• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Chirality and chiral functional composites of bicontinuous cubic nanostructured cubosomes

    2022-06-18 10:53:22DeyinWangHongkaiLiuWeiWang
    Chinese Chemical Letters 2022年3期

    Deyin Wang,Hongkai Liu,Wei Wang

    Center for Synthetic Soft Materials,Key Laboratory of Functional Polymer Materials of Ministry of Education and Institute of Polymer Chemistry,College of Chemistry,Nankai University,Tianjin 300071,China

    Keywords:Chirality Self-assembly Nanostructure Composite

    ABSTRACT Molecular self-assembly is the most important strategy for the development of chiral aggregates and chiral functional materials.In this study,we rationally designed and synthesized chiral fluorescent heteroclusters that were self-assembled into microscale cubosomes with a three-dimensional (3D) bicontinuous cubic phase nanostructure.The cubosomes exhibited chirality,indicating that chirality is transferred from the molecules to the 3D nanostructure.Therefore,we confirmed the formation of a chiral bicontinuous cubic phase nanostructure for the first time.We also showed that this chirality originates from the continuous change in the saddle-splay distortion of the molecules within the curved bilayer.At the same time,transparent films of chiral composites were prepared by mixing the chiral cubosomes with an epoxy resin and then curing the mixture.Therefore,we demonstrated an effective method for preparing chiral composites.

    Lipids are biological molecules composed of a hydrophilic head group and hydrophobic fatty acid tails.Their amphiphilic nature allows them to self-assemble into nano-objects or nanostructures,such as micelles,and vesicles,and complex three-dimensional (3D)bicontinuous cubic networks through intermolecular noncovalent interactions [1].Experimental and theoretical studies [1?8]on the self-assembly principle of lipids provide guidance not only on the formation of complex biological nanostructures,such as biophotonic crystals with 3D cubic networks [9–12],but also on their applications in the fabrication of advanced materials with 3D cubic nanostructures,such as artificial photonic crystals for metamaterials [13,14]and nanoporous particles [15,16]for catalyst supports[17]and controlled drug release [18].

    The self-assembly principle of lipids has been also used to develop self-assembled systems with supramolecular chirality [19–23]and supramolecular chiral functional materials[24,25].Through rational molecular design,chiral building blocks self-assemble intoquasi-one-dimensional supramolecular aggregates,such as twisted or helical ribbons,and nanotubes.These supramolecular aggregates usually exhibit left- or right-handed superstructures,in which the molecules are persistently twisted along the axis of the aggregate.In this way,the chirality of the molecules is transferred to the supramolecular chirality through self-assembly.

    Studies on the chirality of self-assembled systems with a 3D bicontinuous cubic structures are extremely limited.Chiral bicontinuous cubic structures were first observed in the lyotropic liquid phase of two chiral lipids in water [26,27].Recently,they were found in thermotropic bicontinuous cubic phases of bolaamphiphiles and rod molecules [28–30].This work aimed to further study chirality of 3D bicontinuous cubic structures.In our previous studies,we designed and subsequently synthesized a series of the dumbbell-shaped Janus heteroclusters composed of a polyoxometalate (POM) cluster,a polyhedral oligomeric silsesquioxane(POSS),and different organic linkers [31?34].These heteroclusters then self-assembled into cubosomes with a bicontinuous double diamond (DD) cubic nanostructure in solution [34].In this study,we inserted the L- and D-enantiomers of a chiral amino acid and a fluorescent naphthalene dianhydride into the organic linkers of the heteroclusters,which were then self-assembled them into cubosomes.These cubosomes were confirmed to have the DD cubic nanostructure by scanning and transmission electron microscopy(SEM and TEM) and small-angle X-ray scattering (SAXS) analysis.The chirality of the cubosomes were characterized by circular dichroism (CD) spectroscopy.We discussed the correlation between molecular chirality and the chirality of the DD cubic nanostructure constructed by non-twisted or non-helical self-assembled bilayers.In addition,chiral functional composites were also prepared by curing mixtures of chiral cubosomes and an epoxy resin.

    Fig.1.Chemical structures of (a) chiral heteroclusters in L- and D-forms and (b) an achiral heterocluster.The organic linkers between the polyoxometalate (POM) and polyhedral oligomeric silsesquioxane (POSS) clusters are composed of 1,4,5,8-naphthalenetetracarboxylic dianhydride (NDI) and L- or D-phenylalanine or β-alanine.

    Fig.1 shows the chemical structures of the heteroclusters used in this study.The formulas and molecular weights are (Bu4N)6H3(P2W15V3O62),5422.2 Da for the POM cluster and C31H71Si8O12,874.6 Da for 1-aminopropyl-3,5,7,9,11,13,15-heptaisobutyl POSS.To endow them with molecular chirality,we inserted a chiral unit,specifically,an enantiomer of theα-amino acid,that is,L- and D-phenylalanine (L- and D-Phe) into the organic linker.Concurrently,we added 1,4,5,8-naphthalenetetracarboxylic dianhydride (NDI) as a light-absorbing group to the organic linker for the detection of the chirality of the self-assembled cubosomes by CD spectroscopy.The dumbbell-shaped enantiomers are designated as POSS-NDI-L-Phe-POM (or L-heterocluster) and POSS-NDID-Phe-POM (or D-heterocluster),as shown in Fig.1a.The specific optical rotations of L- and D-heteroclusters are+8.0?and?8.0?,we also prepared an achiral heterocluster in which phenylalanine is substituted byβ-alanine,denoted as POSS-NDIAla-POM (or Ala-heterocluster).

    The general synthetic route for these molecules is the same as that reported in our previous works [31]and the details are available in Supporting information.The experimentally determined molecular weights of L-,D- and Ala-heteroclusters are 6743.10,6743.19,and 6667.17 Da,respectively,which are the same as the theoretical values (6743.14,6743.14 and 6667.07 Da).The UV–vis absorption spectra of the three heteroclusters in acetone solution show typical UV–vis absorption peaks atλ=345,364 and 384 nm,and the fluorescence emission peaks atλ=402,426 and 457 nm,which are the characteristic peaks of the NDI unit(Fig.S1 in Supporting information).We also measured the UV–vis absorption and fluorescence emission spectra of POSS-NDI-LPhe-COOH (Fig.S2 in Supporting information).The inserted table lists the peak positions of the UV–vis absorption and fluorescence emission spectra of POSS-NDI-L-Phe-COOH and POSS-NDIL-Phe-POM.Clearly,the spectral differences between POSS-NDI-LPhe-COOH and POSS-NDI-L-Phe-POM are negligible.

    To study the chirality of cubosomes with a bicontinuous DD cubic nanostructure,we implemented the dynamic process used in our previous study [34]for the self-assembly of these newly synthesized heteroclusters.Here,we briefly introduce the selfassembly process.The POM and POSS clusters dissolve well in acetone andn-decane,respectively.Therefore,the resulting heteroclusters possess a Janus nature and are well soluble in a 3:2 acetone/n-decane mixture (v/v) at room temperature.Because the evaporation of acetone is ~80 times faster than that ofn-decane(Table S1 in Supporting information),the gradual evaporation of acetone from the mixture increases the proportion ofn-decane in the mixture,which is a selective solvent for the POSS block.During this process,the L-,D- and Ala-heteroclusters self-assemble into cubosomes,which are referred to as L-,D- and Ala-cubosomes,respectively,for convenience.Under the same condition,we also coassembled mixtures of the L- and D-heteroclusters with L/D ratios of 25/75,50/50,and 75/25 (mol/mol) into cubosomes.Hereafter,these cubosomes are referred to as D/L-cubosomes.

    To confirm that the heteroclusters form cubosomes with bicontinuous DD cubic nanostructures,we characterized the cubosomes using scanning electron microscopy (SEM),transmission electron microscopy (TEM),and small angle X-ray scattering (SAXS).We observed similar results for all cubosomes formed by self-assembly and co-assembly,as summarized in Figs.S3?S5 (Supporting information).The SEM and TEM images for the L-cubosomes are shown in Fig.2.The SEM observation shows truncated octahedral cubosomes (Figs.2a and b) with an average diameter of 1406 ± 288 nm(Figs.2c).For the TEM characterization,we selected a cubosome with a size less than 400 nm to view the internal nanostructure.The TEM images in Figs.2d and f exhibit the nanostructure of the bicontinuous DD cubic phase viewed along the [111]and [100]zone axes [34].In the bright field mode,the dark regions are POMrich because the POM cluster contains 15 tungsten atoms,while the bright regions are POSS-rich.The close-up images in Fig.2e and g and the corresponding fast Fourier transform patterns (insets) reveal the symmetry andd-spacing of the two projections in reciprocal space: the hexagonal symmetry of the white dots with an observed lattice spacing ofd111=8.6 ± 0.2 nm (Fig.2d) and the cubic symmetry of the white (or dark) dots with an observed lattice spacing ofd100=7.8 ± 0.2 nm (Fig.2f).

    The SAXS characterization provides the critical evidence of the identity of the inner nanostructure.Fig.3a is the SAXS spectra of the cubosomes withinq=0.2–2.0 nm?1,whereqis the scattering vector.We can identify one strong peak and two to three weak peaks or shoulder peaks from the enlarged SAXS spectra (Fig.S5).The √2:√3:√4:√6 spacing ratio of these peaks index them to the [110],[111],[200]and [211]reflections of the bicontinuous DD cubic phase [34–36],indicating the space group of the bicontinuous cubic phase isPnˉ3m.The reciprocal spacingqhklof the cubic phase is associated with lattice constantaby the equationqhkl=whereh,k,andlare the Miller indices.Theavalues are 12.3,11.6,and 13.1 nm,respectively,for L-,Dand Ala-cuobsomes,as determined from the slopes of the regression lines passing through the origin (Fig.3b).On the other hand,a=11.9,12.5,and 11.2 nm for the D/L-cubosomes with molar ratios of L/D=25/75,50/50 and 75/25 (mol/mol),respectively (Fig.S5).Hence,we conclude that a DD nanostructure formes inside the cubosomes,as shown in Fig.3c.The drawing of the unit cell depicts the symmetry of the DD structure: 2 equiv.but independent diamonds are constructed by the nodes and channels,which are differentiated by purple and sky-blue colour [34,37].

    Fig.2.(a) Low-magnification SEM image of the L-cubosomes.(b) Close-up SEM image of a truncated octahedral cubosome.(c) Size distribution of the L-cubosomes in A.(d)to (g) TEM images of the L-cubosomes and close-up images viewed along the [111],and [100]zone axes of the double diamond structure.The insets are the corresponding fast Fourier transform pattern.

    Fig.3.(a) SAXS spectra of the L-,D-,Ala- and D/L-cubosomes (q is the scattering vector).(b) Linear relationship between qhkl and (h2+k2+l2)1/2 (qhkl is the reciprocal spacing of the cubic phase and h,k and l are the Miller indices of the corresponding planes).(c) Skeletal drawing of a cubic unit cell with two sets of diamond nanostructures differentiated by purple and sky-blue colors.Lattice constant a is indicated.For interpretation of the references to color in this figure legend,the reader is referred to the web version of this article.

    Fig.4.(a) CD spectra of the cubosomes self-assembled and co-assembled by the heteroclusters and of mixtures of the cubosomes at different ratios in n-decane(c=0.5 mg/mL).The symbols “+”and “/” denote the co-assembly of L- and Dheteroclusters and the mixture of the L- and D-cubosomes,respectively.(b) Linear relationship between the CD intensity and chiral unit content.

    Fig.5.(a) Cubic unit cell of the double diamond structure described using a minimal surface.(b) Saddle surface of a hyperbolic paraboloid containing a saddle point (green)and r1 and r2 as the two principal radii of the curvature.(c) Water channel with a radius (rw).(d) Suggested mirror arrangement of the chiral L- and D-heteroclusters in bilayer with saddle-splay distortion following Bouligand’s drawing [42].

    We studied the chirality of the cubosomes by obtaining their CD spectra of then-decane suspensions with a concentration of 0.5 mg/mL.We examined the following suspensions: (1) L-,D-,and Ala-cubosomes,(2) L/D-cubosomes with L/D ratios of 25/75,50/50 and 75/25 (mol/mol),(3) mixtures of L-,D-,and Ala-cubosomes with ratios of 25/75,50/50 and 75/25 (mol/mol),which are referred to as L/D-,L/Ala-,and D/Ala-mixtures,respectively.We also examined the molecular solution of L- and D-heteroclusters in acetone and then-decane suspensions of the L- and D-heterocluster powders that were prepared by rapidly injecting their tetrahydrofuran solutions into the water.Fig.4a shows the CD signals in the wavelength range from 300 nm to 500 nm.First,the L- and Dcubosomes exhibit Cotton effects in the 350–425 nm region,which are typical of the CD spectra of self-assembled systems containing NDI units and are corresponding with the UV-vis absorption bands of the cubosomes (Fig.S6 in Supporting information).The two spectra are mirror images of each other and show the positive and negative Cotton effects for the D- and L-cubosomes,respectively.Second,depending on the ratio content of the chiral heteroclusters,the absolute intensities of the CD signals of the L/Dcubosomes and the L/D,L/Ala- and D/Ala cubosome mixtures linearly decreases with increasing net ratio of 50/50 (Fig.4b).We did not observe the chiral enhancement [38]possibly due to the larger diameters of POM and POSS in the heteroclusters resulting in a large distance between NDI units.Third,the Ala-cubosome suspensions inn-decane (Fig.4a),the acetone solutions of the Lor D-heteroclusters with the concentrations ofc=0.1,1.0,and 10.0 mg/mL (Fig.S7 in Supporting information),and then-decane suspensions of the L- and D-heterocluster powder (Fig.S8 in Supporting information) do not show any CD signal in the same region.The CD spectra of L- and D-cubosomes with the concentrations of 1.0,0.5 and 0.25 mg/mL were also tested,and their intensities changed with the concentrations (Fig.S9 in Supporting information).Therefore,we conclude that the CD signals originate from the chiral L- and D-phenylalanine units within the ordered structures of the cubosomes.In other words,the molecular chirality of L- and D-phenylalanine is transferred to cubosomes through the bicontinuous DD cubic structures;thus we consider these structures as chiral bicontinuous DD cubic structures or chiral cubosomes.We also carried out the linear dichroism (LD) studies of the resulting chiral cubosomes.LD spectra of the chiral cubosomes monitored under various angles did not show any obvious signals (Fig.S10 in Supporting information).These observations indicate the suprastructure within the cubosomes plays a key role in the chirality transfer from the molecular to the supramolecular level [39,40].

    To the best of our knowledge,there are very few studies on the bicontinuous cubic phases of chiral molecules.There is only one structural study on the bicontinuous cubic phases of two chiral lipids,dihexadecyl phosphatidylethanolamine and didodecyl phosphatidylethanolamine in water by SAXS [26,27].Unfortunately,the chirality was not directly determined by CD spectrometry,possibly owing to the lack of UV–vis absorption moities in the two lipids.Since then,no follow-up studies have been reported possibly because it is difficult to self-assemble the lipids with a covalently connected chromophore unit into chiral bicontinuous cubic structures.Nevertheless,we believe that the bicontinuous cubic phases are chiral.As mentioned earlier,chiral bicontinuous cubic phases were recently found in thermotropic liquid crystal phases of some rod-like compounds or bolaamphiphiles [28?30],and the temperature dependent CD spectra were also determined from the thermotropic liquid crystal phases of two chiral compounds [28],However,the structures in these bicontinuous cubic phases are different from those formed by lipid bilayers.

    It is worth noting that through electron microscopy observation,supramolecular chirality ofquasi-one-dimensional twisted or helical ribbons and nanotubes is early identifiable,that is,left- or right-handed helices or ribbons [19?21].However,our SEM and TEM observations show that there are no similar deformed bilayers or structures on the surface,edge,and interior of the L- and Dcubosomes (Fig.2 and Fig.S11 in Supporting information).Therefore,the chiral cubosomes do not have the appearance of the chiral superstructure that characterizes left- or right-handed ribbons.

    Bicontinuous DD cubic structure is a unique network constructed by two independent nanochannels separated by a curved bilayer.Fig.5a is a triply periodic minimal surface structure showing the lattice of a bicontinuous DD cubic phase.The purple and sky-blue sides of the curved surface distinctly distinguish the two continuous but nonintersecting channel networks.Fig.5b schematically shows the curved surface with two curvaturesc1=1/r1andc2=1/r2,wherer1andr2are the principal radii of the curvatures.The topological characteristic of the curved surface is that every point is a saddle point with a negative Gaussian curvature(K=c1c2<0) and zero mean curvature [H=(c1+c2)/2=0]in whichc1andc2are not constant changing from zero to the maximum in a so-called water channel [3,41].Radius,rw,of water channel (Fig.5c) can be calculated according to the equation:

    whereais the lattice constant,andlis the length of the molecule[38].Taking L-cubosomes as an example,a=12.3 nm,andl=3.5 nm,we obtainrw=1.31 nm,thus the corresponding curvatures arec1=?c2=0.76 nm?1.

    The molecules in the bilayer at each saddle point suffer from a saddle-splay distortion.According to the widely accepted saddlesplay distortion of lipid bilayers proposed by Bouligand [1,2,42],we hypothesize that the L- and D-heteroclusters are arranged such that the chiral L- and D-phenylalanine enantiomers are nonsuperimposable mirror images of one another (Fig.5d).We believe that this is the origin of the chirality of the bicontinuous cubic structure.Because the surface curvature is not constant in the bicontinuous cubic structures,the saddle-splay distortion further varies with the point.In other words,the chiral transfer from the molecules to cubosomes varies at each point and consequently,the heterocluster bilayer does not show any left- or right-handed deformation.To confirm this hypothesis,we prepared the planar structures form by the L- and D-heteroclusters.The absence of CD signals for the plates imply the invalid chiral transfer from the heteroclusters to planar structures (Figs.S12 and S13 in Supporting information).

    In this study,we further prepared chiral composites by mixing the cubosome powder with an epoxy resin (Fig.S14 in Supporting information) (at a ratio 1:100 by weight) and then curing the mixture.The two optical images in Fig.6a show the films of a cured pure epoxy resin and composite on a quartz glass.The composite films are slightly yellowish and transparent,allowing the characters under the film to be visible.Relative to that of the pure epoxy film,the transmittance values of the composite films of the L- and D-cubosomes are 86.9% and 82.4%,respectively.We observed several cubosomes on the fracture surface of a composite by SEM(Fig.6b).We also used SAXS to confirm the bicontinuous DD structures within the cubosomes (Fig.S15 in Supporting information).The CD spectra of the two composite films are the same as those of the L- and D-cubosomes in the 350?425 nm region (Fig.6c).The chiral composite films have the potential applications in terms of chiral recognition,chiroptical switches,chiral electronics and biology.

    Fig.6.(a) Two optical images showing films of cured pure epoxy resin and cured composites of the L- or D-cubosome on a quartz plate.(b) SEM image showing a few cubosomes on a fracture surface of a composite.(c) CD spectra of the chiral composites.

    In summary,we designed and synthesized three dumbbellshaped Janus heteroclusters composed of POM and POSS clusters with different organic linkers that contain a fluorescent NDI unit.The L- or D-phenylalanine enantiomer was inserted into the organic linker of two chiral heteroclusters,whereas achiralβ-alanine was inserted into that of the achiral heterocluster.These heteroclusters self-assembled into cubosomes with a bicontinuous DD cubic structure.CD characterization revealed that the cubosomes of the chiral heteroclusters exhibit chirality,indicating that chirality is transferred from molecules to the bicontinuous DD cubic structure.Our analysis indicated that the saddle-splay distortion of molecules within curved bilayer of the heteroclusters is the origin of the chirality of the cubic phase nanostructure.We further prepared chiral transparent films of composites by curing mixtures of the chiral cubosomes and an epoxy resin.Therefore,we demonstrated a simple but effective method of preparing chiral functional composites for advanced applications.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    We thank for the financial support given by the National Natural Science Foundation of China (No.92061120) and the help of Prof.Yongfeng Men and Dr.Xiao Yang of SAXS at Changchun Institute of Applied Chemistry (CIAC).This paper is also dedicated to the 100thanniversary of Chemistry at Nankai University.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.08.040.

    国产91精品成人一区二区三区| 99久久综合精品五月天人人| 一级毛片高清免费大全| 亚洲成人久久性| 国产91精品成人一区二区三区| 69av精品久久久久久| 两人在一起打扑克的视频| 怎么达到女性高潮| 人妻夜夜爽99麻豆av| 丁香欧美五月| 国产高清有码在线观看视频| 欧美中文日本在线观看视频| 国产熟女xx| 国产一级毛片七仙女欲春2| 国产精品久久久人人做人人爽| 少妇裸体淫交视频免费看高清| 非洲黑人性xxxx精品又粗又长| 国产色爽女视频免费观看| 黄色日韩在线| 免费电影在线观看免费观看| 久久精品91无色码中文字幕| 国产综合懂色| 欧美日韩黄片免| 美女黄网站色视频| 麻豆国产av国片精品| 两个人看的免费小视频| 三级国产精品欧美在线观看| www.999成人在线观看| 十八禁人妻一区二区| 丰满人妻熟妇乱又伦精品不卡| 婷婷亚洲欧美| 国产免费av片在线观看野外av| 欧美zozozo另类| 美女高潮的动态| 18+在线观看网站| ponron亚洲| 99在线人妻在线中文字幕| 国产亚洲av嫩草精品影院| 丰满人妻熟妇乱又伦精品不卡| 免费无遮挡裸体视频| 18禁黄网站禁片免费观看直播| 超碰av人人做人人爽久久 | 欧美乱色亚洲激情| 亚洲国产精品sss在线观看| 噜噜噜噜噜久久久久久91| 在线观看免费午夜福利视频| 人人妻人人看人人澡| 日韩免费av在线播放| 国产av不卡久久| 日韩欧美国产在线观看| 亚洲一区二区三区不卡视频| 婷婷精品国产亚洲av在线| 国产一区二区亚洲精品在线观看| 精品无人区乱码1区二区| 免费一级毛片在线播放高清视频| 女人高潮潮喷娇喘18禁视频| 香蕉丝袜av| 国产视频内射| 国产熟女xx| 午夜影院日韩av| 最近视频中文字幕2019在线8| 18禁黄网站禁片午夜丰满| 美女被艹到高潮喷水动态| 1000部很黄的大片| 天天添夜夜摸| 国产v大片淫在线免费观看| 欧美+日韩+精品| 2021天堂中文幕一二区在线观| 90打野战视频偷拍视频| 欧美丝袜亚洲另类 | 国产色爽女视频免费观看| 久久精品91蜜桃| 精品乱码久久久久久99久播| 国产成人aa在线观看| 看片在线看免费视频| 午夜福利高清视频| 深爱激情五月婷婷| 久久久国产成人精品二区| 欧美绝顶高潮抽搐喷水| 国产欧美日韩一区二区三| 久久久久国内视频| 99久久精品一区二区三区| 日本免费一区二区三区高清不卡| 国产精品精品国产色婷婷| 国产69精品久久久久777片| 国产精品99久久久久久久久| 九九久久精品国产亚洲av麻豆| 一区二区三区免费毛片| 99精品在免费线老司机午夜| 国产男靠女视频免费网站| 俄罗斯特黄特色一大片| 人妻久久中文字幕网| 亚洲色图av天堂| www.色视频.com| a在线观看视频网站| 久久久久久久亚洲中文字幕 | 波多野结衣高清作品| 真人一进一出gif抽搐免费| 精品国内亚洲2022精品成人| 男女午夜视频在线观看| 嫩草影院入口| 欧美最黄视频在线播放免费| 无遮挡黄片免费观看| 岛国在线免费视频观看| 男女那种视频在线观看| 好男人电影高清在线观看| 国产精品精品国产色婷婷| 国产欧美日韩一区二区精品| 亚洲天堂国产精品一区在线| 国产精品女同一区二区软件 | 69人妻影院| 亚洲18禁久久av| 91久久精品国产一区二区成人 | 亚洲欧美日韩东京热| 日本黄大片高清| 国产精品香港三级国产av潘金莲| 免费观看人在逋| 非洲黑人性xxxx精品又粗又长| 可以在线观看毛片的网站| 内射极品少妇av片p| 白带黄色成豆腐渣| 亚洲美女黄片视频| 国产精品三级大全| 国产精品久久视频播放| 色综合欧美亚洲国产小说| 国产精品 欧美亚洲| 久久精品国产综合久久久| 身体一侧抽搐| 他把我摸到了高潮在线观看| 听说在线观看完整版免费高清| 日韩欧美精品免费久久 | 国产色爽女视频免费观看| 中文字幕av在线有码专区| 在线观看66精品国产| 午夜福利18| 国产伦在线观看视频一区| 啦啦啦观看免费观看视频高清| 伊人久久精品亚洲午夜| 国产高潮美女av| 18禁国产床啪视频网站| 免费搜索国产男女视频| 成人鲁丝片一二三区免费| 18+在线观看网站| 1000部很黄的大片| 免费电影在线观看免费观看| 在线观看日韩欧美| 两性午夜刺激爽爽歪歪视频在线观看| 欧美黄色片欧美黄色片| 热99re8久久精品国产| 国产精品乱码一区二三区的特点| 亚洲内射少妇av| 色视频www国产| 手机成人av网站| 国产精品免费一区二区三区在线| 成人av在线播放网站| 久久久久免费精品人妻一区二区| 国产精品香港三级国产av潘金莲| 国产成人aa在线观看| 亚洲欧美日韩东京热| 久久中文看片网| 亚洲色图av天堂| 久久精品夜夜夜夜夜久久蜜豆| 午夜免费激情av| 成人欧美大片| 久久这里只有精品中国| 亚洲精品粉嫩美女一区| 性欧美人与动物交配| 亚洲精品一卡2卡三卡4卡5卡| 国产成年人精品一区二区| 久99久视频精品免费| 国产午夜精品论理片| 久久99热这里只有精品18| 精品一区二区三区视频在线 | 成人午夜高清在线视频| 一区二区三区国产精品乱码| 亚洲激情在线av| 亚洲人与动物交配视频| 又紧又爽又黄一区二区| 欧美性猛交╳xxx乱大交人| 欧洲精品卡2卡3卡4卡5卡区| 久久久久亚洲av毛片大全| 两个人视频免费观看高清| 日本一本二区三区精品| 五月伊人婷婷丁香| 久99久视频精品免费| 亚洲国产精品合色在线| 国产精品一区二区三区四区久久| 桃色一区二区三区在线观看| 亚洲成人免费电影在线观看| av视频在线观看入口| 国产在线精品亚洲第一网站| 五月伊人婷婷丁香| 亚洲人成伊人成综合网2020| 亚洲av二区三区四区| 亚洲国产欧美人成| 色综合欧美亚洲国产小说| 日本黄大片高清| 少妇裸体淫交视频免费看高清| 最新美女视频免费是黄的| 精品人妻1区二区| 亚洲精品久久国产高清桃花| 在线播放无遮挡| 五月伊人婷婷丁香| 亚洲人成电影免费在线| 激情在线观看视频在线高清| 亚洲熟妇熟女久久| 最新在线观看一区二区三区| 国产精品久久久久久久电影 | 韩国av一区二区三区四区| 男女下面进入的视频免费午夜| 青草久久国产| 国产精品乱码一区二三区的特点| 免费高清视频大片| 99久国产av精品| 久久香蕉精品热| 19禁男女啪啪无遮挡网站| xxxwww97欧美| 精品一区二区三区视频在线观看免费| 亚洲黑人精品在线| 亚洲国产日韩欧美精品在线观看 | 看黄色毛片网站| 久久精品国产亚洲av香蕉五月| 亚洲国产色片| 国产精品98久久久久久宅男小说| 香蕉丝袜av| 国产成人a区在线观看| 91av网一区二区| 麻豆成人午夜福利视频| 国产精品98久久久久久宅男小说| 日本免费a在线| 尤物成人国产欧美一区二区三区| 五月伊人婷婷丁香| 成年免费大片在线观看| 久久精品人妻少妇| 亚洲最大成人手机在线| 国产精品99久久99久久久不卡| 淫秽高清视频在线观看| 精品久久久久久久久久久久久| 精品人妻1区二区| 黄片大片在线免费观看| 亚洲av五月六月丁香网| 九九热线精品视视频播放| 黄色丝袜av网址大全| 国产av在哪里看| 国产亚洲av嫩草精品影院| 亚洲最大成人中文| 亚洲激情在线av| 一个人看的www免费观看视频| 18美女黄网站色大片免费观看| 国产视频内射| 亚洲av中文字字幕乱码综合| 成年女人看的毛片在线观看| 亚洲美女视频黄频| 18禁美女被吸乳视频| 午夜激情福利司机影院| 啦啦啦观看免费观看视频高清| 不卡一级毛片| 88av欧美| 国产欧美日韩一区二区精品| 国产探花在线观看一区二区| 亚洲中文字幕一区二区三区有码在线看| 欧美午夜高清在线| 欧美成人一区二区免费高清观看| 黄色丝袜av网址大全| 亚洲最大成人中文| 无人区码免费观看不卡| 九色国产91popny在线| 熟女电影av网| 岛国视频午夜一区免费看| 婷婷精品国产亚洲av在线| 少妇人妻一区二区三区视频| bbb黄色大片| 麻豆成人av在线观看| 欧美性感艳星| 亚洲专区国产一区二区| 国产精品自产拍在线观看55亚洲| 精品国内亚洲2022精品成人| 国产高清激情床上av| 女人十人毛片免费观看3o分钟| 欧美最黄视频在线播放免费| 五月玫瑰六月丁香| 中文字幕人妻熟人妻熟丝袜美 | 国产美女午夜福利| 国产99白浆流出| 亚洲国产精品成人综合色| 小蜜桃在线观看免费完整版高清| 免费高清视频大片| 校园春色视频在线观看| 美女免费视频网站| 欧美成人一区二区免费高清观看| 亚洲精品日韩av片在线观看 | av福利片在线观看| 欧美av亚洲av综合av国产av| 欧美成狂野欧美在线观看| 亚洲av五月六月丁香网| 狠狠狠狠99中文字幕| 小蜜桃在线观看免费完整版高清| 国产亚洲欧美在线一区二区| 看片在线看免费视频| 在线免费观看的www视频| 欧美日韩亚洲国产一区二区在线观看| 少妇人妻一区二区三区视频| 久久精品国产99精品国产亚洲性色| 亚洲专区中文字幕在线| 国产成人aa在线观看| 亚洲一区二区三区色噜噜| 免费看十八禁软件| 欧美区成人在线视频| 成人午夜高清在线视频| 亚洲国产精品合色在线| 亚洲av熟女| 欧美+日韩+精品| 一个人免费在线观看的高清视频| 看免费av毛片| 一二三四社区在线视频社区8| 欧美国产日韩亚洲一区| 国产免费av片在线观看野外av| 色av中文字幕| 日韩 欧美 亚洲 中文字幕| 欧美丝袜亚洲另类 | 国产黄片美女视频| 久久久久久久精品吃奶| 精品福利观看| 中亚洲国语对白在线视频| 无限看片的www在线观看| 淫秽高清视频在线观看| 久久精品国产综合久久久| 琪琪午夜伦伦电影理论片6080| 看免费av毛片| 国产精品日韩av在线免费观看| xxx96com| 亚洲精品美女久久久久99蜜臀| 国产高清三级在线| 国产免费av片在线观看野外av| 午夜福利欧美成人| 男女视频在线观看网站免费| 热99re8久久精品国产| 日本熟妇午夜| 国产激情欧美一区二区| av天堂在线播放| av视频在线观看入口| 久久久精品大字幕| 男女午夜视频在线观看| 午夜福利在线观看吧| 日本一本二区三区精品| 伊人久久大香线蕉亚洲五| 嫩草影院精品99| 亚洲av不卡在线观看| 精品国产亚洲在线| 俄罗斯特黄特色一大片| 最新美女视频免费是黄的| 日韩成人在线观看一区二区三区| tocl精华| 日韩欧美 国产精品| 日韩亚洲欧美综合| av在线蜜桃| 久久久色成人| 三级国产精品欧美在线观看| 黄片大片在线免费观看| 麻豆久久精品国产亚洲av| 一本一本综合久久| 12—13女人毛片做爰片一| 亚洲av免费高清在线观看| 一区二区三区激情视频| 久久午夜亚洲精品久久| ponron亚洲| 国产精品美女特级片免费视频播放器| 成人国产一区最新在线观看| 在线免费观看不下载黄p国产 | 看片在线看免费视频| 99视频精品全部免费 在线| 啦啦啦韩国在线观看视频| 12—13女人毛片做爰片一| 18禁美女被吸乳视频| 黄色丝袜av网址大全| 两个人的视频大全免费| 男女之事视频高清在线观看| 亚洲在线自拍视频| 国产精品影院久久| 嫁个100分男人电影在线观看| 亚洲国产日韩欧美精品在线观看 | 最近在线观看免费完整版| 成人高潮视频无遮挡免费网站| 亚洲精品美女久久久久99蜜臀| 狂野欧美激情性xxxx| 麻豆久久精品国产亚洲av| 色播亚洲综合网| 亚洲午夜理论影院| 亚洲,欧美精品.| www国产在线视频色| 亚洲成人中文字幕在线播放| 亚洲不卡免费看| 日本 av在线| 高清在线国产一区| 亚洲av免费在线观看| 亚洲欧美日韩高清在线视频| 变态另类丝袜制服| 在线观看舔阴道视频| 偷拍熟女少妇极品色| 国产亚洲精品一区二区www| 天美传媒精品一区二区| 亚洲av二区三区四区| 最后的刺客免费高清国语| 在线十欧美十亚洲十日本专区| 久久6这里有精品| 久久久久国产精品人妻aⅴ院| 99国产综合亚洲精品| xxx96com| 哪里可以看免费的av片| 久久久久久久久中文| 成年女人永久免费观看视频| a级一级毛片免费在线观看| 噜噜噜噜噜久久久久久91| 欧美乱码精品一区二区三区| 观看美女的网站| 欧美日韩瑟瑟在线播放| 日本 欧美在线| 中文亚洲av片在线观看爽| 国产亚洲av嫩草精品影院| 日韩欧美 国产精品| 中文字幕精品亚洲无线码一区| 免费看十八禁软件| 两个人的视频大全免费| av片东京热男人的天堂| 精品久久久久久,| 熟女少妇亚洲综合色aaa.| 久久99热这里只有精品18| 黑人欧美特级aaaaaa片| 综合色av麻豆| 成人国产综合亚洲| 美女cb高潮喷水在线观看| 国内精品美女久久久久久| 国产成人av教育| 欧美av亚洲av综合av国产av| 中出人妻视频一区二区| 久久精品国产清高在天天线| 99精品在免费线老司机午夜| 香蕉丝袜av| 免费无遮挡裸体视频| 午夜免费激情av| 999久久久精品免费观看国产| 欧美日韩一级在线毛片| 婷婷精品国产亚洲av在线| avwww免费| 一卡2卡三卡四卡精品乱码亚洲| 他把我摸到了高潮在线观看| 窝窝影院91人妻| 午夜福利免费观看在线| 色老头精品视频在线观看| 国模一区二区三区四区视频| 熟妇人妻久久中文字幕3abv| 免费看美女性在线毛片视频| 一个人看的www免费观看视频| 美女cb高潮喷水在线观看| 日韩免费av在线播放| 成人鲁丝片一二三区免费| 久久这里只有精品中国| 一级毛片女人18水好多| 在线观看美女被高潮喷水网站 | 国产精品1区2区在线观看.| 青草久久国产| 成人亚洲精品av一区二区| 男女下面进入的视频免费午夜| 级片在线观看| 九九热线精品视视频播放| 亚洲欧美日韩东京热| 99riav亚洲国产免费| 身体一侧抽搐| 国产精品亚洲av一区麻豆| 黄色女人牲交| 可以在线观看毛片的网站| 嫩草影院精品99| 欧美日韩瑟瑟在线播放| 欧美乱妇无乱码| 两个人的视频大全免费| 亚洲欧美激情综合另类| 国产一区在线观看成人免费| 国产在线精品亚洲第一网站| 欧美性猛交╳xxx乱大交人| 亚洲色图av天堂| 好男人在线观看高清免费视频| 国产精品久久久久久亚洲av鲁大| 校园春色视频在线观看| 国产欧美日韩精品亚洲av| 一本综合久久免费| 日韩欧美精品免费久久 | 久久久久久国产a免费观看| 欧美日韩国产亚洲二区| 18禁裸乳无遮挡免费网站照片| 91字幕亚洲| 色av中文字幕| 国产国拍精品亚洲av在线观看 | 90打野战视频偷拍视频| 国产乱人伦免费视频| 久久久国产成人免费| 成人三级黄色视频| 国产色爽女视频免费观看| 国产一区二区三区在线臀色熟女| 99久久九九国产精品国产免费| 日本一二三区视频观看| 午夜影院日韩av| 亚洲人成网站在线播| 亚洲18禁久久av| 中文资源天堂在线| 18禁裸乳无遮挡免费网站照片| 亚洲精品亚洲一区二区| 国产精品久久久久久久久免 | 久久久久久人人人人人| 国产日本99.免费观看| 亚洲成人精品中文字幕电影| 中文在线观看免费www的网站| 国产国拍精品亚洲av在线观看 | 又粗又爽又猛毛片免费看| 欧美3d第一页| 美女高潮喷水抽搐中文字幕| 一级毛片女人18水好多| 琪琪午夜伦伦电影理论片6080| 韩国av一区二区三区四区| 免费看十八禁软件| 午夜免费成人在线视频| 中文在线观看免费www的网站| 精品久久久久久久毛片微露脸| 国产精品98久久久久久宅男小说| 亚洲人与动物交配视频| 男女做爰动态图高潮gif福利片| 看免费av毛片| 99国产精品一区二区蜜桃av| 日本黄大片高清| www国产在线视频色| 国产精品久久久久久精品电影| 中文字幕av在线有码专区| 日韩av在线大香蕉| 一区二区三区高清视频在线| 亚洲欧美精品综合久久99| 亚洲精品美女久久久久99蜜臀| 日韩国内少妇激情av| 国产精品嫩草影院av在线观看 | 成人精品一区二区免费| 啪啪无遮挡十八禁网站| 亚洲国产高清在线一区二区三| 久久久久性生活片| 宅男免费午夜| 熟妇人妻久久中文字幕3abv| 久久午夜亚洲精品久久| 人人妻人人澡欧美一区二区| 日本黄色片子视频| 五月伊人婷婷丁香| 成人亚洲精品av一区二区| 欧美av亚洲av综合av国产av| 国产成人欧美在线观看| 欧美av亚洲av综合av国产av| 一级作爱视频免费观看| 亚洲精品亚洲一区二区| 中文字幕精品亚洲无线码一区| 91久久精品电影网| 亚洲一区高清亚洲精品| 深夜精品福利| 国内精品一区二区在线观看| 在线观看免费午夜福利视频| 久久精品国产亚洲av香蕉五月| 午夜日韩欧美国产| 免费看十八禁软件| 色在线成人网| 精品久久久久久久久久免费视频| 69人妻影院| 久久久久久九九精品二区国产| 校园春色视频在线观看| 丰满乱子伦码专区| 国产亚洲精品久久久久久毛片| 99久久精品国产亚洲精品| 久久精品国产清高在天天线| 欧美+日韩+精品| 国产欧美日韩一区二区精品| 精品国产三级普通话版| 亚洲午夜理论影院| 给我免费播放毛片高清在线观看| eeuss影院久久| 波多野结衣巨乳人妻| 最后的刺客免费高清国语| 国产午夜精品久久久久久一区二区三区 | 色尼玛亚洲综合影院| 成年女人永久免费观看视频| av福利片在线观看| 欧美黄色淫秽网站| 九色成人免费人妻av| 免费av不卡在线播放| 国产亚洲欧美98| 长腿黑丝高跟| 黄色日韩在线| 国产精品亚洲av一区麻豆| 少妇的逼好多水| av天堂中文字幕网| 又爽又黄无遮挡网站| 亚洲精品国产精品久久久不卡| 又紧又爽又黄一区二区| 狂野欧美激情性xxxx| 琪琪午夜伦伦电影理论片6080| 国产精品亚洲一级av第二区| bbb黄色大片| 色噜噜av男人的天堂激情| 久久国产精品人妻蜜桃| 亚洲精品亚洲一区二区| 免费人成视频x8x8入口观看| 在线天堂最新版资源| 国产视频内射| 丰满人妻一区二区三区视频av | 大型黄色视频在线免费观看| 美女高潮的动态| 欧美黄色片欧美黄色片| 一本综合久久免费| 俺也久久电影网| 国产av在哪里看| 午夜久久久久精精品| 亚洲av日韩精品久久久久久密| 香蕉久久夜色|