heteroclusters with the concentrations ofc=0.1,1.0,and 10.0 mg/mL (Fig.S7 in Supporting information),and then-decane suspensions of the L- and D-heterocluster powder (Fig.S8 in Supporting information) do not show any CD signal in the same region.The CD spectra of L- and D-cubosomes with the concentrations of 1.0,0.5 and 0.25 mg/mL were also tested,and their intensities changed with the concentrations (Fig.S9 in Supporting information).Therefore,we conclude that the CD signals originate from the chiral L- and D-phenylalanine units within the ordered structures of the cubosomes.In other words,the molecular chirality of L- and D-phenylalanine is transferred to cubosomes through the bicontinuous DD cubic structures;thus we consider these structures as chiral bicontinuous DD cubic structures or chiral cubosomes.We also carried out the linear dichroism (LD) studies of the resulting chiral cubosomes.LD spectra of the chiral cubosomes monitored under various angles did not show any obvious signals (Fig.S10 in Supporting information).These observations indicate the suprastructure within the cubosomes plays a key role in the chirality transfer from the molecular to the supramolecular level [39,40].

    To the best of our knowledge,there are very few studies on the bicontinuous cubic phases of chiral molecules.There is only one structural study on the bicontinuous cubic phases of two chiral lipids,dihexadecyl phosphatidylethanolamine and didodecyl phosphatidylethanolamine in water by SAXS [26,27].Unfortunately,the chirality was not directly determined by CD spectrometry,possibly owing to the lack of UV–vis absorption moities in the two lipids.Since then,no follow-up studies have been reported possibly because it is difficult to self-assemble the lipids with a covalently connected chromophore unit into chiral bicontinuous cubic structures.Nevertheless,we believe that the bicontinuous cubic phases are chiral.As mentioned earlier,chiral bicontinuous cubic phases were recently found in thermotropic liquid crystal phases of some rod-like compounds or bolaamphiphiles [28?30],and the temperature dependent CD spectra were also determined from the thermotropic liquid crystal phases of two chiral compounds [28],However,the structures in these bicontinuous cubic phases are different from those formed by lipid bilayers.

    It is worth noting that through electron microscopy observation,supramolecular chirality ofquasi-one-dimensional twisted or helical ribbons and nanotubes is early identifiable,that is,left- or right-handed helices or ribbons [19?21].However,our SEM and TEM observations show that there are no similar deformed bilayers or structures on the surface,edge,and interior of the L- and Dcubosomes (Fig.2 and Fig.S11 in Supporting information).Therefore,the chiral cubosomes do not have the appearance of the chiral superstructure that characterizes left- or right-handed ribbons.

    Bicontinuous DD cubic structure is a unique network constructed by two independent nanochannels separated by a curved bilayer.Fig.5a is a triply periodic minimal surface structure showing the lattice of a bicontinuous DD cubic phase.The purple and sky-blue sides of the curved surface distinctly distinguish the two continuous but nonintersecting channel networks.Fig.5b schematically shows the curved surface with two curvaturesc1=1/r1andc2=1/r2,wherer1andr2are the principal radii of the curvatures.The topological characteristic of the curved surface is that every point is a saddle point with a negative Gaussian curvature(K=c1c2<0) and zero mean curvature [H=(c1+c2)/2=0]in whichc1andc2are not constant changing from zero to the maximum in a so-called water channel [3,41].Radius,rw,of water channel (Fig.5c) can be calculated according to the equation:

    whereais the lattice constant,andlis the length of the molecule[38].Taking L-cubosomes as an example,a=12.3 nm,andl=3.5 nm,we obtainrw=1.31 nm,thus the corresponding curvatures arec1=?c2=0.76 nm?1.

    The molecules in the bilayer at each saddle point suffer from a saddle-splay distortion.According to the widely accepted saddlesplay distortion of lipid bilayers proposed by Bouligand [1,2,42],we hypothesize that the L- and D-heteroclusters are arranged such that the chiral L- and D-phenylalanine enantiomers are nonsuperimposable mirror images of one another (Fig.5d).We believe that this is the origin of the chirality of the bicontinuous cubic structure.Because the surface curvature is not constant in the bicontinuous cubic structures,the saddle-splay distortion further varies with the point.In other words,the chiral transfer from the molecules to cubosomes varies at each point and consequently,the heterocluster bilayer does not show any left- or right-handed deformation.To confirm this hypothesis,we prepared the planar structures form by the L- and D-heteroclusters.The absence of CD signals for the plates imply the invalid chiral transfer from the heteroclusters to planar structures (Figs.S12 and S13 in Supporting information).

    In this study,we further prepared chiral composites by mixing the cubosome powder with an epoxy resin (Fig.S14 in Supporting information) (at a ratio 1:100 by weight) and then curing the mixture.The two optical images in Fig.6a show the films of a cured pure epoxy resin and composite on a quartz glass.The composite films are slightly yellowish and transparent,allowing the characters under the film to be visible.Relative to that of the pure epoxy film,the transmittance values of the composite films of the L- and D-cubosomes are 86.9% and 82.4%,respectively.We observed several cubosomes on the fracture surface of a composite by SEM(Fig.6b).We also used SAXS to confirm the bicontinuous DD structures within the cubosomes (Fig.S15 in Supporting information).The CD spectra of the two composite films are the same as those of the L- and D-cubosomes in the 350?425 nm region (Fig.6c).The chiral composite films have the potential applications in terms of chiral recognition,chiroptical switches,chiral electronics and biology.

    Fig.6.(a) Two optical images showing films of cured pure epoxy resin and cured composites of the L- or D-cubosome on a quartz plate.(b) SEM image showing a few cubosomes on a fracture surface of a composite.(c) CD spectra of the chiral composites.

    In summary,we designed and synthesized three dumbbellshaped Janus heteroclusters composed of POM and POSS clusters with different organic linkers that contain a fluorescent NDI unit.The L- or D-phenylalanine enantiomer was inserted into the organic linker of two chiral heteroclusters,whereas achiralβ-alanine was inserted into that of the achiral heterocluster.These heteroclusters self-assembled into cubosomes with a bicontinuous DD cubic structure.CD characterization revealed that the cubosomes of the chiral heteroclusters exhibit chirality,indicating that chirality is transferred from molecules to the bicontinuous DD cubic structure.Our analysis indicated that the saddle-splay distortion of molecules within curved bilayer of the heteroclusters is the origin of the chirality of the cubic phase nanostructure.We further prepared chiral transparent films of composites by curing mixtures of the chiral cubosomes and an epoxy resin.Therefore,we demonstrated a simple but effective method of preparing chiral functional composites for advanced applications.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    We thank for the financial support given by the National Natural Science Foundation of China (No.92061120) and the help of Prof.Yongfeng Men and Dr.Xiao Yang of SAXS at Changchun Institute of Applied Chemistry (CIAC).This paper is also dedicated to the 100thanniversary of Chemistry at Nankai University.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.08.040.

    亚洲av综合色区一区| 国产高清有码在线观看视频| 各种免费的搞黄视频| 成人午夜精彩视频在线观看| 免费在线观看成人毛片| 2021少妇久久久久久久久久久| 亚洲,一卡二卡三卡| 国产男人的电影天堂91| 日本av免费视频播放| 国产乱人视频| 成人毛片a级毛片在线播放| 国产女主播在线喷水免费视频网站| 夜夜看夜夜爽夜夜摸| 黑丝袜美女国产一区| 国产精品久久久久久久电影| 日本-黄色视频高清免费观看| 在线天堂最新版资源| 亚洲精品aⅴ在线观看| 最黄视频免费看| 久久久久人妻精品一区果冻| 亚洲精品成人av观看孕妇| 少妇精品久久久久久久| 欧美日韩一区二区视频在线观看视频在线| 99热网站在线观看| 亚洲婷婷狠狠爱综合网| 国产乱人偷精品视频| 伦理电影大哥的女人| 亚洲精品日韩在线中文字幕| 国产视频首页在线观看| 国产中年淑女户外野战色| 久久久久久久亚洲中文字幕| 亚洲国产高清在线一区二区三| av国产免费在线观看| 久久影院123| 成年人午夜在线观看视频| 一本色道久久久久久精品综合| 色视频在线一区二区三区| 国产黄色视频一区二区在线观看| 精品久久久噜噜| 美女脱内裤让男人舔精品视频| 哪个播放器可以免费观看大片| 欧美国产精品一级二级三级 | 亚洲欧美中文字幕日韩二区| av专区在线播放| 午夜福利在线观看免费完整高清在| 亚洲美女视频黄频| 国模一区二区三区四区视频| videos熟女内射| 看十八女毛片水多多多| 国产伦精品一区二区三区视频9| 国产综合精华液| 久久精品夜色国产| 中文资源天堂在线| 欧美日韩在线观看h| av一本久久久久| 日韩亚洲欧美综合| 一个人免费看片子| 人体艺术视频欧美日本| 日本vs欧美在线观看视频 | 在线亚洲精品国产二区图片欧美 | 日韩欧美精品免费久久| 免费av不卡在线播放| 久久国产精品男人的天堂亚洲 | a级毛色黄片| 国产美女午夜福利| 青春草国产在线视频| 99久久人妻综合| 日韩一区二区视频免费看| 在线播放无遮挡| 伦理电影大哥的女人| 欧美精品一区二区大全| 免费人妻精品一区二区三区视频| av免费观看日本| 一级毛片 在线播放| 男女边吃奶边做爰视频| 啦啦啦中文免费视频观看日本| 日本一二三区视频观看| 国产精品久久久久久精品古装| tube8黄色片| 蜜桃在线观看..| 一个人看视频在线观看www免费| 爱豆传媒免费全集在线观看| 青青草视频在线视频观看| 国产av国产精品国产| 99九九线精品视频在线观看视频| 美女福利国产在线 | 老熟女久久久| 久热这里只有精品99| 国产日韩欧美亚洲二区| 国产精品99久久久久久久久| 22中文网久久字幕| 最近最新中文字幕免费大全7| 国精品久久久久久国模美| 简卡轻食公司| 久久精品国产亚洲av天美| 日韩成人伦理影院| 精品国产一区二区三区久久久樱花 | 在线观看美女被高潮喷水网站| 美女xxoo啪啪120秒动态图| 中国国产av一级| 久久青草综合色| 夜夜骑夜夜射夜夜干| 三级国产精品片| 97在线人人人人妻| 蜜桃在线观看..| 成人免费观看视频高清| 日韩欧美 国产精品| 七月丁香在线播放| 欧美xxxx黑人xx丫x性爽| 国产片特级美女逼逼视频| 国产视频内射| 久久久a久久爽久久v久久| 国产伦理片在线播放av一区| 免费观看在线日韩| 精品国产乱码久久久久久小说| 成人国产av品久久久| 亚洲中文av在线| 欧美精品人与动牲交sv欧美| 观看av在线不卡| 麻豆国产97在线/欧美| 亚洲国产欧美人成| 卡戴珊不雅视频在线播放| 国产亚洲精品久久久com| 51国产日韩欧美| 久久久a久久爽久久v久久| 久久精品国产亚洲av涩爱| 网址你懂的国产日韩在线| 国产成人精品福利久久| 国产熟女欧美一区二区| 国内少妇人妻偷人精品xxx网站| 亚洲精品视频女| 亚洲怡红院男人天堂| 国国产精品蜜臀av免费| 久久久久精品性色| 99热这里只有精品一区| 亚洲,欧美,日韩| a级一级毛片免费在线观看| 国产免费一级a男人的天堂| 一区二区av电影网| 五月玫瑰六月丁香| 春色校园在线视频观看| 直男gayav资源| 日日摸夜夜添夜夜添av毛片| 国产熟女欧美一区二区| 精品久久久久久久久亚洲| 亚洲av福利一区| 久久人人爽人人爽人人片va| 国产综合精华液| 99久国产av精品国产电影| 久久精品国产亚洲网站| 97在线人人人人妻| 一个人看视频在线观看www免费| 纵有疾风起免费观看全集完整版| 婷婷色麻豆天堂久久| 国产欧美另类精品又又久久亚洲欧美| 狂野欧美激情性xxxx在线观看| 欧美日韩国产mv在线观看视频 | 高清午夜精品一区二区三区| 日本色播在线视频| 亚洲国产欧美人成| 亚洲国产最新在线播放| 青春草国产在线视频| tube8黄色片| a级一级毛片免费在线观看| 美女脱内裤让男人舔精品视频| 亚洲精品aⅴ在线观看| 日韩制服骚丝袜av| 欧美性感艳星| 国产av国产精品国产| 国产乱来视频区| 久久久久久久久久久丰满| 91狼人影院| 肉色欧美久久久久久久蜜桃| 亚洲精品,欧美精品| 成人影院久久| 一区二区三区免费毛片| 国产精品国产三级国产专区5o| 国产日韩欧美在线精品| 熟女电影av网| 午夜福利在线在线| 又粗又硬又长又爽又黄的视频| 欧美成人a在线观看| 高清毛片免费看| 免费av不卡在线播放| 日本-黄色视频高清免费观看| 精品久久久久久久久亚洲| 亚洲伊人久久精品综合| 久久99热这里只频精品6学生| 少妇人妻精品综合一区二区| tube8黄色片| 波野结衣二区三区在线| 男女边摸边吃奶| 丰满人妻一区二区三区视频av| 噜噜噜噜噜久久久久久91| 高清不卡的av网站| 一级av片app| tube8黄色片| 国产精品一区二区在线观看99| 美女主播在线视频| 我要看日韩黄色一级片| 国产高清国产精品国产三级 | 99re6热这里在线精品视频| 亚洲熟女精品中文字幕| 在线观看三级黄色| 国语对白做爰xxxⅹ性视频网站| 97在线人人人人妻| 国产精品国产av在线观看| 久久久亚洲精品成人影院| 夫妻午夜视频| 女性被躁到高潮视频| 成人二区视频| 午夜免费男女啪啪视频观看| 成年美女黄网站色视频大全免费 | 亚洲美女搞黄在线观看| 久热这里只有精品99| 九九在线视频观看精品| 日韩伦理黄色片| 免费久久久久久久精品成人欧美视频 | 亚洲av欧美aⅴ国产| 国产精品人妻久久久影院| 最近中文字幕高清免费大全6| 日韩 亚洲 欧美在线| 国产日韩欧美在线精品| 精品熟女少妇av免费看| 亚洲国产av新网站| 精品久久久精品久久久| 精品99又大又爽又粗少妇毛片| 亚洲丝袜综合中文字幕| 久久久久久久久久人人人人人人| 草草在线视频免费看| 天美传媒精品一区二区| 国产精品久久久久久精品古装| 一级爰片在线观看| 看免费成人av毛片| 91午夜精品亚洲一区二区三区| 免费久久久久久久精品成人欧美视频 | 26uuu在线亚洲综合色| 成人影院久久| 建设人人有责人人尽责人人享有的 | 亚洲第一av免费看| 欧美区成人在线视频| 精品国产三级普通话版| 在线观看国产h片| 免费看av在线观看网站| 欧美精品亚洲一区二区| 中文字幕制服av| 色综合色国产| 亚洲熟女精品中文字幕| 色视频在线一区二区三区| 老熟女久久久| 欧美日韩综合久久久久久| 日韩伦理黄色片| 亚洲色图综合在线观看| 91精品国产九色| 亚洲精品一二三| 午夜福利高清视频| av一本久久久久| 日韩免费高清中文字幕av| 老熟女久久久| 欧美最新免费一区二区三区| 婷婷色综合大香蕉| 久久青草综合色| 久久久久久久大尺度免费视频| 久久久久国产网址| 最新中文字幕久久久久| 91精品伊人久久大香线蕉| 免费黄网站久久成人精品| 黄色一级大片看看| 最新中文字幕久久久久| 国产免费一区二区三区四区乱码| av线在线观看网站| 国产精品久久久久久久电影| 少妇猛男粗大的猛烈进出视频| 亚洲人成网站在线观看播放| 国产成人免费观看mmmm| 欧美成人精品欧美一级黄| 国产永久视频网站| 日本一二三区视频观看| 波野结衣二区三区在线| 久久精品久久精品一区二区三区| 日韩在线高清观看一区二区三区| 日本猛色少妇xxxxx猛交久久| 九九爱精品视频在线观看| 91午夜精品亚洲一区二区三区| 成人无遮挡网站| 麻豆成人av视频| 2018国产大陆天天弄谢| 乱码一卡2卡4卡精品| 日本色播在线视频| 青春草国产在线视频| 亚洲欧美一区二区三区黑人 | 国产精品久久久久久久久免| 日本与韩国留学比较| 亚洲精品日本国产第一区| 性高湖久久久久久久久免费观看| 观看美女的网站| 久久久精品免费免费高清| 九九久久精品国产亚洲av麻豆| 秋霞在线观看毛片| 久久久亚洲精品成人影院| 大香蕉97超碰在线| 国产男女超爽视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 中国美白少妇内射xxxbb| 国产亚洲欧美精品永久| 亚洲人成网站高清观看| 日韩三级伦理在线观看| 老熟女久久久| 最黄视频免费看| 美女高潮的动态| 中文字幕av成人在线电影| 春色校园在线视频观看| 99精国产麻豆久久婷婷| 一级毛片我不卡| 国产在线免费精品| 免费观看性生交大片5| kizo精华| 久久影院123| 国产欧美日韩精品一区二区| 国产精品免费大片| 午夜免费观看性视频| 日韩三级伦理在线观看| 国产成人精品一,二区| 日日撸夜夜添| 日日啪夜夜爽| 九九久久精品国产亚洲av麻豆| 国产精品蜜桃在线观看| 最黄视频免费看| 成人二区视频| 日本午夜av视频| 韩国av在线不卡| 国产乱人视频| 51国产日韩欧美| 国产高潮美女av| 亚洲四区av| 高清午夜精品一区二区三区| 中文字幕精品免费在线观看视频 | 男人爽女人下面视频在线观看| 全区人妻精品视频| 最后的刺客免费高清国语| 女性生殖器流出的白浆| 日日摸夜夜添夜夜爱| 国产精品99久久久久久久久| 综合色丁香网| 国产欧美亚洲国产| 91精品伊人久久大香线蕉| 黄色配什么色好看| 在线观看免费高清a一片| 久久久久国产网址| 久久 成人 亚洲| 人妻制服诱惑在线中文字幕| 日日摸夜夜添夜夜爱| 亚洲国产日韩一区二区| 国产av国产精品国产| 日本黄色日本黄色录像| av在线播放精品| 亚洲,欧美,日韩| 偷拍熟女少妇极品色| 午夜免费男女啪啪视频观看| 成人漫画全彩无遮挡| 97超碰精品成人国产| 有码 亚洲区| 成年女人在线观看亚洲视频| 九色成人免费人妻av| 大又大粗又爽又黄少妇毛片口| 亚洲精品色激情综合| 精品亚洲成a人片在线观看 | 久久亚洲国产成人精品v| 伦理电影免费视频| 国产毛片在线视频| 中国国产av一级| 欧美日本视频| 人人妻人人添人人爽欧美一区卜 | 多毛熟女@视频| 久久久精品免费免费高清| 国产亚洲午夜精品一区二区久久| 国产成人午夜福利电影在线观看| 在线观看国产h片| 欧美老熟妇乱子伦牲交| 超碰av人人做人人爽久久| 亚洲丝袜综合中文字幕| 日韩中字成人| 久久99热6这里只有精品| 在线看a的网站| 午夜激情久久久久久久| av在线老鸭窝| 免费久久久久久久精品成人欧美视频 | 精品久久久久久电影网| av线在线观看网站| 少妇人妻一区二区三区视频| 成年免费大片在线观看| 久久国产乱子免费精品| 最近的中文字幕免费完整| 亚洲av国产av综合av卡| 最近的中文字幕免费完整| 肉色欧美久久久久久久蜜桃| 简卡轻食公司| 在线观看av片永久免费下载| 一本一本综合久久| 男的添女的下面高潮视频| 天堂8中文在线网| 亚洲三级黄色毛片| 一级毛片电影观看| 尤物成人国产欧美一区二区三区| 大码成人一级视频| 日韩电影二区| 日日撸夜夜添| 青春草视频在线免费观看| 久久久欧美国产精品| 菩萨蛮人人尽说江南好唐韦庄| 极品少妇高潮喷水抽搐| 久久人人爽人人爽人人片va| 国产精品人妻久久久久久| 久久综合国产亚洲精品| 赤兔流量卡办理| 国产亚洲最大av| 亚洲欧美成人精品一区二区| 国产男人的电影天堂91| 小蜜桃在线观看免费完整版高清| 亚洲精品国产成人久久av| 精品一区二区三卡| 久久ye,这里只有精品| 午夜精品国产一区二区电影| 3wmmmm亚洲av在线观看| av黄色大香蕉| 中文欧美无线码| 亚洲国产成人一精品久久久| 精品久久久久久电影网| 日韩人妻高清精品专区| 99久久精品国产国产毛片| 国产免费福利视频在线观看| 欧美精品亚洲一区二区| 边亲边吃奶的免费视频| 国产亚洲一区二区精品| 一级毛片黄色毛片免费观看视频| a级毛片免费高清观看在线播放| 涩涩av久久男人的天堂| 亚洲经典国产精华液单| 久久综合国产亚洲精品| 97在线人人人人妻| 美女主播在线视频| 久久精品国产鲁丝片午夜精品| 黑人高潮一二区| 女的被弄到高潮叫床怎么办| 欧美精品一区二区免费开放| 亚洲,一卡二卡三卡| 国产成人一区二区在线| 各种免费的搞黄视频| 亚洲国产最新在线播放| 亚洲经典国产精华液单| 在线 av 中文字幕| 国产爱豆传媒在线观看| 五月天丁香电影| 午夜福利在线在线| 国产精品嫩草影院av在线观看| 亚洲激情五月婷婷啪啪| 中文字幕亚洲精品专区| av在线播放精品| 亚洲国产成人一精品久久久| av播播在线观看一区| 成年av动漫网址| 亚洲av国产av综合av卡| 国产爽快片一区二区三区| 国产精品国产三级国产av玫瑰| 性色av一级| 亚洲真实伦在线观看| 水蜜桃什么品种好| av国产免费在线观看| 中文字幕人妻熟人妻熟丝袜美| 一边亲一边摸免费视频| 一级爰片在线观看| 18禁在线播放成人免费| 黑丝袜美女国产一区| 少妇猛男粗大的猛烈进出视频| 肉色欧美久久久久久久蜜桃| 麻豆乱淫一区二区| 男人舔奶头视频| 18禁动态无遮挡网站| 久久久成人免费电影| 亚洲四区av| 久久国产精品大桥未久av | 建设人人有责人人尽责人人享有的 | 2022亚洲国产成人精品| 国产无遮挡羞羞视频在线观看| 欧美精品一区二区大全| 久热久热在线精品观看| 黑人高潮一二区| 久久精品国产a三级三级三级| 国产一区亚洲一区在线观看| 日韩一区二区视频免费看| 亚洲av男天堂| 国产又色又爽无遮挡免| 亚洲成人手机| 全区人妻精品视频| 日本欧美国产在线视频| 欧美精品一区二区免费开放| 涩涩av久久男人的天堂| 十分钟在线观看高清视频www | 久热久热在线精品观看| 色吧在线观看| 久久久欧美国产精品| 黑人猛操日本美女一级片| 一级毛片aaaaaa免费看小| 国产男人的电影天堂91| 99热这里只有是精品50| 国产精品偷伦视频观看了| 啦啦啦啦在线视频资源| 久久久久久伊人网av| 少妇的逼水好多| 国精品久久久久久国模美| 日韩,欧美,国产一区二区三区| 99久久精品国产国产毛片| 久久99精品国语久久久| 97热精品久久久久久| 日韩av在线免费看完整版不卡| 中文字幕免费在线视频6| 亚洲欧美日韩无卡精品| 99热这里只有是精品50| 少妇裸体淫交视频免费看高清| 观看免费一级毛片| av免费在线看不卡| 尾随美女入室| 国模一区二区三区四区视频| 午夜日本视频在线| 久久精品国产鲁丝片午夜精品| 欧美另类一区| 亚洲四区av| 一级毛片黄色毛片免费观看视频| 久久精品夜色国产| 免费观看a级毛片全部| 国产欧美日韩一区二区三区在线 | 波野结衣二区三区在线| 国产 精品1| 交换朋友夫妻互换小说| 极品教师在线视频| 亚洲一级一片aⅴ在线观看| 久久国产精品男人的天堂亚洲 | 国产精品蜜桃在线观看| 久久99精品国语久久久| 干丝袜人妻中文字幕| 九九在线视频观看精品| 最近中文字幕高清免费大全6| 身体一侧抽搐| 在线亚洲精品国产二区图片欧美 | 亚洲欧美精品自产自拍| 毛片女人毛片| av国产免费在线观看| 联通29元200g的流量卡| 久久精品久久精品一区二区三区| 人人妻人人澡人人爽人人夜夜| 久久精品夜色国产| 亚洲国产精品专区欧美| 中文字幕人妻熟人妻熟丝袜美| 成人漫画全彩无遮挡| 你懂的网址亚洲精品在线观看| 最近手机中文字幕大全| 亚洲熟女精品中文字幕| 男人添女人高潮全过程视频| 国产精品免费大片| 亚洲av二区三区四区| 久久人人爽人人片av| 成人亚洲欧美一区二区av| 三级国产精品片| 一本—道久久a久久精品蜜桃钙片| 高清视频免费观看一区二区| 啦啦啦中文免费视频观看日本| 边亲边吃奶的免费视频| 丝瓜视频免费看黄片| 精品人妻视频免费看| 亚洲精品一区蜜桃| 噜噜噜噜噜久久久久久91| 亚洲三级黄色毛片| 男女边吃奶边做爰视频| 久久久久久久久久人人人人人人| 成年免费大片在线观看| 看非洲黑人一级黄片| 一级毛片aaaaaa免费看小| 毛片一级片免费看久久久久| 色网站视频免费| 免费看av在线观看网站| 2018国产大陆天天弄谢| 成年女人在线观看亚洲视频| av国产精品久久久久影院| 人妻一区二区av| 六月丁香七月| 国产精品一区二区三区四区免费观看| 97精品久久久久久久久久精品| 亚洲av.av天堂| 久久精品国产亚洲av涩爱| 亚洲欧洲日产国产| 五月开心婷婷网| 熟女人妻精品中文字幕| 日韩av不卡免费在线播放| 国产69精品久久久久777片| 午夜激情久久久久久久| 色综合色国产| 国语对白做爰xxxⅹ性视频网站| 深夜a级毛片| 日韩电影二区| 国产精品精品国产色婷婷| 身体一侧抽搐| 99久久人妻综合| 亚洲精品乱久久久久久| av视频免费观看在线观看| 亚洲欧美清纯卡通| 亚洲国产高清在线一区二区三| 美女视频免费永久观看网站| 国产精品欧美亚洲77777| 99精国产麻豆久久婷婷| 乱系列少妇在线播放| 我的女老师完整版在线观看| 人妻制服诱惑在线中文字幕| 超碰av人人做人人爽久久| 国产免费福利视频在线观看| 欧美高清性xxxxhd video|